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ABSTRACT

Application-Specific Instruction-set Processors (ASIPs) have gained popularity in

production chips as well as in the research community. They offer a viable solution

to the tradeoff between efficiency and flexibility for the embedded System-on-a-

Chip (SoC). Generally, an ASIP has the capability to extend the base instruction

set of a general-purpose processor with a set of customized instructions

supported by the specific hardware resources provided on the ASIP. The hardware

implementing the specific instructions can be either runtime reconfigurable

functional units, or pre-synthesized circuits.   In this paper, we propose a framework

for prototype application within FPGAs devices using ASIPs and multiprocessors

architecture. Firstly, we provide an overview of a method to identify coarse and

finite grain instruction set extensions in application code and integration process  of

ASIP. Second, we split the data input application to get concurrence and the

data dependency of the target application in order to process to multiprocessor 

execution. Finally, we compare the performances levels given by the execution of

the application using ASIP architecture and multiprocessor architecture. 
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A FRAMEWORK FOR ASIP AND MULTIPROCESSOR ARCHITECTURES

INTEGRATION WITHIN RECONFIGURABLE SOC AND FPGA DEVICES

1. INTRODUCTION

Embedded systems have been widely used in various fields in today’s world. However, designing a modern 

embedded system in nanometer technologies is more difficult than   ever, and the problems continue to worsen

with shrinking feature sizes. Due to the complexity and electrical design challenges posed by each new technology

generation, the design productivity gap continues to grow larger despite the increasingly expensive CAD tools. This

requires a move toward the use of programmable and reconfigurable solutions to allow more flexibility for

accommodating specification changes and avoiding potential design errors. Application-Specific Instruction-set Processors

(ASIPs) have gained popularity in production chips as well as in the research community. They offer a viable  solution

to the tradeoff between efficiency and flexibility for the   embedded System-on-a-Chip (SoC). Generally, an ASIP

has the capability to extend the   base instruction set of  a general-purpose processor with a set of customized

instructions supported by the specific hardware resources provided on the ASIP. The hardware implementing the

specific instructions can be either runtime reconfigurable functional units, or pre-synthesized circuits.

In general, the critical portions of an application’s data flow graph (DFG) can be accelerated by mapping them to

a custom hardware. Usually, there are two granularity levels at which to add dedicated hardware to processor core

system: instruction granularity level and function granularity level. The instruction granularity consists in linking

custom hardware with the main registers of processor core and a custom instruction opcode is added to the processor

instruction set. The number of custom instructions depends on the processor core capacity, for example ARM core

provides 16 custom instruction extensions. The function granularity consists in adding the custom hardware as a

slave or a master peripheral using bus communication. In this case one instruction extension can not drive the

functionality between the processor and the customized peripheral. So in many cases, specific subroutines should be

coded to control the custom hardware activity and the communication with the processor core. The number of added

hardware functions depends on the bus bandwidth and the device size in the case of FPGA circuits. In the case of

instruction granularity the processor is in hold mode and it is blocked in custom instruction execution, but in function

granularity the mutual execution of processor core and custom peripheral is possible. An other solution consists of

parallel execution mode with multiprocessor core. In this case, we need to analyze the concurrence and the data 

dependence between the application tasks.

In this paper we are interested to custom architecture integration in reconfigurable system on chip. We propose

a method to identify the parts of application code that should customize. Then, we present the integration process

of custom parts within FPGA devices based on general purpose processor core. Indeed, the proposed integration

process offers the opportunity to generate custom architectures of execution mode with:

ASIP architecture

Multiprocessor architecture

In the experimentation part, we target MPEG2 decoder and 3D graphic to show the efficiency of the 

integration method and to   compare the performances given by ASIP and multiprocessor architectures. 

The paper is organized as follows. In Section 1 we discuss the related work in custom architecture design. Section

2 presents identification method of custom parts. Section 3 talks about the integration process within FPGA devices

based on NIOSII processor core and the multiprocessor integration. Section 4 presents the experimentations results.

Finally, we close with conclusions.

2. RELATED WORK

Partitioning an embedded application into hardware and software parts has been studied for years. The

software parts are usually run on an embedded processor, while the hardware parts are implemented as co-processors.

