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3 Defensible Program Evaluations

Four Types of Validity

Defining Defensibility

Program evaluation is not someone’s personal opinion about a program, or someone’s casual

observations about a program, or even observations based on journalistic or managerial familiar-

ity with the program. Rather, it is based on defensible observations. Defensible observations are

those collected in a systematic manner. “Systematic” means that the process by which the obser-

vations are collected and analyzed is both replicable and valid.

Replicability means that it does not matter who is doing the research. The basic design is laid

out before the research is done. Robert Right or Leslie Left could implement the study design,

collect and analyze the data as prescribed in the study design, and come to the same conclusion

using the normative criteria also specified in the study design. Most of the research designs that

we discuss in this book are ex ante replicable. That is, in advance, the researcher specifies in

considerable detail what is to be observed, how it is to be measured, and how the information is to

be analyzed. The process is known before the research is begun, but the conclusion is not. While

virtually no research is 100 percent ex ante replicable, most research designs are quite detailed in

specifying how the project is to proceed. Nonetheless, it is common for the researcher to make

changes when he is in the field. He may find better ways of measuring some variables and dis-

cover that other ways are not possible. He then indicates how the design was modified, so that the

audience (decision makers and others) can see, ex post, how the design could be replicated. Case

study designs, which we briefly discuss in Chapter 6 as a type of quasi experiment, have relatively

more ex post than ex ante replicability. By contrast, experimental designs will have relatively

more ex ante replicability. Ex post replicability means that, once the research was done, how it

was done (the route that got the researcher from A to B) is clear. Ex ante replicability means that,

before the research is done, how it will be done (the route that will get the researcher from A to B)

is clear.

Replicability, especially ex ante replicability, helps to make empirical claims (no matter whether

they are descriptive or causal) more defensible and objective. Without replicability (and other

properties of defensibility), the claim would merely reflect personal opinion and casual observa-

tion. Replicability makes conclusions (no matter whether descriptive or causal) traceable. That is,

given the process for selecting observations and variables to study, for measuring each variable,

and for analyzing the data, one can trace the link between the process and the conclusions. Trace-

ability (or replicability) is at the core of making research objective.
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While traceability (or replicability) is necessary for defensible program evaluation, it is not

sufficient. If it were, one could defensibly implement a fully outlined research design that uses a

process for collecting data that is known to be error prone. Such a design would be objective and

replicable. It would not be valid. Validity is the second component of defensible program evaluation.

Types of Validity: Definitions

There are four types of validity: internal validity, external validity, measurement validity (and

reliability), and statistical validity.1 We first define what these terms mean. We then discuss each

type of validity in more detail, noting the threats to each type of validity and how to reduce these

threats. The core of this text is on impact, or causal, evaluations. Because this is the province of

internal validity, our discussion of internal validity begins in the next chapter. Subsequent chap-

ters further elaborate that topic. By contrast, our discussion of external validity, measurement

reliability and validity, and statistical validity will be relatively brief and is generally confined to

this chapter. However, we also discuss these types of validity in more detail when they relate to

internal validity.2

Internal validity refers to the accuracy of causal claims. Consequently, this type of validity is

relevant only when causal evaluations are at issue. Since this is a textbook about causal, or impact,

evaluations, it is a textbook about internal validity. For example, suppose that an evaluation study

claimed that public school teachers with master’s degrees are “better” than teachers with only a

bachelor’s degree. That is, based on the analysis of the observations in the study, the study’s

causal claim is that, compared to teachers with less education, teachers’ additional education

“causes” better performance by the students they teach. Suppose further that a subsequent, inter-

nally more valid study showed that that claim was entirely inaccurate or partially so, in that it

overestimated the impact of public school teachers’ advanced degrees on their students’ perfor-

mance. The implication would be that the internal validity of the former study was questionable.

We discuss in subsequent chapters how to assess internal validity. It is important to note here that

no study can be 100 percent internally valid. However, some studies are clearly more internally

valid, or unbiased, than others. (These two words mean the same thing.) Reasonable levels of

internal validity are necessary for causal inference if the causal claims of an evaluation are to be

credible.

External validity refers to the generalizability of research results. Research results are general-

izable if they are applicable to other times and places and to the larger population that is of

interest. External validity is relevant to both descriptive and causal evaluations. For example,

someone interested in generalizing about all Temporary Assistance for Needy Families (TANF)

programs in the United States, would probably question the external validity of a study of TANF

programs in Nebraska (no matter whether it was descriptive or causal). However, it is important to

point out that one applies the criterion of external validity only to the population of interest. If one

is only interested in generalizing about TANF programs in Nebraska, then the study above might

be externally valid. It would not be externally valid if the population of interest were TANF

programs in the United States as a whole. Temporal generalizability is another component of

external validity; it is almost always relevant. That is, evaluators hope that findings from a study

of ongoing programs (in a given location) will also be applicable to programs (in the same loca-

tion) in the near future. Hence, findings from studies of alleged gender bias in, say, hiring prac-

tices in 1970 would probably not be generalizable to the same topic thirty-five years later, no

matter how internally valid the studies were.
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Measurement validity and reliability pertain to the appropriate measurement of all the con-

cepts and variables in the research. Measurement validity concerns the accuracy with which con-

cepts are measured, while reliability pertains to the precision of measurement. Another way of

describing the difference between measurement validity and reliability is that valid measures

have as little systematic or nonrandom measurement error as possible, while reliable measures

have as little random measurement error as possible. We discuss each of these in more detail

below. It is important to note that measurement reliability and validity refer not just to outcome or

output variables, but also to program variables, as well as other variables that the evaluation

measures.

Finally, statistical validity refers to the accuracy with which random effects are separated from

systematic effects. Measurement reliability and validity respectively pertain to the relative ab-

sence of random and systematic error in single variables. Statistical validity usually pertains to the

relative absence of random error from the causal or descriptive claim that there is a systematic

relation between variables. Thus, statistical validity usually pertains to relations between two (or

more) variables; measurement issues usually pertain to variables considered one at a time.

Types of Validity: Threats and Simple Remedies

With one exception, we discuss each type of validity in greater detail below. We reserve the entire

next chapter to discussion of threats to internal validity, and the three following chapters to re-

search designs that, to a greater or lesser extent, minimize those threats to internal validity.

External Validity

External validity refers to the generalizability of research results—that is, their applicability or

portability to other times and places. Threats to external validity mainly come from four sources:

1. Selecting a sample that is not representative of the population of interest. If the population of

interest is large (say, over 500 units of analysis), it may not be feasible or even reasonable from

the perspective of costs, time, or ease of administration to study the entire population. So whom

should a researcher study if she cannot study every unit in the population? The usual remedy is to

select a random sample. Random means that every unit to be selected for study has a known

probability of being selected. Many samples are simple random samples, where every unit has the

same probability of being selected for study. More detailed texts on sampling also discuss other

kinds of random samples where the probabilities are known but not equal. For example, in strati-

fied samples, small populations may be oversampled to improve the efficiency of estimating

population characteristics.3 For the purposes of this text on program evaluation, there are three

important points to make about representative sampling for external validity.

1a. The unit of analysis is what is sampled and what is counted. Units of analysis may be

people, but often they are not. Sometimes a researcher may select a sample of individual persons

from the adult population of a country, or from the population of a medium or large city, or from

the population of students in a medium or large school district. If she selects 2,000 individuals

from the population of members of a group whose population is about 200,000 members, she

might select them so that each member has .01 probability of being selected. The number of

observations in the study would be 2,000. Sometimes the unit of analysis is a collection of people.

Suppose a researcher wants to study schools in Maryland. There are about 7,500 schools in Mary-
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land, and he might decide that he cannot study all of them. Instead he decides on a representative

sample, while each school having a .10 probability of being selected for study. He would collect

data on 750 schools. The number of observations in his study is 750; it is not the total number of

students in the 750 schools.

Similarly, suppose a researcher wants want to study the implementation of Title IX programs

in universities in the United States. She decides to study a representative random sample, rather

than the whole population. Selecting 100 universities from a list of the 1,000 largest universities,

she would design a sampling procedure so that every university in that list has a .10 chance of

being in the sample. The important point here is that the relevant sample size is 100, not the

number of students in the athletic programs in those universities. We will revisit the issue of the

units of analysis when we talk about experimental designs in Chapter 4. While the application is

different, the underlying principle is the same: in selecting units for study, the number of observa-

tions in the study is the number of units, and not the number of entities (if any) within the units.4

1b. Small random samples are never representative. “Small” usually means less than 120, but

this is not an absolute rule. However, random samples of, say, 30, are not likely to be representa-

tive. What makes random samples representative is their size: large random samples of a fixed

population are more representative than smaller random samples. A 100 percent sample is the

population, so it is clearly representative. But a random sample of 10 children is probably not

representative, no matter whether the population from which they are being selected is 30, 300,

3,000, or 30 million children.

Sometimes, usually because of budget and time limitations, it is not possible to study a large

sample. In that case, it may be best to decide ex ante what a typical sample might look like. When

samples must be small, rather than rely on the laws of statistical sampling that require a large

sample, it is better to deliberately select what appear to be representative units from the popula-

tion of interest. Such a sample is deliberately rather than randomly representative. For example, in

an evaluation of a federally funded Department of Interior initiative to rehabilitate urban parks,

the evaluators had funds to collect detailed, on-site information from no more than twenty cities.5

Rather than select a random sample, the researchers deliberately selected cities from each region

of the country; they selected cities of the size that typified those in the program, including some

large cities and some small ones, and they studied different types of programs. While a few pro-

grams provided services, most were aimed at improving the physical infrastructure of the parks

(e.g., fixing the basketball courts). Consequently, the researchers deliberately selected for study

more infrastructure than service programs. Had they selected twenty cities randomly, it is likely

that no cities with service-oriented programs would have shown up in the simple random sample.

1c. Random sampling from a small population will not be representative. This is true for a

variety of reasons. First, if the population is small, the random sample will also be small, and, as

we just said, small random samples will not be representative of the population from which they

are selected. Second, the usual theory of sampling assumes sampling with replacement. That is, in

sampling theory, researchers select one unit at random from a population of 10,000 units, pretend

to throw that unit back into the population, and resample the second unit. They keep doing this

until they have their desired sample of, say, 200 units. But, in practice, they really do not toss the

units back. So the probability of the first unit is 1/10,000 = .0001. The probability of the second

unit is 1/9,999, which is only very slightly greater than .0001. The probability of the third unit is

also only very slightly greater than the former probability. In general, when the denominator is

large, sampling without replacement (which is what is usually done in practice) is virtually the

same as sampling with replacement.
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However, selecting a random sample of states from the population of fifty states will not be

random. If a researcher aims for, say, a sample of thirty, the probability of the first unit is 1/50 =

.02; the probability of the second is 1/49 = .0204; the probability of the third is 1/48 = .0208.

Every unit in the analysis would have to be adjusted by the probability of showing up in the

sample, adding an additional level of complexity to the analysis of the observations in the study.

And the final sample may not be representative anyway, because it is too small.

2. Studying “sensitized” units of analysis. When the units of analysis are individual people

who know they are being studied, their awareness often distorts their behavior, so that the behav-

ior or response in the study is not generalizable to what would be observed in the real world.

(Later we see that this is the same as a testing effect, a source of measurement invalidity.) For

example, if bank loan officers are told that they are being studied to determine if they service

Federal Housing Administration–guaranteed mortgages differently from their own bank’s mort-

gages, they may well behave differently in the study than they would ordinarily. Teachers who are

being observed for a study may also alter their behavior, so that what is observed during a study

is not representative of their ordinary behavior. The problem of studying sensitized units of analy-

sis is often called the Hawthorne effect, based on the unexpected 1930s findings from a Hawthorne

company plant that manufactured shirts. The plant managers surveyed the workers on the assem-

bly line to see what their needs were; for example, they asked if the workers wanted more light to

do their work. Surprisingly, the workers’ output improved just after the survey, even though the

managers had not changed anything. Apparently, the workers worked harder simply because the

survey itself changed their behavior, signaling that management “cared.”

It would seem that the remedy for the problem of studying sensitized units is straightforward:

do not tell people that they are being studied. While the respondents to a survey will be aware that

they are being studied, the bank officers in our example simply need not be told that they are

being studied. Similarly, social service recipients, or other program cients, simply need not be

told that they are being studied. The problem with this solution is that, in general, it is illegal and

unethical to fail to get informed consent from people whose behavior is being studied in an evalu-

ation of public program implementation or impact. While there are some exceptions to this rule,6

the presumption is that informed consent is necessary.

An alternative strategy is to design the study so that it does not rely entirely on reactive data.

Although surveys and direct observation are wonderful sources of information, they are obtru-

sive, and respondents may consequently alter their behavior so that it is not representative of what

would be observed outside of a study situation. But there are other sources of information. For

example, administrative records are a source of information about the activities of teachers and

bank officers in two examples that we have used. To reduce the threat to external validity from

relying entirely on sensitized units of analysis, one option is to supplement the sensitive data with

unobtrusive data on the same units of analysis. If the two sources of information produce similar

results, then researchers can be more confident that the reactive data sources are as externally

valid as the unobtrusive sources of information.

3. Studying volunteers or survey respondents. People who are willing to be studied may not be

representative of the intended population. For example, one of the biggest problems in contempo-

rary opinion polling and survey research is the problem of nonresponse. In this case, researchers

select a large random sample of people from a specified population and phone them, or send them

a survey by mail or e-mail, or visit their homes for a face-to-face interview. While the researcher

selects the intended sample, the respondents select themselves, the actual sample; in effect, they

are volunteers. Typical response rates are 70 percent or less. Even the response rate to the national
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census (which is not a sample; it is a tally of observations from the entire population) is only about

70 percent. Responders are not like the population; they tend to be more educated, wealthier, and

generally cooperative people. Depending on the purpose of the study or the nature of the intended

sample of respondents in the study, the actual responders might be the ones with the most extreme

views or more time on their hands (e.g., retired people). Another class of volunteers participates

in many medical studies that compare the effectiveness of a new drug to the current drug or to a

control. For example, National Institutes of Health (NIH) offers summer internships to healthy

college biology majors to go to Washington, work in the labs with NIH research scientists, and

take part in controlled drug studies. These volunteers may not be representative of the population

to which the researchers would like to generalize. And, of course, many people remember being

“volunteered” to be in a study in a sophomore psychology or economics class. Most people would

not characterize their behavior then as representative.

