
2
0

1
5

http://excel.fit.vutbr.cz

Generic Unpacker of Executable Files

Marek Milkovič*

Abstract

Executable file packing is a process used for compression or protection of these files. The behavior

and intent of such packed executable files is difficult or even impossible to analyze. If we want to

analyze the original code, we need to detect the used packer and unpack the executable file with

a tool called unpacker. This paper describes the methods used for packing and unpacking of the

executable files as well as the implementation of an easily and quickly extensible unpacker, which

is going to be used in a decompiler developed by AVG Technologies. This unpacker provides the

interface for plugins, which extend the set of supported packers. Unpacking plugins aim at the

methods for unpacking without actually running the packed program; thereby providing security

measures and targeting the architecture and platform independent unpacking. A newly proposed

generic unpacker achieves comparable results with unpackers used in practice and even outpace

them in a few aspects. It shows that even static unpacking methods can produce accurate results.

Keywords: Unpacking — Decompilation — Retargetable Decompiler — Reverse Engineering —

Executable File — Packing — Malware — Compression

Supplementary Material: N/A

*xmilko01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Reverse engineering is a process of gaining knowledge

about an engineered object while it is deconstructed;

so much that its inner structure and architecture are

revealed [1]. Software reverse engineering is a reverse

engineering in which the object of research is software.

This paper focuses on this kind of reverse engineering.

One of the main pillars of software reverse engi-

neering is decompilation—reverse compilation [2]. It

is a process of translating machine code to high-level

language (HLL). The author of the program might have

taken measures that protect his or her program against

reverse engineering. This procedure is often seen in

malicious software—malware. One kind of protection

is packing. It is stated that 80% to 90% of malware

is packed [3]. Packed software is compressed into a

self-decompressing executable file, which may also

implement anti-debugging methods. Unfortunately,

the content is decompressed just into memory in most

cases. Decompilation of such files may end up with

false results or fail completely. Therefore, the file

needs to be unpacked by unpacker at first.

The goal of this paper is to describe the design and

implementation of a generic unpacker. It is part of the

decompilation chain in a retargetable decompiler de-

veloped by AVG Technologies1. The generic unpacker

aims to fill the gap between decompilers and unpackers

by providing the unpacked file in decompilable format.

It also focuses on the unpacking without running the

1https://retdec.com/

http://excel.fit.vutbr.cz
mailto:xmilko01@stud.fit.vutbr.cz
https://retdec.com/


packed program, thus achieving more security, and

architecture/platform independence. Extensibility is

provided by the plugin interface.

AVG Technologies already has an internal generic

unpacker. However, it is dedicated just for the mal-

ware detection. It does not solve any problems that are

noticable only when the file is being decompiled. The

newly proposed generic unpacker deploys several tech-

niques that are absolutely redundant in the antivirus

unpackers. This makes it unique.

Section 2 describes the retargetable decompiler

and its structure. Section 3 gives an overview about

the executable file and Section 4 about the packing

and unpacking of such files. Section 5 is dedicated to

the generic unpacker itself, while Section 6 describes

the generic unpacker plugins. In the end, the tests are

described in Section 7.

2. Retargetable Decompiler

The retargetable decompiler is a decompiler developed

by AVG Technologies. The targeted architecture can

be configured via the input configuration file, which

describes the architecture. The supported architectures

are x86, ARM, MIPS, PowerPC, and PIC32.

The executable file needs to go through a prepro-

cessing phase before entering the decompiler. Since

this is the phase we need to modify to integrate the

generic unpacker, we will describe it in more detail

than the others.

Preprocessing analyzes the input executable file

and tries to gather as much information as possible,

e.g. class of executable file (32 or 64 bit), target ar-

chitecture, executable file format, used compiler and

packer. The compiler and the packer detection is based

on the signature database or heuristics. It is comparing

the bytes at the entry point of the program and calcu-

lates the best matches. The executable file needs to

be unpacked in the event of positive packer detection.

Currently, it uses the single purpose third-party un-

packers . The result of preprocessing is a configuration

file in XML format and an unpacked executable file.

The scheme of preprocessing is displayed in Figure 1.

The three main modules of the retargetable decom-

piler are front-end, middle-end, and back-end. They

perform various transformations to translate the ma-

chine code of the program to the HLL. First, machine

code is transformed into LLVM IR (Low Level Vir-

tual Machine Intermediate Representation)2 code in

the front-end. It is being optimized in the middle-end

and finally transformed into the HLL in the back-end.

Currently supported HLLs are C and Python.

2http://llvm.org/docs/LangRef.html

PE ELF ...Input

files

Compiler/Packer Detection
Signature

Database

UPX ... Single purpose

third-party unpackers

Configuration

File

Decompiler

G

E

N

E

R

A

T

O

R

Figure 1. Preprocessing scheme. [3]

3. Executable Files

An executable file is a file that contains the transcript

of a program using executable instructions. Executable

files belong to the family of object files together with

linkable files and libraries.

The content of an executable file has to be in a

format the targeted system can understand. It contains

the following information in general [4]:

Header — Basic information about the file, identifi-

cation of the format, and many others.

Object code — Binary executable instructions.

Relocation entries — The addresses that need to be

modified while linking or loading the program into

memory.

Symbols — Symbols (functions and variables) ex-

ported by the file and the locally defined symbols.