Such partitions are at the function or application level, which provides a coarse-grained speedup, compared to pure

software implementations. Wolf surveyed the development of hardware–software co-design in the past decade and

concluded that co-design is becoming a mainstream technology [3]. In [4], De Micheli et al. also surveyed the research

developments in hardware–software co-design since its emergence in the early 90s. The recent development of

behavioral synthesis (C-based) tools makes automatic hardware-software partitioning from high-level languages (e.g.,
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C/C++) possible. Configurable and extensible processors are also gaining popularity. A lot of research has focused

on automatically extending an instruction set with custom instructions to speed up embedded applications. Arnold

et al. presented a semi-automated method   to extend the domain-specific instruction set for embedded processors

[5]. The possible instructions are restricted by the number of inputs/outputs. Atasu et al. introduced an algorithm to

form custom instructions by selecting maximal speedup convex dataflow graphs [6]. Cheung et al. proposed techniques  

for custom instruction selection, and mapping complex application code to pre-designed custom instructions [7]. In

[8], Sun et al. proposed an automatic method to generate custom instructions using operation patterns, and select the

instructions under an area budget. Goodwin et al. proposed techniques to generate custom instructions by identifying

VLIW-style operations, vectorized operations, and fused   operations in [9].   These works make automatic custom

instruction generation possible, providing fine grained hardware-software partitioning. Fie Sun et al. proposed a

methodology to synthesize custom instructions and co-processors simultaneously based on Xtensa platform from

Tensilica [17].

In our work, we focus on prototyping custom architectures within reconfigurable SoC using FPGA technology,

thus several prototypes of custom instruction and multiprocessor architectures can be proposed as solutions given

different performance modes in term of execution time, power consumption and resources usage. We propose a method

to identify custom parts in application code then we present the process steps of integration for ASIP and Multiprocessor

architectures.

3. IDENTIFICATION METHOD OF CUSTOM PARTS

In the next section, we aim to explain the main idea of   identification method of custom part for a target

application. As described in Figure 1, the identification method is based on HCDFG (Hierarchical Control Data Flow

Graph) generation and profiling information. Indeed, starting from C code description of the application, we use a

parser to scan the C code and generate the HCDFG of application. Thus, we have the possibility of identifying the

dependencies between branches in HCDFG and the number of arithmetic and logic operations used in the application (see

Figure 2). 

On the other hand, we need profiling information to know the call number of each function within the 

application. Then, data given by HCDFG description and profiling are collected to identify the portion of the application

that should be accelerated by hardware implementation.

Several functions of the application can be selected for acceleration. In this step, we have three 

implementation versions of the application:

Full software execution mode: all functions of the application were developed using C language. In this step we 

use the profiler in order to show the software execution time of each function, and then we can calculate the speed 

up of the hardware execution.  We suppose that we have a C compiler processor core compiler.

Using custom instruction: The selected function can be represented by at least one branch of HCDFG. Then

each branch is implemented as a hardware component using basic arithmetic and logic operations. The

communication between the custom hardware and the processor core was provided by the main registers of ALU

(Arithmetic and Logic Unit). As a consequence, the hardware component will be instantiated into coprocessor

interface top level entity in order to guaranty the compatibility between the custom hardware and the ALU.

Using multiprocessor architecture: concurrence and data dependency between functions offers the opportunity to

partition the application on multiprocessor architecture to benefit of parallel execution mode. The number of

processor cores depends on the application parallelism degree and area constraint. We propose to use

hardware operating system services like mailbox, semaphore, and message queue for communication between

processor cores. 
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Figure 1. Identification method flow 

Figure 2. HCDFG example 

4.  INTEGRATION OF CUSTOM ARCHITECTURE WITHIN FPGA DEVICES 

4.1. ASIP Integration Using NIOSII Processor

After the custom instruction identification, we aim to prototype the application with accelerated functions using

custom instructions. So, we propose to use the NIOSII prototyping platform [18]. Indeed, NIOSII is a soft core that

offers the possibility to integrate 5 custom instructions using three main registers: (dataa[0..31] , datab[0..31]) as inputs

and (result[0..31]) as output.