Remedies for the problem of studying volunteers will only minimize the problem, not elimi-

nate it. Chapter 8 discusses in considerable detail the steps that researchers can take to increase

response rates to surveys, and we will not repeat that discussion here. The problem of generaliz-

ing from those who consent to be studied (e.g., school districts that volunteer to be in a study of

school integration; college students who volunteer to be in a psychology or medical study) is

usually minimized by replicating the studies in other volunteer groups. That is, if similar studies

of college students from big schools, small schools, state schools, expensive private schools, U.S.

schools, French schools, and the like produce the same results, the implication is that the indi-

vidual studies are representative. When researchers reasonably expect that nearly all individuals

respond similarly to environmental treatments, or stimuli, generalizing from volunteers or single-

site studies may be valid. For example, most patients react the same way to common antibiotics,

and most consumers react the same way to prices: when prices go up, people buy less. The prob-

lem of studying volunteers or sites selected by the research because of their convenience or avail-

ability is much more of a threat to external validity when the researcher anticipates that reactions

may be different for different groups of people. This is the problem of statistical interaction.

4. Statistical interaction. Statistical interaction means that the descriptive relation between two

variables X and Y (or the causal impact of X, the program, on the outcome Y) depends on the level

or value of a third variable, Z. For example, consider a possible causal relation between public

school spending and pupil achievement. Suppose that the impact of additional spending (X) on

student achievement (Y) depends on the socioeconomic status (SES) of students in the school

district (Z), so that more spending (X) appears to bring about (“cause”) higher achievement (Y)

only in low SES districts (Z–) and has no impact in high SES districts (Z+). This would be an

example of statistical interaction, because spending “works” only in low-income districts. Thus

the impact of spending (X) on achievement (Y) depends on the level of district SES (Z). Similarly,

if job training (X) appears effective at raising the earnings (Y) of unskilled adult women (Z
w
) but

not for unskilled adult men (Z
m

), that also would be an example of statistical interaction.

Statistical interaction is a threat to external validity because it means that generalization is not

possible. Rather, what characterizes one subgroup in the population of interest does not character-

ize other subgroups. When a researcher is evaluating the plausibility of causal hypotheses or

causal claims, failing to recognize statistical interaction when it is present not only means that

external validity is not possible but also can reduce internal validity. That is, undetected statistical

interaction can lead researchers either to erroneously find a causal relation or to erroneously

reject a causal claim. Hence, we discuss the issue further in our consideration of internal validity.

The possibility of statistical interaction may also necessitate larger sample sizes to minimize
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the threat of small samples to external validity (and to statistical validity, as we see below). For

instance, African-Americans are a small proportion of the U.S. population. If a researcher expects

that a program might operate differently for African-Americans than for other groups, she might

want to oversample African-Americans to make sure that there are enough African-Americans for

externally valid results for that subgroup. If she is studying whether school vouchers improve

academic performance among low-income public school students, anticipating that the effects

might be different for black students than for white students, she should oversample African-

Americans to examine this possibility. Otherwise, if the sample of African Americans is too small,

then the final causal claim about vouchers (no matter whether the claim is “vouchers work” or

“vouchers do not work”) might be externally valid for the larger subgroup (those who are not

African-American), but it will be less so for the smaller subgroup of African-Americans. In fact,

researchers frequently oversample many subgroups for special study simply because they antici-

pate statistical interaction. That is, they anticipate it will not be possible to make one generaliza-

tion about the population of interest and that the study may find that what “works” or is effective

for one subgroup is not so for another.

Statistical Validity

Definition

In making descriptive or causal claims about the relation between variables (or in making descrip-

tive claims about single variables), researchers (and critics) often wonder whether what the obser-

vations seem to show is “real,” or just a fluke. For example, in the case of a single variable, if a

researcher observes that achievement scores in a particular school appear extremely low, com-

pared to some external standard, that observation might be a fluke. That is, the researcher might

ask, “If I did this study again (say, next week), would I get the same result? Or is the observed

score just a random occurrence?” And, in the case of, say, two variables, if the researcher ob-

served that schools with large class sizes have low achievement scores, he might ask, “Is this

result real?” or “If I did this study again, would I see the same thing?” (These questions apply to

both descriptive and causal claims.) Sometimes what researchers observe is purely random occur-

rence. For example, readers know from personal experience that there is an element of random-

ness in our performance on tests; usually you do well, sometimes you do not. In sports, sometimes

you hit the ball or basket, but usually you do not. Similarly, the reason that researchers cannot

generalize from small samples is not only that the small sample is unlikely to be representative of

the larger population to which the researcher seeks to generalize. Such generalizations are prone

to random error. If a researcher interviews one or two or ten people, she should know that that is

too small a sample to characterize the larger population, not only because it is unrepresentative

but also because it is not likely to be random. These are all aspects of statistical validity.

More generally, statistical validity refers to the accuracy with which random claims (descriptive

or causal) about observations are separated from systematic claims. For example, a random claim

might be: “The school performance is just below the standard, but the difference is so small that it is

just random.” A systematic claim might be: “This school is clearly below (or above) the standard.”

How can we assess the accuracy of either claim? Alternatively, a random claim may pertain to the

accuracy (or, in this case, precision) of a random sample: “53 percent report that they support my

candidate, so it looks like my candidate may lose; the difference between winning (50 percent + 1)
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and 53 percent is just random.” Someone else might use the same claim as systematic evidence

that the candidate will win. Which claim is more likely to be correct? Assessing statistical validity

helps us to evaluate the relative accuracy, or precision, of claims such as these.

Sources

There are three sources of randomness in observational studies, no matter whether they are de-

scriptive or causal. There is randomness in sampling, in measurement, and in human behavior.

Consider, first, sampling as a source of random error. Recall that we have already related random

sampling to external validity. Specifically, we said that small random samples are likely to be low

in external validity because they may not be representative of the larger population to which the

evaluator wishes to generalize. Small random samples also have more random error (called sam-

pling error) than larger samples, and thus they are more subject to problems of statistical invalid-

ity. Statistics texts point this out, and it is not necessary to repeat those lessons here.7 We note here

that the probability of accuracy increases as the sample size increases, but only up to a point. As

the sample size becomes exceedingly large (e.g., over 1,000), the probability of accuracy does not

go up much, but the costs of the larger sample continue to rise, often at an increasing rate. As a

consequence, we rarely observe samples of the U.S. population (or any other sample) that are

much larger than that.

The exception to this rule occurs when the evaluator anticipates statistical interaction. In other

words, if the evaluator anticipates that, say, the impact of providing a housing voucher on housing

consumption may be different for seniors than for others, so that generalization to a single popu-

lation would be erroneous, then taking two separate, large samples (say, close to 1,000) of each

group would increase statistical validity of conclusions for each subgroup. The important point is

that larger samples have less sampling error than smaller ones. Large samples reduce the chance

that one will mistake a randomly occurring observation (noise) for one that is really there (the

signal). Of course, larger samples always have higher costs, so researchers must balance the gain

in statistical validity against the added monetary costs to determine the optimal sample size.

The ideal sample size also depends on the use that is to be made of the data. For example, we

have just seen that if a researcher anticipates statistical interaction, then the ideal sample size

should be larger than otherwise. Similarly, if a researcher is solely interested in estimating popu-

lation characteristics based on sample data, she will probably need a larger sample than if she

were interested in evaluating whether a particular program is having its intended impact in a

particular city. In the former case, she might need, say, 1,400 randomly selected observations

(assuming there are no issues of likely statistical interaction) in order to be 95 percent confident

that an estimated mean is within + or – 3 percent of the (unknown) true population mean. In the

latter case, she could readily work with, say, only about 120 observations in order to be 95

percent confident that an estimate of program impact (given, say, 110 degrees of freedom) is

significantly greater in the intended direction than no impact at all. Further, in this case, the 120

observations could be randomly selected from the relevant population, or they could comprise

the entire population of the relevant study group. Finally, in this case of impact estimation, 1,000

observations might be better, but not necessarily optimal because of rapidly rising data collec-

tion costs. The point is that, for statistical validity, generalizing about a population’s value on

separate, single variables requires larger samples than estimating parameters that characterize

causal (or descriptive) relations between variables. Generalizing about the population value of

single variables (e.g., mean education and median income) is usually a task for descriptive pro-
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gram evaluation. For statistical (and external) validity, these evaluations may require a larger N

than causal evaluations.

It is also important to note that reconsidering the unit of analysis can transform what appears at

the outset to be an inherently small sample with an N of 1 into a larger sample, simultaneously

enhancing both external and statistical validity. For example, suppose that the task is to evaluate a

specific shelter program that serves homeless women in a particular city. The intention is that the

evaluation be generalizable only to that program. This appears to be a case where the number of

observations can only be one, far too low for statistical or external validity.

But, in fact, this is not the case. The researcher can readily amplify the number of observations

by studying a single unit over time. For example, if the shelter has been operating for 10 years,

then the potential N is 10 years x 12 months in a year = 120. Alternatively, and even better if it is

feasible, he could compare the operation of the focal shelter, using monthly data over the past 10

years (N = 120), to that of a different program serving homeless women in the same city, using

monthly data for the same period. Now, the N is 240. Suppose, however, that the shelter has been

in operation for only one year or that only the records for the past year are readily available. The

researcher cannot then study data over time, but he can observe the entities within the study unit.

Suppose the shelter, during the one-year span of time, has served 120 women. Some of the women

have found independent living and employment, some are still in the shelter, some have left and

returned. A study can provide descriptive information about the program inputs and outputs for

these 120 women (e.g., hours of paid employment) and even begin to examine whether the use of

more program inputs “causes” better outputs (or even outcomes). In any case, the N is 120. If the

researcher can collect similar data on, say, 100 homeless women in a different program in the

same city, the N now becomes 220.

The point is that what looked originally like a study with one observation can be extended over

time or, by looking at entities within a single unit, examined at a micro level, or both, simulta-

neously increasing both its statistical and external validity. It may also be possible to increase the

N by adding another set of observations on individuals served by a different, comparable shelter

in the same city, providing a comparison for the focal shelter that is being evaluated.

Two remaining sources of randomness also reduce the ability to separate systematic observa-

tions or patterns from random occurrences, jeopardizing statistical validity. They are randomness

in measurement and randomness in human behavior. Consider first the case of randomness in

measurement. We have already noted that one source of randomness in measuring population

values on a single variable is small sample sizes. Just as multiple observations reduce random

sampling error, multiple measures reduce random measurement error, especially when what is

being measured is an abstract concept.

For instance, suppose that an evaluator is trying to estimate the employment rate of people who

have completed a job-training program. Realizing that an estimate based on a random sample of

10 might be a fluke, the evaluation would be more confident if the random sample were 300 or

1,000. This is an example of statistical (random) error due to small sample size. In the example,

employment is relatively easy to measure.

But consider the case of measuring the value of observations on a single, abstract variable like

educational achievement or “social adjustment.” For example, because of randomness in school

performance measures, a school in a study might score low on one day, but if the same test were

given in the same school the next day, the school might score better (or worse). The observation

might be purely random and impermanent, but maybe it is “real” and persistent. If the observation

was just a fluke, extremely low scores measured on the first day will go up the next day and
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extremely high scores will go down; on subsequent days, individual daily scores will fluctuate

around the true mean. When there is randomness in an observed variable, any single observation

will be a fluke. What is really there will be revealed by repeated measures of the students in the

school, or repeated measures of different tests at the same school, or repeated measures of (roughly)

the same test over time. If the seemingly low score was not a fluke, it will remain low on subse-

quent days, still fluctuating around the true mean. Thus, in the case of a single variable, especially

when it is abstract, the best way to reduce randomness in observations or scoring is to have

repeated measures or observations.

As another example, consider the design of standard educational achievement tests, such as

the Scholastic Aptitude Test (SAT) or Graduate Record Examinations (GREs). Why are these

tests so long? Asking multiple questions about the same basic concept increases the reliability of

the test (with diminishing returns). A ten-question SAT would contain a much greater random

component than the current version. Similarly, a four-question final exam in a math class would

be quicker but much “noisier” about a student’s true performance than a fifty-item final exam. In

fact, randomness in individual-level measures (the example in this paragraph) is usually far greater

than randomness in collective-level or aggregate data (such as the school, discussed in the previ-

ous paragraph), but it does not disappear, especially when the concept to be measured is abstract.

We discuss the problem of random measurement error in more detail below. However, the

point here is that random error in measures reduces statistical validity; the two concepts are re-

lated, because randomness in measurement introduces “noise,” a source of statistical error. As we

point out in the discussion of random measurement error, the best way to reduce random error in

the measurement of abstract concepts is to have multiple indicators or repeated measures. Just as

more observations reduce random error in sample sizes, more indicators reduce random error in

the measurement of abstract concepts. With diminishing returns, multiple or repeated measures

(and larger samples) separate the signal (the systematic component) from the noise (the random

component). That is why researchers almost never measure an abstraction like educational achieve-

ment with just one indicator. Rather, they measure its separate components (math ability, reading

ability, reading comprehension, analytical ability, and so on), using multiple items to measure

each one. Multiple indicators of abstract concepts reduce the randomness in the measurement of

abstract concepts.

Finally, randomness in human behavior is also a threat to statistical validity. First, randomness

in human behavior is one source of random measurement error, due not to the measurement

process but to the behavior of what is measured. This is a particular problem in survey research,

but it is also a problem in other measures too. For example, sometimes a student does well on a

test, sometimes the same student does not. The student does not know why. Sometimes she just

guesses an answer; that is surely random. In surveys (or classroom tests), if students are asked to

respond to a question about an issue that they have not thought about before, they respond ran-

domly.8 We discuss the implications of random responses (in tests, surveys, and other measures)

below, in our discussion of measurement reliability and in our discussion of surveys in evaluation

research. In both of these cases, however, randomness in measures attributable to randomness in

human responses makes it harder for the evaluator to separate systematic observations from ran-

dom ones.

The other source of randomness in human behavior is that human behavior is very complex,

probably too complex for researchers ever to completely comprehend. Furthermore, in impact

evaluation research (i.e., causal evaluation studies), it is not necessary for evaluators to under-

stand all the causes of the human behavior they are examining. For example, suppose an evaluator
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wishes to estimate whether and how much a job-training program “causes” recipients to move to

higher-paying jobs than they were in before. They cannot hope to explain everything about the

wages of everyone in her sample. She will probably chalk up the unexplainable aspects of human

behavior to the “stochastic” or random component of her study.

If the stochastic component is too large, it will be more difficult to separate any systematic

impact of job training on wages from random patterns. We discuss below (in the chapters on

research design) how researchers can make use of pretest scores to reduce the random component

of human behavior without having to undertake the impossible burden of explaining it. The basic

idea is that the best predictor of a person’s wages at some time, t, is to know what that person’s

wages were at a previous time, t – 1. Researchers take advantage of the predictability (i.e., stabil-

ity) of most people’s behavior to reduce the stochastic component. Predictability does not really

explain why some people earn higher wages than others do. But taking account of the predictabil-

ity or temporal stability of behavior allows researchers to increase the statistical validity of esti-

mates of relations between program inputs and outputs, whether they are intended to be descriptive

or causal. And do not forget that a large sample size is also a straightforward if not always conve-

nient way to reduce the random component of evaluation studies. (There is another aspect to the

inexplicable, random element in human behavior that is a threat to internal validity. We postpone

that discussion to our extensive treatment of that topic in the chapter on internal validity.)

Consequences

Why is low statistical validity a problem? Low statistical validity can lead to important errors of

decision. In academic research, these errors may not be costly, except to one’s pride, but in pro-

gram evaluation, where policy makers and program administrators must make “real” decisions

based on research outcomes, these errors may well be of external consequence. No matter what its

source, statistical validity tends to minimize these decision errors. In statistical language, there

are two kinds of decision errors—Type I and Type II. Type I error occurs when a null hypothesis

is rejected when it is actually true; Type II error occurs when a null hypothesis is accepted when

it is actually false. Increasing sample size can reduce each type of error, but the benefit diminishes

as the sample size increases. First, we characterize each type of error; then we provide a simple

illustration of how large samples can reduce the chance of each.9

In systematic studies, there are two kinds of hypotheses. The null hypothesis (H
0
) is the one

that is tested. The null hypothesis is also an exact hypothesis. For example, in descriptive studies

of a single variable, the null hypothesis might be that the observed pollution in a stream exactly

meets the required (or desired) standard. In causal studies of the impact of a program on an output

or outcome, a null hypothesis might be that the training program improved wages by 2 percent.

Most often, the null hypothesis is that the program had absolutely no (0) impact. This (exact) null

hypothesis is tested against an alternative hypothesis. The alternative hypothesis (H
1
) is not exact.

In evaluation research, the alternative hypothesis, while inexact, has a direction. For example, in

the case of a descriptive study of a single variable, the evaluator is probably interested in whether

the observed pollution in the stream exceeds the required (or desired) standard. If the pollution

level is lower than the standard, no action is needed; if the pollution is above the standard, reme-

dial action may be required. Similarly, in the case of causal evaluations, the alternative hypothesis

is inexact, but it specifies a direction. For example, if the program manager has a standard that the

training program ought to raise wages by 2 percent, impact estimates that are less than that stan-

dard may be a concern for decision makers, while beating the standard may not require action.
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Similarly, if the null hypothesis is that the program had no impact, the usual alternative of interest

to the decision maker is that the program had an impact in the intended direction. (This is not

necessarily the case in academic research, but directional alternative hypotheses are the usual

case in evaluation research.)

The basic point here is that null hypotheses are exact; alternative hypotheses are inexact and

usually specify a direction relative to the null. The evaluator does the study because no one knows

ex ante which hypothesis is false. One hypothesis is false in the “real” world, but the decision

maker does not know which of the two it is. The job of the evaluator is to construct a study, collect

observations, and analyze the data so as to reduce the chance that the decision maker comes to the

wrong conclusion. Figure 3.1 depicts the evaluator’s dilemma.

The evaluator does not know which hypothesis statement characterizes the real world. Further,

he can test only the null hypothesis and either reject or fail to reject it. It is not possible to “prove”

a null (or an alternative) hypothesis about real-world behavior. As we said above, mathematicians

do proofs; empirical social scientists do not. If the data are systematically different from what the

evaluator would observe if the null were true, then he would decide that the null is not true (i.e.,

H
0
 is false) and that the data, if they are in the same direction as the alternative hypothesis, are

consistent with that hypothesis. (This does not mean that the alternative hypothesis is “true.”)

Having decided that the null is not true, the evaluator may or may not be correct. Having

rejected the null, he risks a Type I error, which is the error of rejecting a null that is really true. In

that case, the program “really” has no impact, but the evaluator concludes (erroneously) that it

Figure 3.1 Statistical Errors in Hypothesis Tests
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does have its (intended) impact. It is also possible that the evaluator decides the null is not true,

and that it “really” is not true. In that case, there is no error. Alternatively, the evaluator might

conclude from the study that the null hypothesis is not false. (This does not mean that the null

hypothesis is true.) This might be a correct conclusion; the program may “really” have no impact.

But maybe the program “really” does have an impact (in the intended direction). In this case, the

evaluator has come to an erroneous conclusion. He concluded that the program had no impact,

when it really does. This is a Type II error.

So no matter what the evaluator concludes, the conclusion can be wrong. Statistical validity,

which is the ability to separate random from systematic influences, reduces the probability of

each type of error. If the program “really” has no systematic effect (or if the sample observations

are not “really” different from the standard), then statistically valid studies will reduce the prob-

ability of erroneously finding an effect (or difference) when none is there. Similarly, if the pro-

gram “really” has a systematic effect (or if the sample observations “really” are different from the

standard), then statistical validity reduces the probability of erroneously finding no difference

when one is “really” there.

No study is 100 percent valid, but some are more valid than others. Most important, studies

with more observations nearly always reduce the probability of each type of error. However, at

some point, the increase in observations begins to reduce the probability of error only a little,

while the cost of collecting and analyzing more data continues to rise. In other words, at some

point, increasing sample size has diminishing returns and increasing costs. So it is not the case

that more observations are always better, once costs are taken into account. However, it is the case

that some studies can have too few observations. A simple fable illustrates.

——————————————————

The Fable of the Fat Statistician

Imagine a good cookie—rich, moist, with lots of dark chocolate chips, at least two and
a half inches in diameter, and one-third inch thick. Some cookies meet your standard of
a good cookie and others simply do not. You are a statistician; you are hungry; you are
in a strange city. You go to the nearest bakery to see if the cookies in that bakery meet
your standard. You buy one cookie to take back to your hotel and test (by eating it). The
null hypothesis is an exact one: the cookie meets the standard (cookie = standard). If
the null hypothesis is not false, then you will buy more cookies from the bakery. The
alternative (inexact) hypothesis is that the cookie fails the standard (cookie < standard).
If the null hypothesis is false (meaning that the cookie appears not to meet your stan-
dard), then you will have to go elsewhere for cookies, spending more time to search.
Now you taste the one cookie, and it is OK. But based on just one cookie, you remain
uncertain about whether to search further (an unwelcome thought) or to remain with
this bakery and forgo a better cookie (also unwelcome). In short, you are really not sure
whether to believe (i.e., fail to reject) the null hypothesis and continue to buy from that
bakery or to reject the null and incur the expense and time of finding another place to
buy acceptable cookies. If you reject the null but make an error in doing so, you incur
unnecessary search costs and give up perfectly good cookies (Type I error). If you fail
to reject the null hypothesis but make an error (Type II) in doing so, you buy more
cookies that are really no good, wasting your money. So how do you reduce the chances
of either kind of error? Buy (and eat!) more cookies from the test bakery. That is, you try
a larger sample to increase your certainty about your decision (increase your own
confidence in your judgment). That is why statisticians tend to gain weight.

——————————————————
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The Costs of Errors of Type I and II

In evaluation research, when policy decisions may be made based on statistical tests of null hy-

potheses, sometimes one type of error is worse than the other type. For example, suppose that in

a political campaign, a campaign manager wants to do some research about the status of her

candidate, A, against a competitor candidate B. Her null hypothesis is that A = B, which means

that the two candidates are tied in their rate of support, while her alternative hypothesis is that A

> B, which means that her candidate, A, is leading. If the null hypothesis is “really” true, but the

campaign manager rejects it in favor of the alternative hypothesis that her candidate is winning

(a Type I error), she may reduce her efforts to win support for her candidate when she should not.

If the null is “really” false (i.e., A is actually winning), but the campaign manager accepts the null

(a Type II error), then she continues to allocate excessive resources to campaigning.10 While that

is a waste of time and money, the Type I error is more costly in this case, because it may cause the

candidate to lose an election.

By contrast, in impact evaluations, program managers (and program supporters) may regard

Type II errors as more costly than Type I errors. For example, suppose that the null hypothesis is

that a popular preschool program for poor children (e.g., Head Start) has no impact on school

readiness. The alternative hypothesis is that it increases school readiness, compared to what one

would observe if students were not enrolled in the program. Suppose further that an evaluator,

based on the data in the study, failed to reject (i.e., accepted) the null hypothesis, deciding that the

program has no impact. The evaluator risks a Type II error; he also risks a storm of protest from

program supporters and from the program manager. More important, if the program is canceled

but the evaluator is wrong, the children risk losing the gains in academic readiness that they

would otherwise reap from what is “really” an effective program. Compared to the Type II error,

the Type I error may be less costly. In that case, the evaluator erroneously rejects the null. The

program continues to be funded, even though it is not effective. This too is a waste of resources,

but it may not be a waste that draws as much political fire as a Type II error, at least in this case.

As another example, consider the case of the jury in the trial of a suspect who is charged with

burglary or robbery. The null hypothesis is that the defendant is innocent. The jury then faces the

dilemma of putting an innocent person in prison or freeing a dangerous criminal who could con-

tinue to harm society. Suppose the jury rules that the defendant is guilty, while in fact he is

innocent. The jury then makes a Type I error of putting an innocent person in prison. However, on

the other side, suppose that the jury does not have enough evidence to reject the null hypothesis

and decides that the suspect is not guilty. If he really did commit the crime, then the jury makes a

Type II error, which will hurt not only the previous victims but also future ones, now that the

suspect has been released. Further, the error raises the doubt that the judicial system can really

punish criminals. In addition, these Type II errors will eventually encourage more (severe) crimes

and a few previous innocents may commit crimes hoping the justice system will let them go free.

Thus on this occasion, the Type II error is more costly.

In a murder case, the Type I error may arguably be more costly than in other cases. The null

hypothesis is that the suspect, charged with murder, is innocent. The jury then faces the dilemma of

punishing an innocent person (perhaps with prison for life or even a death sentence), or otherwise

letting a dangerous criminal go free, possibly to continue harming society. Suppose the jury does not

have enough evidence to reject the null hypothesis and decides that the suspect is not guilty. If the

suspect really committed the murder, then the jury would make a Type II error, which will hurt the

victim’s family and potential future victims. It will also fail to deter other potential killers and raise
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the doubt that the judicial system can really punish murderers.11 However, on the other side, if the

jury rules that the defendant is guilty and puts him on death row, while in fact he is innocent, the jury

then would make a Type I error. The Type I error is more costly in this case than the Type I error in

the previous case of burglary or robbery. In this case of murder, the Type I error puts an innocent

person to death and also raises doubts about the integrity of the judicial system.

We have seen that larger samples reduce the probability of both Type I and Type II errors.12

Later, we will see that using “efficient” statistics and statistical tests can also reduce the probabil-

ity of both Type I and II error. Statistics like the mean (e.g., the mean SAT score in a sample of

schools, which may be compared to a standard), or the difference between means (e.g., the differ-

ence between the mean standardized test scores of third-graders in comparable charter and public

schools), are point estimates based on one random sample of N observations. Theoretically, how-

ever, other random samples of the same size could produce other statistics. The sample from

which we draw our conclusion is just one sample of many that could have been drawn. Another

sample would produce a different mean (or a different difference of means). As the number of

observations in our sample increases, the variance of possible means (or difference of means, or

other statistical summary measures, such as a proportion) diminishes. This is desirable; we want

the variation of our observed, statistical summary measure around the unknown but “true” value

(that is, its likely distance or variance or standard error around the “true” value) to be smaller

rather than larger. As the variation of our sample statistic around the unknown “true” value grows

increasingly small, the probability of either a Type I or Type II error will go down, because our

guess about the “true” value based on the statistic that we actually computed from our sample

data is likely to be more accurate. In statistics, more accurate estimates are called more efficient

estimates. Thus, large samples make statistical estimators more efficient; other design aspects

(including reducing random measurement error in program variables, which we discuss below)

also have the same effect. Finally, we also want to estimate accurately how far our estimate is

from the true value (i.e., its variance or standard error). Chapter 7 on nonexperimental designs

discusses how to assess whether our estimates of the likely distance between our sample estimate

and the “true” value are not only as small as possible, but also as accurate as possible.