As described in Figure 3, three steps are needed to successfully integrate a custom instruction within the NIOSII 

processor core. Firstly, a HDL description of custom instruction must be designed and verified using VHDL or Verilog

and Quartus environment. This step will help the designer to test and verify the functionality of the custom instruction

before integration in  the NIOSII core and to get performance information about the hardware module (resource

allocation, execution time and power dissipation).
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The second step consists in updating the initial application code with the custom instruction opcode. For example,

in Figure 4 “nm_addi” was used as a custom instruction opcode for addition operation of integer operands. In third

step, the integration of custom instruction in NIOSII core consists in generating a specific coprocessor interface to adapt

the communication between the custom hardware module and the ALU of NIOSII core.

The coprocessor interface must respect:

data size and nomination for inputs and outputs

control signals for sequential and combinatory hardware module

After these three steps, SOPC Builder and Quartus environment can be used to integrate custom instruction opcode
in NIOSII compiler and to generate the customized NIOSII bitstream. In addition, performance information can be

collected to specify the custom prototype by resources usage, execution time and power dissipation.

Figure 3. Custom instruction integration flow 

Figure 4. Custom instruction opcode insertion 
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4.2. Multiprocessor Integration

In our work we propose to use FPGA features (high capacities, embedded block RAMs) and multi master Avalon

bus  in order to define the multiprocessor architecture. In addition, in  order to manage the communication and

shared data between processors we propose to use hardware operating system services like mailbox and mutex. Figure

5 gives an example of multiprocessor architecture that uses a mutex hardware module to manage shared memories. 

A mutex allows cooperating processors to agree that one of them should be allowed mutually exclusive access to a 

hardware resource in the system. This is useful for the purpose of protecting resources from data corruption that can 

occur if more than one processor attempts to use the resource at the same time. The mutex core acts as a shared 

resource, providing an atomic “test and set” operation in which a processor may test if the mutex is available and if so, 

acquire it in a single operation. When the processor is finished using the shared resource associated with the mutex, the 

processor releases the mutex. At this point, another processor may acquire the mutex and use the shared resource. 

Without the mutex, this kind of function would normally require two separate “test” and “set” instructions between 

which, another processor could also test for availability and succeed. This situation would leave two processors both 

thinking they successfully acquired mutually exclusive access to the shared resource when clearly they did not.  

The mailbox component contains two mutexes: One to ensure unique write access to shared memory and one to 

ensure unique read access from shared memory. The mailbox core is used in conjunction with a separate memory in the 

system that is shared among multiple processors. 

Figure 5. Example of multiprocessor architecture

In the next section, we propose some experimentation results to detail the custom instruction and multiprocessor

integration with NIOSII processor core.

5. EXPERIMENTATION

5.1 ASIP Execution Mode

We choose as case study the 3D graphic pipeline. The main function of the pipeline is to render a two-

dimensional image given a virtual camera, 3D objects, light sources, lighting models, and textures.

We propose to implement the 3D application using a C language. The profiling process identifies in the global

application code six functions: Scalaire, Vectoriel, Mult_matrice, Projection, Transformation and Znormal. In Table

1, we present a summary of profiling results with three different frames. 

We mention that the called number of each function depends on the object size. These six functions were scanned

by the parser to generate the HCDFG of the application. As deduction form HCDFG, Table 2 gives statistic information

of basic arithmetic operations in each function. 

From Table 2, it is clear that hardware implementation of basic arithmetic operation will speed up the application.

Also, we need to know if it is of more benefit or not to use custom hardware of the six selected functions in our case

study. 
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Table 1. Profiler Summary Results 

Called number
Function name

Frame1 Frame2 Frame3

Scalaire 1120 2260 3120

Vectoriel 2380 5280 7280

Mult_matrice 50 150 250

Projection 1210 2260 3660

Transformation 1210 2260 3660

Znormal 2380 5280 7280

Table 2. Basic Arithmetic Operations Statistics 

Add Sub Mul Div

Scalaire 3 0 3 0

Vectoriel 6 3 6 0

Mult_matrice 14 0 16 0

Projection 6 3 8 3

Transformation 8 4 8 2

Znormal 10 6 12 6

Total 47 16 53 11

Based on information given by Tables 1 and 2, we have the possibility to customize 3D synthesis application in two

granularity levels:

fine granularity: using basic arithmetic operations as a custom hardware

coarse granularity: using hardware module of each of the six identified functions. 