Alternatives to Type II Error

The issue of Type II errors is particularly vexing for program evaluators. We have already seen

that program evaluators often worry more about Type II than Type I errors. For example, suppose

that study results show that, of two alternatives being tested, the new alternative is no better than

the current one. The evaluator fails to reject (“accepts”) the null hypothesis (no difference be-

tween the treatment alternatives) relative to the (vague) “research” hypothesis (the new program

is better). But this conclusion could be erroneous because the evaluator, in deciding that the new

program is no better than the old one, could be wrong. This is a Type II error. The dilemma is that,

unlike null hypotheses, research hypotheses are not exact. The null is an exact hypothesis: the

program had no (zero) effect. The alternative or research hypothesis is an inexact hypothesis that

includes many exact hypotheses that the program had “some” particular effect in the desired

direction. Given multiple sources of randomness, each of these numerous alternative exact hy-

potheses about program impact, even if they were “true,” could produce a “zero impact” result. As

a consequence, the probability of the Type II error is hard to calculate, and we do not consider that

task here. There are tables of the probability of Type II errors, but the general logic is not as

straightforward as that of Type I errors.13
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However, a simple way to consider the risk of a similar error is to turn one of the alternative

hypotheses in the rejection region into an exact one. For example, having decided in step one not

to reject the null, the evaluator, in step two, could next test the observed results against a minimum

acceptable threshold of desired effectiveness. The minimum threshold becomes an exact hypoth-

esis, and the research proceeds in the usual way. The minimum threshold could be what political

decision makers consider minimally acceptable. That level could be outside the .05 rejection

region (especially if the sample size is small), but it could still be better than “no impact” from a

management point of view. The threshold could be a level determined by legislative statute or

court order, or it could be the break-even point in a cost-benefit or cost-effectiveness analysis. So,

having accepted the null (no effect) hypothesis test, the evaluator can next test the observed re-

sults from the study against the minimum acceptable threshold, which now becomes the exact

null hypothesis that is tested in the second stage of the analysis. While the computed p-value from

this second stage is technically the probability of a Type I error, it also provides information about

the probability of incorrectly deciding that the program does not work (i.e., it fails to meet the

standard) when in fact it may work at an acceptable level.14

In a similar vein, Jeff Gill suggests paying attention to the confidence interval of a parameter

estimate.15 Confidence intervals decrease as the sample size increases, which is analogous to

increasing the power of a null hypothesis test, where power is the probability that failing to reject

the null is the correct decision. This may be less confusing than a hypothesis test, since there is no

Type II error in estimating a confidence interval.

In sum, it is particularly important in program evaluation to avoid rigid adherence to a hypoth-

esis-testing model of the 0-null hypothesis using a conventional p-value of .05. In academic re-

search, real careers may depend on statistical decisions, but in program evaluation, real programs,

as well as real careers, are at stake. The best advice is to use multiple criteria. If the program is

acceptable (or unacceptable) under multiple criteria of statistical validity, then the statistical deci-

sion becomes more defensible. However, statistical validity is not the only criterion for the valid

assessment of program characteristics or impact. We turn next to the critical issue of measurement.

Measurement Reliability and Validity

Introduction

Valid descriptions of program inputs, outputs and/or outcomes, and valid assessments of program

impact requires that the measures of program inputs and outputs or outcomes themselves are

defensible. For example, if an evaluator is examining the impact of participatory management on

productivity in a school, she needs to have valid measures of management that is more or less

participatory and valid measures of output that represent productivity levels.

Abstract concepts such as these are particularly difficult to measure. In fact, the overall mea-

surement of “validity” is parsed into separate criteria: reliability and validity. The reliability of a

measure is the absence of random measurement error (RME) in recorded scores. The validity of

a measure is the absence of nonrandom measurement error (NRME) in recorded scores.

A diagram is the best way to distinguish between reliability (no random error) and validity (no

nonrandom error) in measures. Consider a measure of school productivity using test score gains

in a first-grade classroom. Call that measure Y. Y has two components. First, there is the “true”

score Y
T
; we do not know what it is. We only know what we observe or measure, which we call Y

M
.
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Figure 3.2 shows how Y
T
 is related to Y

M
. In this diagram, the measured scores (Y

M
) are deter-

mined by a random component (µ
Y
) and a systematic, or nonrandom, component (Y

T
). If most of

Y
M

 is comprised of µ
Y
, then Y

M
 is a noisy measure of Y

T
, with considerable RME. On the other

hand, if most of Y
M

 is due to Y
T
, then Y

M
 is likely to be a relatively valid measure of Y

T
, with little

NRME.

Representing this diagram algebraically is more informative, especially in respect to NRME.

Specifically, we write Y
M

 as a linear function of both Y
T
 and µ

Y
:

Y
M 

= α + β Y
T 

+ µ
Y
.

In this formulation, if the expected value of µ
Y
 is small [written E (µ

Y
)] (and if it has little vari-

ance), then we would conclude that Y
M

 has little RME. With respect to NRME, if E (α) = 0 and E

(β) = 1 (and they have little variance), then we would conclude that Y
M

 ≅ Y
T
, so that the measured

and true scores of Y are about the same. One could have a valid measure Y
M

 with considerable

RME: Y
M

 = 0 + 1* Y
T
 + µ

Y
. Alternatively, one could have an invalid measure of Y

M
 with little RME:

Y
M

 = α + βY
T 

+ 0, where the intercept is not expected to be 0 and the slope is not expected to be 1.16

Below, we discuss examples of both kinds of measurement error, including problems of likely

RME and NRME in test scores of first-graders. To begin the discussion, consider my beloved, but

old, bathroom scale. In the long run, scales such as these have little (but not zero) random mea-

surement error. In fact, I can see the random error on this old analog scale. When I step on it, the

indicator bounces around a little before it settles down to a number. Thus, I assume that my scale

has relatively little RME: E (µ
Y
) » 0. However, my scale has considerable NRME. First, it consis-

tently underreports my weight; symbolically, this means: 0 < E (β) < 1. Second, it is anchored at

a negative weight, so that it registers a negative score when no one is standing on it: E (α) < 0.

While a bit lightweight, this example serves to illustrate the two aspects of measurement error

(random and nonrandom). It also illustrates the two facets of NRME: constant or error in the

intercept; and systematic or correlated error in the slope. Examples and implications of these

errors for assessing overall measurement reliability and validity follow.

Measurement Reliability

Measurement reliability refers to a measurement procedure that has little RME. We have already pre-

sented some examples of measurement procedures that are likely to contain random components:

• achievement tests

• classroom tests

• athletic ability

Figure 3.2 The Basic Measurement Model
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• responses to attitude or opinion survey questions, particularly when the issue is unfamiliar

to the respondent or when the respondent has ambiguous attitudes or beliefs

• nonhomicide crime rates

• safety (of anything)

Measurement reliability is achieved if different measures of the same phenomenon record the

same results. For example, continuing with the example of my bathroom scale, the scale is a

reliable measure of weight if I step on it and it reads 152. I step off and then step on it again two

minutes later, having done nothing except maybe read a few pages of this book. Once again, the

scale reads 152. I conclude (if I did such a test repeatedly, with the same or close to the same

results each time) that the scale is reliable.

By contrast, we say that an SAT score is not as reliable an indicator of academic achievement

because a student taking the SAT twice in a short period of time may get different scores, even

though her underlying level of achievement remains unchanged. Similarly, we are accustomed to

getting different scores on exams or in athletic competitions, and we often attribute surprising

success to “good luck” and surprising failure to “bum luck.” The technical term for these casual

assessments is “random measurement error.”

Test scores may be particularly unreliable, but randomness is greater under some circum-

stances than others. At the individual level, scores on standardized tests fluctuate randomly. How-

ever, larger “samples” reduce randomness. For example, increasing the number of items on a test

reduces randomness in the overall test score of an individual. At the classroom, group, or school

level, randomness in the group average decreases as the number in the group increases. Thus, test

scores for minority groups may contain more “noise” than scores on the same test for nonminorities.

Responses to opinion surveys provide another, less familiar, example of often-unrecognized

unreliability. According to Asher, respondents to opinion surveys commonly feel pressured to say

something when they are asked a question in a poll.17 This reaction is particularly likely when

respondents have ambivalent opinions about a complex topic (like the death penalty). It is also

likely when respondents know little or nothing about the topic, or if the topic is a nonsense ques-

tion (e.g., “Should the music industry increase the level of hemiola in contemporary music, re-

duce it, or is the current level satisfactory?”). The actual response will be “random,” but it will be

indistinguishable from a “real” one, unless the possibility of random response is anticipated.

Even crime rates, which look “real,” contain random measurement error, because not all crime

is reported, and sometimes the decision of a citizen to report a crime is just a random one. (Some-

times the decision to report reflects characteristics of the reporter and is not just a random phe-

nomenon; we discuss nonrandom measurement errors below.) Homicides, however, are likely to

be reported, so they are not likely to be subject to problems of random (or nonrandom) measure-

ment error. This also characterizes accident data. For example, small accidents are not consis-

tently reported to authorities, and some of the nonreporting is undoubtedly random (and some

probably reflects characteristics of the reporter, so part of the error is not random). Significant

accidents (for example, those that result in death or hospitalization) are more likely to be reported.

Thus data on airline crashes are probably more reliable than data on falling down stairs.

Random measurement error may also plague what appear to be objective measures of program

implementation. Sometimes what is recorded may reflect random reporting errors or data entry

errors. For example, if the evaluator is studying the impact of hours spent in a job-training pro-

gram on the probability of finding a job, the reported measure of finding a job (yes or no) may be

quite reliable. However, the measure of hours spent in training may not be as reliable, because
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random errors frequently plague administrative record keeping, particularly when the agency

providing the training is not a large bureaucracy that is accustomed to keeping records and can do

so at low marginal costs.

Consequences of RME, and Strategies for Reducing It

Virtually no measurement is 100 percent reliable, but some measures are more reliable than oth-

ers. Why should program evaluators, concerned about making their research conclusions defen-

sible, care about reliable measures? It turns out that unreliable measurement has one and sometimes

two effects. First, unreliable measures of outcome variables reduce statistical validity, thus raising

the likelihood of both Type I and II errors. We discuss this further in Chapter 6 on nonexperimental

design. Second, unreliability in measures of program variables (but not output variables) also

reduces internal validity. The next chapter on internal validity makes clear why internal validity is

particularly important for defensible program evaluation results.

Contrary to intuition, it is more important to be concerned that program and treatment vari-

ables are measured as reliably as possible than it is to focus attention on reliably measuring

outcome or output variables. Yet conventional wisdom is to concentrate on reliable measures of

outputs or outcomes, but the cost may be to ignore the development and assessment of reliable

measures of program treatment. In program evaluation, it is not clear that the gains in statistical

validity from concentrating on reliably measuring outcomes or outputs are worth the losses in

internal validity if reliable measures of program treatment are sacrificed. To give some examples,

program evaluators tend to concentrate on reliably measuring outcomes or outputs (e.g., achieve-

ment scores, wages, recidivism, compliance). If the measures of program treatments (e.g., hours

in school, hours in a training program, hours in a drug treatment program, quality and quantity of

safety or health inspections) are unreliable, then estimates of the impact of X on outcome Y could

be invalid even if the outcome Y is reliably measured.

A relatively straightforward way to increase the reliability of measurement is not unrelated to

the way to increase statistical validity. Just as increasing the number of observations in a study

reduces random error, so does increasing the number of indicators reduce measurement unreliability.

We prove this statement in Chapter 7, where we discuss how to measure the reliability of re-

sponses to survey questions. But the rationale for this statement is easy to demonstrate with a

simple example. Suppose that your performance in this (or any other) class was to be assessed

with one exam; on that exam, there is only one short-answer question. While students and the

instructor would all enjoy the reduced workload, most students would complain that one short

question on one exam is not a very reliable measure of their performance in the class. Maybe you

will have a cold on that day. Or the question does not tap what you have spent most of your time

working on. Or the question deals with the topic that you found the hardest to understand. Or

maybe you got lucky, since the test question represents the only thing that you understand from

the course. The point is that one item measuring a student’s performance in an entire class is an

unreliable measure. More items, and more tests, increase reliability.

Using multiple indicators or multiple items to increase the reliability of measurement is par-

ticularly important when concepts are hard to measure (e.g., outcome or output measures such as

class performance, satisfaction with a program, environmental quality, or wellness). By contrast,

when concepts are not so abstract or hard to measure (like weight, or hourly wages, or hours of

work), multiple indicators are not as important because a single indicator can be reasonably reliable.

Frequently, evaluators combine multiple indicators into a single index. Your grade in this class
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is such an index, assuming that it is an average (weighted or unweighted) of grades on several

tasks. The final score in a baseball game is an index of the performance of each team in an inning.

Your overall SAT or GRE score is an index of your performance on each item in the test, and each

component of the exam (e.g., the verbal score) is an index of your performance on each item in

that portion of the test. Chapter 7, in addition to discussing how to measure reliability, also dis-

cusses how to create indexes and assess the reliability of indexes. Indexes that have more compo-

nents (more indicators) are likely to be more reliable than indexes with fewer components. For

example, a ten-item test is usually more reliable than a three-item test.

Measurement Validity

Measurement validity is different from measurement reliability. While measurement reliability

refers to a measurement procedure that is (relatively) absent of random error, measurement valid-

ity refers to a measurement procedure that is (relatively) absent of nonrandom measurement error

(NRME). NRME means that the measure is biased; that is, it contains a nonrandom component

that does not have anything to do with what the researcher really wants to measure, so that the

measured score Y
M

 is not equal to Y
T
, even with allowance for RME. Recall that there are two types

of NRME: bias in the intercept (constant or consistent bias); and bias in the slope (systematic bias

in the measured score Y
M

 that is correlated with the true score Y
T
). It turns out that one way to

increase measurement validity is the same as the way to increase measurement reliability: use

multiple indicators.

First, let us consider some examples of possible NRME. A common charge is that SAT and

GRE scores are biased. Specifically, the charge is that minorities whose true score = x perform

more poorly on these tests than nonminorities, so that their observed score < x. The deviation is

allegedly not random; rather, it is allegedly due to the race or ethnicity of the test taker, which is

not what the test is supposed to be measuring. This is an allegation of potential bias due to NRME

in SAT, GRE, and other standardized, multi-item, reliable achievement and test scores.

If the allegation were true, it would be an example of systematic error. Even though there is no

direct connection between underlying true scores and race, racial minorities in the United States

typically come from families with low financial and human capital assets. One consequence is

low measured test scores, as a result of low assets, not race. Using the basic measurement model

to represent this allegation, where Y
M

 = α + βY
T
 + µ

Y
, not only is there RME, but also E (β) < 1,

unless race and capital assets (often measured by indicators of socioeconomic status, or SES) are

accounted for. In this example, we assume E (α) = 0; there is no consistent or correlated error.

Rather, the measurement error affects the relation between Y
M

 and Y
T

, which, unless otherwise

accounted for, reflects the direct impact of SES on test scores. Figure 3.3 represents this dilemma.

Unadjusted GREs, SATs, PSATs, and other standardized test scores do not account for these

alleged sources of systematic, or correlated, bias.18

Another example of correlated or systematic NRME is race-of-interviewer effects on responses

to face-to-face surveys. Apparently, respondents alter their responses to many (not all) survey

items depending on whether the interviewer is the same race as the respondent.19

In addition to distinguishing between constant and correlated NRME, researchers make other

distinctions to characterize NRME. These distinctions overlap our distinction between constant

and correlated NRME. For example, it is useful to describe three aspects of NRME in the follow-

ing manner:

1. Face validity: Does the actual indicator reflect what it is supposed to measure? For example,
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students often argue that a final exam did not reflect what was taught in the class or reflected only

a small component of what was taught. That is an allegation of face invalidity. I have always

wondered whether scores on driving tests (the written plus the on-road component) in the United

States really indicate a driver’s ability to handle a car skillfully and safely. A spelling test alone

would, on its face, be an invalid indicator of a student’s overall verbal ability.

These are not only examples of face invalidity; they are also examples of consistent or constant

NRME: the allegation is that a high score on a typical driver’s test or spelling-only test overesti-

mates actual driving or verbal ability. Using multiple indicators (e.g., for verbal ability: a spelling

test, a test of reading comprehension, and a test of the ability to compose an explanatory para-

graph) would go far to improve face validity, just as it improves reliability.

2. Concept validity: Are the measured indicators of the same concept correlated with one

another, and uncorrelated with unrelated concepts? (This is also called convergent and discrimi-

nant validity, respectively.) For example, if academic achievement (e.g., grade point average) is

correlated with four related indicators (e.g., scores in SAT verbal, SAT math, SAT reading, and

SAT reasoning), then we might regard these as valid indicators of the concept “academic achieve-

ment.” However, if any (or all) of these indicators correlate with an unrelated concept, such as

race, we would regard that as a sign of concept invalidity. They are also examples of systematic or

correlated NRME.

3. Predictive or criterion validity: Do the indicators predict the expected outcome? For ex-

ample, does the score on a driver’s test (written plus on-road performance) overestimate or accu-

rately predict a person’s ability to drive? Does a high GRE score underestimate or accurately

predict a student’s performance after she gets into graduate school? These questions raise issues

of predictive validity. They are also instances of consistent or constant NRME.

Measurement Errors: Threats to Statistical
or Internal Validity

Measurement reliability and validity are problems for the validity of evaluation studies for several

reasons. First, in causal evaluations, RME in any variable except the output or outcome variable

will reduce the internal validity of any causal claim, no matter whether the claim is “there is an

impact” or “there is no impact.” NRME in any variable will also reduce the internal validity of a

causal claim. We will discuss these issues further when we discuss threats to internal validity in

the next chapter and in Chapter 7. Second, in both causal and descriptive evaluations, RME in

variables reduces the statistical validity of the evaluation study. It is never possible to have 100

Figure 3.3 The Model of Systematic Nonrandom Measurement Error
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percent reliable and valid measurement procedures, but some measurement procedures are more

reliable and valid than others.

In general, as we have seen, the best way to improve measurement reliability is to use multiple

indicators of program treatment and program outcome. Usually, this also improves face validity

and may well reduce other sources of NRME. Chapter 2 on performance measurement also stressed

the importance of multiple indicators. Chapter 8 on surveys briefly introduces factor analysis as a

tool for assessing the validity of measurement procedures, useful whenever there are multiple

indicators. Multiple indicators are thus central to measuring complex concepts: having multiple

indicators allows researchers to assess both reliability and validity and also is likely to improve

both. Proper model specification for internally valid estimates of program impact, considered in

the next chapter, and the use of statistical controls, considered in Chapter 7, are also essential for

reducing systematic (or correlated) NRME. Because of the connection between systematic NRME,

RME in program variables, and internal invalidity, separating measurement reliability and valid-

ity, the topic of this chapter, and internal validity, the topic of the next chapter, is rather artificial.

Thus it is important to turn to the more general issue of internal validity.

Basic Concepts

Defensible designs

Replicability

Internal validity: definition

External validity: definition

Statistical validity: definition

Measurement reliability: definition

Measurement validity: definition

Threats to external validity

Unrepresentative sample

Sensitized units of analysis in sample

Volunteer respondents

Statistical interaction

Threats to statistical validity

Random sampling error

Making N larger

Random measurement error

Making number of indicators larger: multiple indicators

Random human behavior

Statistical errors

Type I

Type II

Costs of statistical error

Type I costs

Type II costs

Alternatives to Type II error

Threats to measurement validity: the measurement model

Diagram: RME vs. NRME

Equation: RME vs. NRME
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RME: examples

RME: consequences

RME in program variables (X)

RME in output/outcome variables (Y)

Reducing RME: multiple indicators

NRME: examples

Constant NRME

Correlated/systematic NRME

Face invalidity: constant NRME

Concept invalidity: correlated NRME

Predictive invalidity: constant NRME

Reducing NRME: multiple indicators

Do It Yourself

Find an example of an evaluation of a public or nonprofit program, management initiative, or

recent reform effort. The evaluation could concern a program in the United States, or in another

country. The evaluation need not be an impact evaluation. It may simply describe program perfor-

mance. In the United States, most federal government agencies are required to report their perfor-

mance according to GPRA standards, and links to that information can be found in agency Web

sites. That would be a convenient source of information for this exercise. There are many pub-

lished or unpublished evaluations of local government agencies, especially school districts, schools,

and police departments, either by outsiders or insiders. Newspapers often report the results of

these evaluations; the original evaluation is a good source for this exercise. The World Bank

continuously evaluates projects that it funds, and so does the Ford Foundation; these provide

another source of information for this exercise. Warning: the exercise looks simpler than it is.

The Exercise

Evaluate the “evaluation” according to the following criteria:

• External validity: how generalizable are the conclusions?

• Statistical validity: can you separate the signal from the noise?

• Measurement reliability and validity:

• How noisy are the measures? (reliability?)

• Are the measures reasonable estimates of the “true” underlying concept? (constant error)

• Are the measures likely to be correlated with factors that do not reflect the underlying

concept? What factors? (correlated error)



56        CHAPTER  4

56

4 Internal Validity

The Logic of Internal Validity

Internal validity is critical to the defensibility of impact evaluations. External validity, statistical

validity, and measurement reliability and validity pertain to all program evaluations, no matter

whether they are primarily descriptive or causal. In contrast, internal validity pertains only to

impact or causal evaluations, and it is key to their credibility, because it is defined as the accuracy

of the causal claim. If an evaluator claims that program X (e.g., welfare reform) causes outcome Y

(e.g., reduced welfare caseloads), and if that claim is accurate, then it is said to be an internally

valid claim. Similarly, if an evaluator claims that program X (e.g., legal political action committee

(PAC) contributions to members of the U.S. Congress) does not cause outcome Y (e.g., how mem-

bers vote on bills relevant to the PAC), and if that claim of no impact is accurate, then the claim is

said to be internally valid.1

Logically, the problem of assessing internal validity can be broken into the components of a

claim like this one: program X caused output or outcome Y to change by a certain amount (which

could be positive, zero, or negative impact). There are three sources of any observed change (even

if it is zero) in Y:

Observed level or change in level of Y

= Effect of intervention or treatment type or level (X)

+ Effects of other systematic processes (confounded or extraneous factors and related design

effects of threats to external and measurement reliability or validity) (Z)

+ Effects of stochastic or random processes (threats to statistical validity and related design

effects of threats to external and measurement reliability) (µ)2

We can write this relationship as an equation: Y = α + β X + γ Z + µ. In the equation, the constant α is

the value of Y if the program level is zero and other systematic processes are also at a level of zero.

Theoretically, it stands for the base value of  Y that would be observed if there was no treatment.

However, only under limited circumstances could it be regarded as a counterfactual. The variable X is

the level or dosage or amount of the program or intervention (e.g., before or after welfare reform,

amount of PAC contribution); β represents the actual magnitude of difference that a one-unit change

in X makes on Y, net of Z. It is what we seek to find out. The next term, Z, stands for a summary of the

level or amount of extraneous or confounding, but known and measured, factors; γ represents the

actual magnitude of effect that these factors have on Y, net of the intervention. Finally, µ is a summary

of all the “stuff” that we left out because we do not know about it or because we cannot measure it.
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The µ term has no direct measure; we hope that it is a random term that summarizes these omitted,

unmeasured factors. Our central interest is in internally valid estimates of β.

We can also summarize the equation as a graphic, shown in Figure 4.1. The graphic clarifies

the possibility that X and Z, the treatment (i.e., the intervention), and the confounding (or extrane-

ous) variables, respectively, can be related to one another, in no particular direction, and therefore

difficult to disentangle. The central problem of internally valid program evaluation is to do just

that: to estimate β net of, or independent of, Z, which represents all variables that affect Y and are

also related to X.

As an example, consider the case of welfare reform. Let Y be the measure of an important

outcome: the number of months that the target families are on welfare. Let X be a measure of

the intervention: whether the target families were receiving the traditional welfare program

with no work requirements (X = 0) or a newer form, which requires recipients to work (X = 1).

The coefficient β would be the difference that the two kinds of welfare program make on Y; β is

unknown but it is potentially knowable, and the purpose of our evaluation is to estimate its

value as validly as possible. Theoretically, that value could be 0, +, or –. A value of zero would

mean that being on welfare without (X = 0) or with (X = 1) a work requirement makes no

difference in the number of months on welfare (Y). A positive sign would mean that the new

program increases the amount of time that the family remains on welfare. A negative sign

would mean that the new program as a condition for receiving the benefit reduces the amount

of time that the average family remains on welfare. Z is a summary measure that includes all the

other factors that are related to being on some kind of welfare and that also affect how much

time the family is likely to be on welfare. These factors include the family members’ education,

race, health, age, place of residence, and so on; the coefficient γ is a summary of their impact.

Finally, µ represents unmeasured (and unmeasurable) factors that affect Y that are not included

in X and Z, which are measured in our evaluation study.

As another example, consider estimating the impact of PAC contributions on voting behavior

in Congress. We want to evaluate whether the receipt of money causes members of Congress to

alter their vote, changing it to reflect the preferences of the PAC donor rather than those of their

constituents. Suppose that the bills at issue are ones the PAC favors. We suspect that β is nonzero

and positive. Y is a measure of how members in Congress voted on the target bills; X is a measure

of the amount of PAC contributions from the suspect groups. To estimate the net impact of X on Y

(that is, to accurately estimate β), we need to account for all the other factors (Z) that affect how

members vote that are also related to the receipt of PAC money (X). These factors might include

Figure 4.1 Sources of Variation in Y: The Picture

 

γ 

Z (Extraneous 
variables) 

µ (Random 
component) 

X (Treatment A vs. 
Treatment B) 

Y (Output/Outcome 
scores) 

β 



58        CHAPTER  4

party, ideology, constituency characteristics, and so on. To the extent that we fail to account for

these factors, our estimate of β will not be accurate, because it will not separate the impact of PAC

money (X) from that of the related, confounding variables (summarized by Z). That is, it will be

internally invalid. We will also need to worry about the last term, µ; it is a summary of everything

else, besides X and Z, that affects Y. We do not measure the components of µ; we do hope that their

overall impact averages out to be zero. We know that we cannot eliminate this random component

from our design, but, to improve the statistical validity of our estimate of β, we want to minimize

the random component of our evaluation design.

These two examples of causal claims come from the United States. But program evaluation is

critical to the study of international development, and evaluations of program impact are at the

center of this growing subfield. Many interventions in developing nations focus on health, educa-

tion, and financial services. For example, one study examined the impact of health intervention

programs in Bangladesh (X) on child mortality (Y), controlling for, among other variables, mother’s

education (Z). (In this study, mother’s education is not only a confounding variable; it also inter-

acts with X, since the impact of X on Y depends on the level of Z. The health intervention reduced

mortality the most when the mother’s education was low.)3

Another study, also in Bangladesh, examined the impact of participation (X) in microcredit

programs (such as those sponsored by the Grameen Bank) on labor supply, schooling, household

expenditure, and assets (Y
1
 . . . Y

4
), controlling for many (k) individual and village-level character-

istics (Z
1
 . . . Z

K
). Two of the control variables in this study (gender and income) also interact with

the program (X), since the amount of impact of the program depends on income and gender. The

program appears to be more effective (the estimate of β is greater) for poor women than for other

groups.4

There are many evaluations of education interventions. For example, one examines the impact

of improvements in school quality (X) on school attendance (Y) in Kenya, while another estimates

the impact of an expansion in school supply (X) on youth wages (Y) in Indonesia.5 A third studies

the impact of extending tuition-free education (X) on various labor market outcomes for youth (Y)

in Taiwan.6 All of these studies control for numerous confounding variables (Z).