Table 3. Performance Results of 3D Synthesis Application on FPGAs Devices 

Two versions of the 3D synthesis application code were implemented within NIOSII processor core within 

STRATIX II and CYCLONE II FPGA devices. The performance results are given in Table 3.

We remark that the coarse grain version provides a speedup to the 3D synthesis application but the SoC will lose in

low  power dissipation and resources usage. Also, the CYCLONE II technology is more efficient than STRATIX II in

power dissipation, but the impact of the coarse grain version is more important for STRATIX II devices. 

5.2. Multiprocessor Execution Mode

The multiprocessor execution mode directs all its processors to execute the same instruction at the same 

cycle but with different data: SIMD machines. In our case, frames are input data of the application. So, we 

start by decompose each frame to blocks to get different data for SIMD machine. Then each processor will execute the

6 functions (same ins t ruc t ions)  on the associated blocks. The neighbor’s blocks have shared pixels. So we define

a mailbox between neighbor processors in order to communicate the shared data. For example, if we decompose the

Execution time (µs)
Power dissipation

(mw)
Resources usage

STRATIX II   device

ASIP Fine grain version 21189 562,87 33 %

ASIP Coarse grain version 12180 924,36mW 45%

Ratio 74.36% -64.2% -36.35%

CYCLONE II device

ASIP Fine grain version 17250 163,5 mW 47 %

ASIP Coarse grain version 10375 225,7mW 73%

Ratio 66.26% -38.04% -55.33%
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frame into 4 blocks (B0,B1,B2,B3) and we propose to use 4 processor cores (P0,P1,P2,P3). So we deduce the following

association group : {(B0,P0), (B1,P1), (B2,P2) (B3,P3)} and the neighbor group: {(P0,P1), (P0,P2), (P1,P3),(P2,P3)}.

Thus, for each neighbor pair, we instantiate a hardware mailbox communication module on AVALON multi master bus. 

Table 4 shows the experimental results of multiprocessor execution mode using different numbers of processor

cores. We can deduce that 4 processor solution is more efficient for FPGA device implementation because it gives low

power dissipation and it takes a good portion of resources. Also the multiprocessor solutions are in the same case

2.5 more efficient than custom instruction solution in term of execution time and 3.6 in term of power dissipation.

Indeed, in Tables 5 and 6, we show the performance speed up and power gain of multiprocessor architecture by

calculating the ratio between ASIP measurements and multiprocessor ones. 

Table 4. Multiprocessor Execution Mode

Execution time (µs)
Power dissipation

(mw)
Resources usage

STRATIX II   device

2 CPU 11340 362.87 mW 30 %

4 CPU 9240 254.36mW 65%

CYCLONE II device

2 CPU 10360 97.5 mW 25 %

4 CPU 7012 76.7mW 63%

Table 5. Speed up Between ASIP and Multiprocessor Modes 

Table 6.  Power Gain Between ASIP and Multiprocessor Modes 

ASIP Fine grain version ASIP Coarse grain version

STRATIX II   device

2 CPU 1.55 2.54

4 CPU 2.2 3.6

CYCLONE II device

2 CPU 1.67 2.31

4 CPU 2.13 2.9

6.  CONCLUSIONS

In this paper, we propose a method for custom instruction identification and integration in SoC design using ASIP and

multiprocessor architectures within reconfigurable processor core and FPGA technology. Our identification method is

based on HCDFG description and profiling information. The integration process of custom instruction in a processor

core was done using coarse and fine granularity. The multiprocessing execution is done with the data input split

into independent data block, and the communication between processor units was implemented using hardware mailbox

and Avalon multimaster communication prototcols. For experimentation, we propose to use NIOSII processor core on

STRATIX II and CYCLONE II FPGA devices to prototype ASIPs and multiprocessor SoC. 3D synthesis application

was chosen as a case study to validate the identification method and the integration process for ASIPs and multiprocessor

system. The results of several implementations show that the multiprocessor architectures can be 2.5 more efficient than

ASIPs in execution time and 3.6 in power dissipation.

ASIP Fine grain version ASIP Coarse grain version

STRATIX II   device

2 CPU 1.86 1.07

4 CPU 2.29 1.31

CYCLONE II device

2 CPU 1.66 1.001

4 CPU 2.46 1.47
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