In each of these examples, and in causal program evaluations in general, what we really care

about is the net effect of X on Y. To estimate that net effect, we have to rule out the other systematic

factors, besides X, which affect Y, as well as the random ones (µ). Failing to account for the

components of Z that affect Y and that also are related to the intervention (X) threatens the internal

validity of the estimate of β. We also need to rule out the possibility that we may be erroneously

attributing a systematic effect (that is, the claim that X, the program or policy, the alleged causal

agent, is systematically related to Y, the output or outcome) to a random one (µ). We also need to

rule out the possibility that a claim of no systematic effect (that is, a claim that X has only a

random effect on Y) is really a systematic effect. Chapter 3 (briefly) discussed some of these

design effects. That is, we saw in Chapter 3 that a causal claim of positive, negative, or zero

impact may be inaccurate because it is not externally valid, because it is not statistically valid, or

because it lacks measurement reliability and validity. Chapter 3 also pointed out that many as-

pects of threats to external validity and measurement reliability are important problems because

they are threats to statistical validity. In the equation Y = α + β X + γ Z + µ, statistical validity is

partly captured by the µ term, and we have already discussed many of these threats in general.

(We discuss others in Chapter 7 on nonexperimental design.)

We point out at the end of this chapter that many other aspects of external invalidity and

measurement unreliability and invalidity can best be regarded as threats to internal validity. Fur-
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ther, all the threats to internal validity can be regarded as Z-variables that, if they are ignored, may

be confounded with the program variables under study (the X-variables) in that they also have a

systematic effect on the output or outcome variables (Y). Failure to consider these threats (Z) by

separating them from X may make the program (X) look effective when it is not or may make the

program look ineffective when it is actually effective.

It is important to reiterate that no study is 100 percent valid. No study can simultaneously rule

out every threat to each of the four kinds of validity, and no study can ever entirely rule out even

one of the four threats to validity. However, some studies are clearly more valid than others, in

that they do a better job of minimizing threats to validity. We focus here on numerous threats to

internal validity. By providing a checklist, evaluators can anticipate these threats, designing their

study to either account for or fend off these threats as well as possible. The poorest studies do not

consider these threats at the design stage or analysis phase at all.

Making Comparisons: Cross Sections
and Time Series

Before considering these threats to internal validity, recall from Chapter 1 that all causal studies

use contemporaneous and/or retrospective observations. That is, they are based on observations

of ongoing and/or previous activities. All causal analysis also requires comparison. Without com-

parison, there can be no counterfactual: what would have happened to the outcome (Y) if there

were no intervention (X) or if the intervention had been different?

There are two basic ways to make empirical comparisons. One type of comparison is a cross-

section (CS) study; the other type is a time-series (TS) study. Consistent with the idea that no

causal claim can be made if there is no comparison, both basic types of design entail comparison.

The cross-section design compares two or more similar units, one with the program and one

without the program (or one with a different program), at the same time. Thus, one might com-

pare standardized test scores in 1998 in a school district that has school choice with scores in 1998

in a similar district that does not allow school choice. Alternatively, one might examine test scores

in two comparable school districts at the same time, one district having extensive school choice

while the other has minimal choice. Or one might examine three districts, one providing no choice,

the second providing a little, and the third providing an extensive school choice program. These

would all be CS designs.

By contrast, time-series designs compare the same unit at two (or more) points in time; the

earlier observations represent preprogram outcomes, while the later observations represent obser-

vations during the program. Or the comparison could represent observations before and after a

program change. For example, one might compare the number of crimes reported by citizens to

police before a community-policing program went into effect to the number reported one year

after. This is a simple before-and-after comparison. Another type of TS design might entail more

than two data points. For instance, one might compare trends over a period of time in measures of

public school outputs or outcomes (e.g., teacher-to-student ratios, standardized achievement scores),

before a property tax limit began to the trend in the same measures for a period of time after. Each

of these is a different kind of TS design. In addition to examining outcomes before and after the

inception of a program, it is also possible to examine trends (or levels) before and after a change

in the amount of program resources. For example, one could examine crime levels in a city before

and after an increase in the number of police on the street.
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Some designs combine cross sections and time series. For the purposes of introducing the main

threats to internal validity in both kinds of designs, we will not discuss mixed designs here, but we

do consider combination designs in Chapters 5 and 6. All designs try to separate the impact of an

intervention (X) from extraneous or confounding systematic factors (Z), and from random influ-

ences (µ). The preceding chapter considered many sources of random influences. This chapter

considers the problem of systematic factors (Z) related to X that also affect Y. These factors repre-

sent threats to internal validity. It is not possible to say that one design (e.g., CS) is better than the

other (e.g., TS) in reducing threats to internal validity. Rather, both have advantages and disadvan-

tages. Specifically, they are each subject to different threats to their internal validity.

Threats to Internal Validity

History or Intervening Events

The threat of “history” or “intervening events” applies to all time-series studies. That is, many

events (included in Z) besides changes in the program that is being studied (X) could have hap-

pened during the period of the study. It is always possible that the observed change in Y may be

due to the intervening event (Z) and not to change in the program being studied (X). For example,

if a researcher examines the number of crimes reported to police (Y) by citizens both one year

before the implementation of a community policing program (X) and one year after, the observed

change in reporting behavior (or the lack thereof) may not be attributable solely to this program.

The reason might be that half a year ago, the government fixed all the streetlights (Z
1
), so the level

of crime went down and there was just less crime to report. Or maybe a new business opened up

in town (Z
2
), expanding employment opportunities and reducing the incentive for criminal activ-

ity. Similarly, if a researcher is studying the impact on graduation rates of a new work-study

program for at-risk high school students by comparing graduation rates before the program to

those after, what the researcher observes could be attributable to the new program. But it could

also be explained by other events, such as a new principal or a change in the curriculum that

affected the school during the same period. The point is that an extraneous event, and not the one

under study—the new work-study program—could account for the observed change (even if it is

no change) in graduation rates and other output or outcome variables.

These intervening events of history may be difficult if not impossible to disentangle from the

treatment that is being studied. We suggest some strategies for doing so in our discussion of

specific research designs in Chapters 5, 6, and 7. But the greatest threat is the evaluator’s failure

even to consider history or intervening events (a Z variable) as a possible source of systematic

change that is extraneous to the program under study (X) and that may be confounded with the

program if it is totally ignored.

Maturation or Secular Change or Trends

In time-series designs, besides the intervention due to the program under study (X), outputs or

outcomes (Y) may be systematically affected by long-term, underlying trends (Z), which can also

be characterized as maturation or secular change. We may observe a change in Y before and after a

program change, but the change may be due to a long-term underlying trend, not to the program.

For example, decreasing crime rates may not be due to a certain anticrime program, but occur
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instead because people are aging. Older people are less likely to commit crimes, so crime rates

would go down anyway, even without the anticrime program. Similarly, changes in standardized

achievement tests (Y) in schools affected by a new education initiative (X) may also be affected by

long-term trends in the demographic composition of the school district (Z). If the school district

has a growing population of at-risk minorities or immigrants, school test scores (Y) may be drop-

ping, and it is important to separate this underlying downward trend (Z) from the impact, if any, of

the education initiative (X). Another example illustrates why this threat is also referred to as “matu-

ration.” Suppose that an evaluator is studying the impact of a new curriculum on third-graders. He

examines reading scores in September, before the introduction of the new curriculum, and again in

June, after the new curriculum. The scores (Y) improve. Maybe the new curriculum (X) accounts

for the improvement, but maybe the cause is maturation (Z). Maturation in this case means that

young students age, even between fall and spring during an academic year, and read faster and with

more comprehension because they have additional experience and greater developmental readi-

ness. Consequently, some (or all) of the improvement might have happened anyway, regardless of

the curriculum change. Thus, internally valid designs must always try to disentangle the program

(X) from confounding factors (Z), such as maturation or underlying trends in these examples.

Some time-series designs make it easier to reduce threats due to long-term trends or matura-

tion than others. For example, it is easier to reduce these threats in designs that have observations

at many different points in time. It is impossible to deal with this threat in simple before-and-after

designs with only one “before” observation and one “after” observation. In that case, the program

(X) is measured as “before” and “after,” and the trend (Z) is measured as the very same two data

points. But if there are many pre- and postprogram observations, it is easier to reduce this threat

by separating the underlying trend from the inception of the program. We discuss this issue in

more detail in subsequent chapters. We also point out in the chapter on nonexperiments that the

threat of maturation or trends corresponds to the problem of auto- or serially correlated data and

that it is a threat to both internal validity and to statistical validity. But the greatest threat is for

evaluators who use time-series designs to ignore this threat entirely.

Testing

“Testing” refers to instances in which the method of measuring the outcome Y can affect what is

observed. This is common in the social sciences. Observing a rock will not change its behavior;

observing me will change my behavior, if I see you looking at me. These kinds of measurement

techniques are called obtrusive measures. Not all measures are obtrusive. For example, collecting

administrative data about my age, years of employment, place of work, rank, and salary will not

affect my behavior, especially if I do not know about it (more about this issue later). Surveys and

tests, however, can be obtrusive. Responding to a survey or taking a test can change my behavior:

surveys may make me aware of new issues, and I learn by taking a test. Testing is a threat to

internal validity in both CS and TS designs.

Obtrusive measures are a particular problem in TS evaluations. In TS studies, when repeated

measures are obtrusive, taking the test (Z, or the pretest score on the output or outcome measure,

Y
t–1

), and not the intervention or program treatment (X), may cause the outcome (Y, or the posttest

measure Y
t
) to change.7 We will be unable to tell whether the observed change in Y is caused by the

obtrusive pretest measurement (Z) rather than (or in addition to) the intervention or treatment (X).

We saw in Chapter 3 that taking tests is a threat to external validity. We see now that obtrusive

measurement is also a threat to internal validity in time series, and it can be difficult to correct.
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An example will clarify. Suppose that a manager, concerned about productivity, surveys the

employees in his organization to assess their morale, their networking, and their commitment to

the organization’s mission. Finding from the survey that morale, networking, and commitment

are not at the level he thinks they should be, he reorganizes the office to make it less hierarchical.

Several months later, he resurveys the employees and is glad to see that morale, networking, and

commitment have improved. Can the manager attribute the observed change in Y to the reorgani-

zation (X)? Not necessarily. Some (or all) of the change could have been due to the very act of

pretesting to get the baseline data on Y. Just as in the famed Hawthorne study, pretesting may have

sent a signal to the employees that the manager “cared.”8 The signal from the pretest (called either

Y
t–1

 or Z), and not the actual reorganization (X), may have accounted for the improved scores on

the output measure (Y
t
).

Testing effects are difficult to avoid in a TS design when measures of outcome or output are

obtrusive. One way to minimize these effects is to use multiple indicators. For example, in addi-

tion to the survey, the manager could use other indicators of office morale and commitment, such

as objective indicators from administrative data on productivity and absenteeism, or observations

of how many people arrive early and work late. These measures are less obtrusive and could

supplement the survey. While the survey may be a more direct measure of what the manager

wants to know, its disadvantage is that it is obtrusive and therefore subject to testing effects.

Testing is also a threat to internal validity in CS designs. The classic example of this threat is

the use of a placebo in cross-section studies of pharmaceuticals. For example, if one were to

compare Newpill to “no treatment” (X), the process of administering Newpill (Z) may be insepa-

rable from ingesting the pill itself (X). Administering the prescription requires physician interven-

tion before the pill is ingested. In looking at the impact of X on Y (the duration or severity of a

disease), it would be impossible to disentangle X (the pill) and Z (physician intervention). Conse-

quently, medical researchers resort to the use of a placebo. One group of patients gets Newpill; the

other gets Placebo or Fakepill. Both groups get “treated” with physician intervention. In effect,

the use of a placebo turns a testing threat to internal validity into a testing threat to external

validity, which is usually considered less severe.

Instrumentation

In TS or CS, change in the calibration of the measurement procedure or instrument (Z) may partly

or entirely cause the outcome (Y) to change, rather than the treatment (X). For example, in a TS

study, if one observes a decrease in program costs (Y
t
) after the implementation of a new technol-

ogy (X), the observed decrease (Y
t 
– Y

t–1
) may be due to the new way that costs are calculated (Z),

instead of to program (X) effects. In other words, if Y
t–1

 is measured differently than Y
t
, then instru-

mentation becomes a threat to the validity of a causal claim about the impact of the new technology,

because it is impossible to disentangle the new measurement procedure from the new technology.

Similarly, in CS studies, suppose that an evaluator (or a politician) claims that waste collection

costs in one community that has privatized the service are less than those in a similar, nearby

community, where the government runs the service. If the costs are measured differently in the

two communities, some or all of the observed difference in costs (Y) may be attributable to differ-

ences in how costs are measured (Z), and not to whether the program is administered publicly or

privately (X).

Minimizing this threat clearly requires careful attention to how outcome or output variables

are measured over time and between or among the units of analysis at a single point in time.
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Regression Artifacts or Regression to the Mean

Subjects are sometimes selected for treatment because of extreme pretest scores on an output or

outcome measure (Y
t–1

). In this case, using a time series study, an observed change or difference in

outcome (Y
t
) may be observed partly or entirely because of the random tendency of extreme scores

to return to their normal values. For example, suppose you took a Scholastic Aptitude Test (SAT) test

and got an unexpectedly awful score (Y
t–1

 = low). What would you do? Such an extremely poor

score (one that is way below your usual or expected score) would increase the probability that you

would sign up (and pay) for an SAT-preparation program. After completing the program, your score

improves (Y
t
 > Y

t–1
 = low). Is the improvement attributable to the SAT-prep program (X) or to a

regression artifact (Z, or, equivalently, Y
t–1

 = low)? Regression artifacts refer to the tendency of

extreme scores to return, by chance, to their mean. The more extreme the score, the more likely it is

the next time to bounce back to its mean. In fact, the higher the score, relative to its usual mean, the

more likely it is to fall. Similarly, the lower the score, relative to its usual mean, the more likely it is

to improve the next time. So the next time, after the preparation program, it is very likely that your

score would improve. Is the improvement really due to the effect of the program? Maybe, but it

might be simply a return of a randomly extreme score to its normal level. We note that those who

score unexpectedly high on the SAT are unlikely to sign up for an SAT-preparation program.

Another example concerns sports teams. Sports teams are especially prone to change their

manager after a really poor season, but any observed improvement in performance after that may

be attributable to the chance return to normal that is expected after a worse than normal season,

and not to the efforts of the new manager. As another example, municipal police forces tend to

target police to areas that have spikes in crime rates. There is an element of randomness in crime

rates (due to measurement error or randomness in human behavior). After a period, once the extra

police patrols have been assigned, the crime rate appears to drop. The police chief claims credit,

but the effect could be partially or entirely due to a regression artifact, representing the tendency

of extreme scores to return to their usual, mean value.

As a final set of examples, bosses (or teachers) often blow up in anger at employees (or stu-

dents) who perform at suddenly poor levels, relative to their normal level. Soon after, the perfor-

mance level improves. The boss (or teacher) concludes that anger works, but the improvement

may simply represent the tendency of extreme scores to return to normal values. The flip side of

this example is that bosses (or teachers) sometimes lavish praise on employees (or students) whose

performance is suddenly exemplary. Soon after, the employee’s (or student’s) performance ap-

pears to decrease, returning to its normal level. The boss (or teacher) concludes that praise does

not work, but this too may be an invalid inference. The apparent drop in performance may merely

represent the tendency of randomly extreme scores to return to their normal level.

These are all examples of the problem of regression artifacts in TS studies.9 As we see below,

the best way to reduce the threat is to collect observations over many points in time, so that it is

possible to separate normal from extreme scores. It is also possible to make use of randomness in

scores by constructing a type of natural experiment, called the regression discontinuity design.

We discuss these issues further in Chapters 5 and 6.

Selection (Uncontrolled Selection)

In CS studies, when the groups to be compared differ on factors besides the treatment (X), then

these differences (Z
1
 . . . Z

k
) may account partly or entirely for the observed differences in out-
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come (Y) between those who receive the treatment or program and those who do not. For ex-

ample, private school students’ performance on standard test scores is much better than that of

students from public schools. Can we attribute the observed difference simply to attending differ-

ent types of schools: private or public? Maybe. But students who attend private schools tend to be

wealthier and to have parents who are more educated than those who attend public schools. Thus,

some or all of the observed difference in achievement scores (Y) may be due to the tendency of

wealthy, educated parents (Z) to select private rather than public schools (X) for their children.

Thus, if one does not account for the selection effect, the impact of socioeconomic status (SES)

(the Z variable in this case) on Y, the outcome, would be confounded with the type of school,

which is the treatment (X) variable. Figure 4.2 is a graphic of the causal model that depicts this

dilemma.10

Failure to account for variables (Z) that are related to the program or treatment (X) and that also

affect the outcome or treatment (Y) will cause the evaluator to confound or mix up the impact of

the program with that of the uncontrolled or unaccounted-for variable. The consequence is a

conclusion about causal impact that is likely to be erroneous. In the example, ignoring SES differ-

ences between public and private school children is likely to result in overestimating the impact of

private relative to public school education.

This is also a problem in comparing public schools to one another. For instance, if an evaluator

simply compares one public school (say, PS 105) to another (say, PS 4) and finds that the achieve-

ment scores at PS 105 are higher than those at PS 4, she cannot simply conclude that PS 105 is a

“better” school than PS 4. PS 105 may simply serve a higher SES group of students than PS 4.

Some (or all) of the observed difference in outcome (Y) may be due to the difference in SES

between the schools (Z), and not to any particular programmatic or management differences be-

tween them (X).

As a final example, many claim that Political Action Committee (or PAC) contributions (X)

make legislators vote (Y) the way the contributors want. Symbolically, the claim is that X causes

Y, which we diagram in the top panel of Figure 4.3. However, PAC contributions are not randomly

distributed. Trade union PACs direct their contributions to representatives from districts with

union members and liberal Democratic voters. Similarly, business PACs direct their contributions

to representatives from districts with large corporations and Republican voters. Representatives

from these districts are likely to vote the way the PAC wants them to not because of the PAC

contribution, but because incumbents want to get reelected and therefore vote the way their con-

stituents would want. The lower panel of Figure 4.3 represents the causal diagram for this sce-

nario. It shows that some or all of the observed correlation between PAC contributions (X) and

representatives’ votes (Y) in the direction preferred by the PAC may be attributable to a third

variable, constituency preferences (Z), and not to the PAC contributions (X).

Figure 4.2 Causal Model of Selection Threat

Z (parents’ SES) 

X (attending public vs. 
private school) 

Y (achievement 
scores) 
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Ignoring the selection problem is equivalent to confusing causation and correlation. One can-

not attribute correlation to causation except under very special circumstances. To do so is to invite

internally invalid causal conclusions.

Selection problems are probably the dominant threat to internal validity in CS studies. There

are thousands of examples of them. In fact, except when assignment is random, they are impos-

sible to avoid in CS studies. Even if one controls for one selection threat (factor Z
1
), there is

always the possibility that another one lurks (factor Z
2
). Even if one deals with ten selection

threats, there is always the possibility that an eleventh or twelfth threat still looms. In fact, the

presence of selection threats in most CS studies makes TS studies particularly desirable from the

perspective of minimizing selection threats to internal validity. Many evaluators bemoan the ab-

sence of time-series data. Comparing one unit at time 1 to itself at time 2 is a useful way to hold

constant all of these confounding (Z) factors that plague CS studies.11 Often, however, TS data are

completely unavailable or too sparse for statistical validity (that is, too few TS observations are

available). So it is important to be aware of selection threats to internal validity, and to design CS

studies to minimize these threats.

Uncontrolled (and unknown) pretest scores on outcome measures are also an important selec-

tion threat to internal validity in CS studies. This threat is analogous to the regression artifact in

TS studies. For example, suppose that an evaluator compares workplace accident rates (Y) in

firms that Occupational Safety and Health Administration (OSHA) inspects (X) to accident rates

in firms that OSHA does not inspect. The researcher might find that the accident rate in in-

spected firms is higher than or even no different from the rate in firms that OSHA did not in-

spect. The diagram in the top panel of Figure 4.4 illustrates this apparent conclusion. The researcher

then might infer that OSHA inspections fail to reduce accident rates (0 association) or even

increase them (+ association). But suppose that, unknown to the researcher, OSHA targets in-

spections at firms with unusually high accident rates, as the lower panel of Figure 4.4 illustrates.

Accident rates have a large random component, so some extremely high rates are likely to drop,

by chance, to their usual expected rate. Thus, in the absence of information about how OSHA

selects firms to inspect, and in the absence of information about the problem of regression arti-

Figure 4.3 Selection Threat: Does Money Buy Votes?
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facts, the researcher might well conclude, erroneously, that inspections do not work. But this

conclusion could be partly or entirely wrong, because it could be attributable to a regression

effect rather than the systematic effect of the inspection program.

More generally, when selection is targeted at needy cases, we can regard previous values of

output or outcome variables (Y
t–1

) as a selection variable (Z) that needs to be accounted for in

order to reduce an important threat to internal validity in CS studies. Using CS designs in these

cases is, in many circumstances, a poor choice, because, by definition, simple CS studies have no

pretest data, so that it is impossible to measure and adjust for the selection threat.12

Experimental Mortality or Attrition

In TS studies, observed before-and-after differences in outcome scores (Y) may be partly or entirely

attributable to a different group of respondents rather than to the treatment (X). For example, sup-

pose the Department of Housing and Urban Development wanted to study the impact of housing

vouchers on the recipients’ housing location decisions. Suppose the researchers use a survey to

compare where people live before they get the voucher to where they live afterward. The compari-

son would be valid only if the prevoucher respondents are the same as the postvoucher respondents.

It is hard to follow up survey respondents, and it is particularly difficult when those respondents are

poor and subject to the unpredictable forces of a shaky labor market. Thus those who respond at

time 1 but not at time 2 could be a less well-off group than the more stable and more employable

respondents who actually respond at both time 1 and time 2. The researchers might conclude that

the vouchers improved housing outcomes, but maybe it is the difference between the SES (Z) of the

respondents at time 2 and time 1, rather than the impact of the vouchers (X), that accounts for

the change in Y. When respondents at time 1 drop out at time 2, they are called “attritters”; for the

researcher, they represent a “death” (i.e., an experimental mortality) if they cannot be found.

Figure 4.4 Selection Threats: The Case of Selection Based on Pretest Scores
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Tracking changes over time in achievement test scores presents another example of an attrition

threat. It may illustrate experimental addition, rather than attrition, but it is the same underlying

phenomenon. If the test takers are changing, then the changing scores may measure not changes

in performance, but changes in who is taking the test. There are many examples of this threat in

TS studies of student achievement test scores. For example, one reason that SAT scores go down

is that more students take the test, and the newest test takers tend to score more poorly than the

previous ones. Thus, drops in test scores may not reflect poorly on the schools, but may entirely or

partly reflect changes in the types of students who take the SATs. Similarly, school achievement

test scores (Y) may change from one year to another not because of any response by the school (X)

but because the demographics of the students in the school (Z) have changed.

Attrition itself is not a threat to internal validity. (It may be a threat to statistical or external

validity.) However, as the examples above illustrate, if the attrition rate is related to the treatment

variable (X) or to a confounding variable (Z) that is related to both X and Y, then attrition is a threat

to internal validity.13

Multiple Treatment Interference

In TS or CS studies, when one treatment (X, the treatment of interest) is confounded with an-

other (Z, another treatment, but not the focal one), then it is impossible to separate the impact of

one treatment from the other. For example, suppose that an evaluator, using a CS design, com-

pares the impact of rigid versus flexible curricula (X) in the first grade in otherwise similar

schools (or classrooms) on standardized achievement scores (Y). However, it turns out that all

the schools (or classrooms) with flexible curricula also have very experienced teachers (Z),

while the rigid curricula are taught by teachers with less experience. Then X (the treatment of

interest) cannot be separated from another “treatment” (Z) that is not the central interest. Later,

in Chapter 7, we see that this is an example of what is called multicollinearity. For now, it is an

example of multiple treatment interference, and it is regarded as a threat to internal validity

because the two treatments cannot be separated.

Suppose that an international aid agency used a TS design to evaluate the impact of its decision

to decentralize the management of agricultural projects in a particular country in Africa. The

agency might look at a measure of farm productivity (Y) for some time before projects were

decentralized (X) and for a period afterward. However, at the same time projects were decentral-

ized, project budgets were also cut (Z). It is thus impossible to separate the impact of X from that

of Z. The two treatments go together, exemplifying the threat of multiple treatment interference in

a TS design.

Contamination

In CS studies, sometimes the separation between treatment groups and control groups is less than

it should be. For example, if the control group receives some of the treatment, then the two groups

are no longer distinct, and the treatment is said to be contaminated with the control. Similarly, if

some elements in the treatment group do not receive the treatment, then the two groups are once

again no longer distinct, and the treatment and control groups are still contaminated. Unrecog-

nized, this overlap (i.e., contamination) may partly or entirely account for the observed between-

treatment difference in outcomes (Y). For example, in a study of drug prevention programs in
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schools, suppose that one compares the attitudes toward risky behavior (Y) of students in the

fourth-grade class that received the program (X) to similar fourth-grade students in the same

school who did not experience the program in their class. Nothing prevents students who received

the formal program from talking to those who did not receive the formal program. As a result,

there is contamination in that some students who did not receive formal training are nonetheless

exposed to elements of the program. Similarly, those in the formal treatment group may have

chosen not to listen to the antidrug instructor or were absent; the treated group is effectively

contaminated with students who were really not treated. Thus, a conclusion about the difference

in outcome due to receiving versus not receiving the treatment may not be valid, if those who

supposedly received no treatment actually received some treatment or if those who supposedly

received treatment actually received none. Using our standard notation, the “pure” treatment-or-

no-treatment variable is X, the self-selected treatment is Z, which is often unmeasured, and the

outcome is Y. (This is also an example of nonrandom measurement error, as the actual measure of

the treatment as a yes-no variable is clearly not valid.)

As another example of contamination as a selection threat, consider a study comparing the

impact of classroom education to on-the-job training (OJT) (X) on employment outcomes (Y).

The researcher usually assumes that subjects in the study receive either one treatment or the other.

But many who are assigned to OJT (X = 1) may also elect to take education training (Z) elsewhere,

and those in the education group (X = 0) may also elect to take OJT elsewhere (Z). Some in

treatment groups may opt for no training at all. Once again, the two treatments are not as different

as the researcher assumes, since one group has clearly been contaminated with the type of treat-

ment offered to the other group. It is invalid to assume that the groups are really as separate as

they appear to be.

Since the measure of “type of training” as two mutually exclusive categories (OJT vs. edu-

cation in the example, or X = 1 or 0) is clearly not valid, it represents a threat of contamination

(and nonrandom measurement error) to internal validity. In the example, the actual level of

training (which we conceptualize as a confounding factor) is self-selected, while the intended

level of treatment is what is being studied and measured as X. It follows that, if possible, one

remedy for contamination threats is to separate the intent-to-treat variable (X) from the self-

selected treatment variable (Z). The distinction between X and Z in this case may be of more

academic than practical interest. In the real world, where treatment (and nontreatment) cannot

be forced, the program is an opportunity to receive service, or “intent to treat,” not actual re-

ceipt of the service. Similarly, “no treatment” is not the same as “no service”; rather, it means

that the specific service under study is intended to be withheld, but people cannot be prohibited

from selecting it on their own. This is a common problem in experimental designs, and we

discuss it further in Chapter 5.

Summary

To summarize, the threats to the internal validity of TS designs are somewhat different from the

threats to the internal validity of CS designs. Threats to TS studies alone include history or inter-

vening events; maturation, secular change, or trends; testing; regression artifacts; and experimen-

tal mortality or attrition. Threats to cross-section studies alone include selection effects or

uncontrolled selection and contamination. Instrumentation and multiple treatment interference

are clearly threats to the internal validity of both kinds of designs.
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Type of Threat by Design Type

Threat Design type

History or intervening events TS

Maturation, secular change, or trends TS

Obtrusive testing TS + CS

Regression artifacts or regression to mean TS

Selection or uncontrolled selection CS

Contamination CS

Experimental mortality or attrition CS + TS

Instrumentation CS + TS

Multiple treatment interference CS + TS

Most studies have multiple threats to internal validity, but it is clear that some have more

threats than others. For example, simple comparison of outcomes between two groups, one that

has received the treatment while the other has not, is almost always subject to selection threats. In

fact, unless one has a controlled experiment, which we discuss in the next chapter, any CS design

is subject to selection threats. While some CS designs are more vulnerable to this threat to internal

validity than others are, some researchers argue that the pervasiveness of selection threats in

nonrandomized CS designs (which is most of them) makes them less desirable than TS designs.

However, as we have seen, TS designs also have special problems.

It is probably the case that no single approach and no single study can ever be causally conclu-

sive, since threats to internal validity are pervasive. But this is not a reason to give up. Rather,

when multiple studies, each with different threats to internal validity, all suggest the same causal

conclusions, we can act as if the causal claim were upheld. For example, while it is technically

true that no study has proved that “smoking causes cancer,” multiple studies, each with different

threats to internal validity, all suggest that such a conclusion cannot be rejected. In this case of

multiple, individually imperfect designs with a consistent finding, it is probably wise to act as if

the causal conclusion is in fact empirically warranted. (Note that we still do not say that the

conclusion has been “proved.” Mathematicians do proofs. Empirical social scientists do not.)

Three Basic Research Designs

The issue of internal validity is so critical to impact evaluations that three different ways of reduc-

ing threats to internal validity define the three basic types of research designs that evaluators use

to estimate program impact. Undoubtedly, the most commonly occurring threat to internal valid-

ity is self-selection. Consequently, each of the basic design types reduces the threat of selection in

a distinctively different way. (See Table 4.1.)

The first type of design is the randomized field experiment (RFE). In the RFE, the evaluator

randomly assigns units of analysis to a treatment group (X = 1) or to a nontreated (or control)

group (X = 0), or to groups with different levels or types of treatment, to reduce selection and

selection-related threats to internal validity.

Second is the quasi experiment (QE). To reduce threats to internal validity in the QE, the

evaluator deliberately selects treatment and other groups so they are comparable or similar in as

many respects as possible with respect to confounding or extraneous factors (Z). The idea is to

construct groups so that the only difference between the groups is in how much or whether they
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experience the program being evaluated. In one type of QE, the evaluator selects comparable

groups at the same point in time, but one group has experienced the program (or experienced a

high level of the program), while the other group has not. This is a cross-section quasi experiment

(CS QE). In the CS QE, it is rare that the researcher determines whether the group experiences the

program or what the program level will be. Usually, that determination has previously been made

by political or administrative decision makers, and the evaluator examines the impact of the pro-

gram ex post or retrospectively. Another type of QE examines one group over time, so that the

before-treatment group is comparable to the after-treatment group, because the group is the same,

save for the treatment. This is a time-series quasi experiment (TS QE). Some types of QEs use a

mix of TS and CS comparisons.

The third type of design is the nonexperiment (NE). This design uses statistical controls to

account for as many selection threats as possible. The main statistical tools for nonexperimental

designs are multiple regression and related methods of multivariate statistical analysis. Finally,

some studies use a mix of two or even all three types of designs. It is especially common for

studies to supplement RFEs or QEs with nonexperimental (NE) design elements by adding statis-

tical controls to reduce additional threats to internal validity that cannot be removed by selection

or random assignment alone.

The remainder of this book discusses each of the three basic types of designs (RFE, QE, and

NE). Even though it may be difficult to separate one type of design from the other, the three basic

design types in Table 4.1 represent different approaches to establishing comparison, or to estab-

lishing a counterfactual. The goal is the same: to find out what would have happened to the

outcome or output (Y) if the program (X) had not been implemented or had been implemented

differently, net of the effects of the confounding influences of extraneous systematic factors (Z)

and random effects (µ). The choice of a design, however, depends on many factors, including the

stage of the program (old or new), the type of intervention (targeted or general), and the resources

Table 4.1

Types of Research Designs, by Method of Reducing Threats to Internal Validity

Type of design Method of reducing threats to internal validity

Randomized field experiment (RFE) Random assignment by evaluator to program or no
program, or to different program levels (e.g., high,
medium, low). Evaluator compares outcomes between
the groups.

Quasi experiment (QE)
Cross-section (CS) Evaluator selects groups with and without the program, or

with different program levels. Groups are chosen so they
are as similar as possible in all other respects, except the
program. Evaluator compares outcomes between the
comparable groups.

Time-series (TS) Evaluator selects a target group, comparing outcomes
before and after the implementation of the treatment.

Nonexperiment (NE) Evaluator collects data on units of analysis that have
experienced different levels of the program and
compares outcomes in units with different levels of the
programs, using statistical methods to control for other
differences between the units.
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for evaluation. The challenge facing the evaluator is to come up with the most rigorous or valid

design (or mix of designs) that is feasible under the circumstances.

Rethinking Validity: The Causal Model Workhorse

The previous chapter introduced the basic concepts of external validity, statistical validity, and

measurement reliability and validity. This chapter used a causal model workhorse to introduce

the notion of internal validity. Figure 4.5 reintroduces that causal model to show how each type

of threat to validity relates to the fundamental problem of program evaluation. The evaluator’s

dilemma is to isolate the impact of the program being evaluated (X) from that of the other two

influences on the program outcome (Y). The other two influences are, first, other systematic

factors (Z) that influence Y and that are also related to the program (Z), and, second, random

influences (µ). Both of these factors (the extraneous, confounding Z variables and the random

factors µ) can be reinterpreted in terms of how they reflect each of the four threats to validity.

The top panel of Figure 4.5 illustrates the threats to defensible causal inferences diagrammati-

cally. The lower panel defines the statistical model that will actually be used to do all of this

work. These are considerable demands that are placed on this simple statistical model, and

forthcoming chapters illustrate the econometric adaptations that need to be made to address

these threats.

As shown in the diagram in the top panel of Figure 4.5, internal validity concerns the accurate

estimation of β, the impact of the focal program (represented as X), on the focal outcomes or

outputs (represented as Y). The core of internal validity concerns our ability to separate the two

systematic influences (X and Z) on Y from each other. If we cannot disentangle the relation be-

Figure 4.5 The Causal Model Workhorse and Threats to Validity:
Diagram and Statistical Model

 

(a) The diagram  

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) The equation 

 

 Y = α + βX + γZ + µ 

 

µ x
 

β 

γ 

NRME in 
X or Y 

If uncontrolled, 
threat to internal 
validity 

As µ increases 
(includes RME in Y ) 
threat to statistical 
validity

µ (random 

component)

Y (output/outcome 
scores) 

X (treatment A vs. 
treatment B) 

RME in X 

Z (extraneous 
variables) 

validity



72        CHAPTER  4

tween X and Z, then the association of Z with X will be reflected in our estimate of β, which, for

internal validity, should reflect only the impact of X on Y, independent of Z-variables.14

Statistical validity concerns the accuracy with which we can separate the influence of X on Y

from that of µ, the random component. For example, a large sample reduces the µ component,

making it easier to separate the “signal” (X) from the “noise” (µ). Measurement (un)reliability

refers to random measurement error (RME). There can be RME in treatment (X) or in outcome

variables (Y). RME in outcome variables is a source of statistical invalidity; it is also represented

by µ. In other words, a small sample size, the main component of statistical invalidity, is one

source of random error in Y. Random measurement error in Y is another source. Thus the µ-term

captures issues of both statistical (in)validity and measurement (un)reliability, or RME, in Y.

Issues of measurement also affect internal validity. For example, there can also be RME in the

program variable, X, which we represent in the diagram by µ
x
. Oddly enough, but clarified by the

diagram, random measurement error in program variables introduces (random) error into the X-

variable. It poses a threat not to statistical validity but rather to internal validity, because its ef-

fects, if uncontrolled, are picked up by b. Similarly, NRME or (in)valid measurement of Y (or X)

is also a threat to internal validity. Measurement (in)validity refers to the possibility that a nonran-

dom component (a Z-term) can slip, undetected, into the measurement of Y (or X), making it

difficult to determine whether it is X that affects Y alone, or whether it is X along with an uninten-

tionally invalid instrument for measuring Y (or X), that is affecting Y. Undetected, the invalid

measurement of the outcome Y, or the program X, becomes, conceptually, a part of the Z-variable.

The correction is to measure this systematic (measurement) error and to remove it in some way,

just as we use different research designs to remove other threats to internal validity by separating

the effects of X on Y from those of Z.

Even parts of external validity can be clarified using the causal model workhorse. Specifically,

statistical interaction means that one causal model might pertain under some circumstances, while

another pertains under other circumstances. For example, β might be positive for one group of

people, while it could be negative for another.

We summarize these as follows:

To attain: Try to:

Internal validity Separate the impact of X from Z

Measurement validity

(same as internal validity) Separate the impact of X from Z

Statistical validity Separate the impact of X from µ

Measurement reliability of Y

(same as statistical validity) Separate the impact of X from µ

Measurement reliability of X

(same as internal validity) Separate the impact of X from Z

External validity (undetected statistical interaction) Establish conditions for causal model

(same as internal validity)

The goal of program evaluation remains unchanged. It is to find out what would have hap-

pened to the outcome or output (Y) if the program (X) had not been implemented or had been

implemented differently, net of the effects of the confounding influences of extraneous system-

atic factors (Z) and random effects (µ). The causal model workhorse is a useful tool for clarifying

the four types of threats to validity or errors of causal conclusions that can happen on the way. The

model allows us to see the overlap among these four threats. Some aspects of measurement
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(un)reliablity are really a threat to statistical validity; some threats to measurement (un)reliability,

as well as threats to measurement and external validity, are really threats to internal validity. Thus,

in the pages that follow, we focus only on the internal and statistical validity of the basic designs,

because these two general types of validity subsume the other two subtypes.

Basic Concepts

Internal validity: definition

What makes Y change?

X Intervention variable(s)

Z Confounding or extraneous variable(s)

µ Random factors

The basic equation

The graphic of the equation

Examples of Z-variables as threats to internal validity

Types of comparison designs

CS designs: examples

TS designs: examples

Threats to internal validity

History or intervening events

Definition

Examples

Maturation, secular change, or trends

Definition

Examples

Testing

Definition

Examples

Instrumentation

Definition

Examples

Regression artifacts or regression to the mean

Definition

Examples

(Two-way causation as one example)

Selection or uncontrolled selection

Definition

Examples

(Two-way causation as one example)

Experimental mortality or attrition

Definition

Examples

Multiple treatment interference

Definition

Examples
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Contamination

Definition

Examples

The relation between type of threat and type of comparison (CS vs. TS)

Three basic research designs for reducing selection threats

randomized field experiment (RFE)

quasi experiment (QE)

time-series (TS)

cross-section (CS)

nonexperiment (NE)

The basic causal diagram and threats to validity

Threats to internal validity

Threats due to confounds (Z)

Threats due to RME in X, NRME in X, NRME in Y

Threats due to undetected statistical interaction or low external validity

Threats to statistical validity

Threats due to random components (µ)

Threats due to RME in Y

Do It Yourself

Suppose that the two causal claims below are the conclusions of actual empirical studies. Without

knowing any specifics about the research studies that produced each claim, what are the potential

threats to the internal validity of each causal claim? Explain why each one might be a potential threat.

(Example for CS design)

1. Decentralized (as opposed to centralized) World Bank projects have a higher rate of return.

(Example for TS design)

2. Putting more police out on the streets has reduced the crime rate in this neighborhood.

A Summary of Threats to Internal Validity

Definition: internal validity = accuracy of causal claim

1. History or external events: in TS studies, an event other than the change in the treatment

(X) might have caused the outcome (Y) to change (or might cause some of the observed

net change in Y).

2. Maturation, trend, endogenous change, or secular drift: in TS studies, Y may be changing

partly or entirely because of an underlying trend and not because of change in the treat-

ment (X).

3. Testing: in TS studies with obtrusive measures, taking the test, and not change in the

treatment (X), may cause the outcome (Y) to change (or might cause some of the ob-

served net change in Y).
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4. Instrumentation: in TS or CS studies, change in the calibration of the measurement pro-

cedure or instrument, rather than the treatment (X), may partly or entirely cause the

outcome (Y) to change.

5. Regression artifacts: in TS or CS studies, when subjects are selected for treatment be-

cause of extreme scores, an observed change or difference in outcome (Y) may be ob-

served partly or entirely because of the random tendency of extreme scores to return to

their normal value.

6. Selection: in XS studies, when the groups to be compared differ on factors besides the

treatment (X), then these differences (Z) may account partly or entirely for the observed

differences in outcome (Y).

7. Experimental mortality or attrition: in TS or CS studies, when two or more groups are

being compared, observed between-treatment differences in outcome (Y) may be partly

or entirely attributable to a differential loss of respondents rather than to the treatment

(X).

8. Multiple treatment interference: in TS or CS studies, when one treatment (X1) is con-

founded with another (X2), then it is impossible to separate the impacts of one treatment

from the other.

9. Contamination: in CS studies, when the separation of treatment groups from control

groups is less than it should be, or when the control group receives some of the treat-

ment, then the overlap may partly or entirely account for the observed between-treat-

ment difference (or lack of difference) in outcomes (Y).