Debugging information — Variable names, line num-

ber relations with the instructions, etc. This informa-

tion is optional, but useful for debugging.

The loader performs the start of a program in the sys-

tem. It takes care of importing the required symbols,

creating runtime structures, etc.

The executable files are divided into parts called

sections. Sections separate the content of the file log-

ically by its purpose. There are often sections sepa-

rating the code from the data. The code should be

executable and readable, while the data should be read-

able and writable.

Programs do not always use just their own code.

They also use the system or third-party functions from

libraries. The program can be linked against a static

or dynamic library. The code from the library is put

directly into the program itself when linked against the

static library. On the other hand, the linking against the

dynamic library causes just the import symbol table to

be filled with the information that helps to find these

symbols during the start-up of the program.

http://llvm.org/docs/LangRef.html


The general structure of the executable file can

be seen in Figure 2. Information such as relocation

entries, symbols, etc. are placed in their own sections

or they are included in the headers. This is specific

for the different executable file formats used among

various platforms.

...

Section 1

Section Table

Headers

Section N

Figure 2. The general structure of an executable file.

For instance, the format used on the current Win-

dows systems is called Portable Executable (PE)3. It

stores the import data structures in tables called ILT

(Import Lookup Table) and IAT (Import Address Ta-

ble). The loader reads the entries in ILT and based

on their values, it imports the symbols while filling

the IAT with actual addresses of the symbols on the

program start or load. The code that uses the imported

symbol accesses the IAT to get the required symbol

address. As we will mostly focus on the PE format

further in the paper, we are not going to describe the

other formats.

4. Packing & Unpacking

Packing is a process of compression of the code or

even data of an executable file. More importantly, the

new packed file still remains executable and performs

the same action as the original file. Tools that perform

packing are called packers.

There are multiple reasons for packing. One reason

can be a reduction of the executable file size. How-

ever, it is mostly an effort to hide the real code of the

program because of its malicious intent, or to protect

the proprietary solutions. Malware actually uses pack-

ing mostly as it complicates the analysis of such file.

Packed malware may not be identified by an antivirus

software as malicious and remain in the system.

Even though many packers exist and new ones are

still being created, all of them work on a similar basis.

They create the new file and insert the compressed

content of the original file as its data. The code that is

able to decompress the data, is then inserted too. This

code is often referred to as an unpacking stub [5].

The import symbol table is modified or completely

3http://msdn.microsoft.com/en-us/windows/

hardware/gg463119.aspx

erased to hide the behavior even more by the vast

majority of packers. The structure of the original and

packed file can be seen in Figures 3 and 4.

Headers

Imports

Code

Data

Entry Point

Figure 3. Structure of original file

Headers

Unpacking

Stub

Compressed

Original

File

Entry Point

Figure 4. Structure of packed file

The purpose of an unpacking stub is to decompress

the original file content to the memory or disc. How-

ever, the most packers just decompress to the memory

nowadays. The unpacking stub fixes the imports if they

are damaged. In the end, the control of the program is

redirected to the original entry point (OEP).

There are more methods of unpacking that can be

divided into two groups by different criteria. First, we

can divide it into manual or automatic unpacking [5]

by what performs the unpacking. Manual unpacking

is being done by using debugging, disassembling, and

other tools by the analyst himself. Automatic unpack-

ing is performed by unpackers. The analyst does not

even need to have underlying knowledge of how the

packer works. The second division is based on the

approach that is taken to unpack the program. Options

are static and dynamic unpacking [5]. While static

unpacking does not run the packed program and tries

to simulate the unpacking stub, the dynamic approach

runs the packed program and lets the unpacking stub

do all the work. Memory is just dumped to the file as

soon as it contains the decompressed content.

The majority of the available unpackers are using

the automatic dynamic method as it is easy to im-

plement, but at the cost of security. The origin of a

packed program may not be known, putting the user at

risk. Some advanced packers are nearly impossible to

unpack automatically [5]. Manual methods then need

to be used together with automatic.

Generic unpackers are group of special unpack-

ers. They can use various techniques mentioned above.

They are intended for unpacking the set of specific

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx


packers, not just one single packer. Very few generic

unpackers exist. Here is a short list of them:

FUU4 — The generic unpacker written in assembly.

It uses the dynamic approach. The development is

stalled for years now.

PackerBreaker5 — This one uses emulation tech-

nique. It is a dynamic approach in a virtual environ-

ment. It provides only a graphical interface, making

it hard to integrate with other tools. This unpacker

even protects itself from being reverse engineered. It

cannot run alongside a debugger or any process moni-

tor. This raises a lot of controversy in the community.

The last PackerBreaker release was in 2012.

Internal antivirus unpackers — Nearly all antivirus

softwares use their own unpackers for malware de-

tection. However, they are not publicly available as

standalone tools. AVG antivirus uses one too. It was

provided for the purpose of this work.

5. Generic Unpacker

The inner structure of the generic unpacker consists of

three main parts—modules. These are core, unpack-

ing library, and plugins. Each of these modules has

its own purpose.

Core is responsible for plugin management. It

loads the plugins at the start-up and it registers them. It

initiates the unpacking process by finding the matching

plugins for currently unpacked file and redirect control

to the plugin through the API.

Unpacking library is a library used by plugins.

It contains a set of common utilities that makes the

unpacking easier such as decompression algorithms

and functions to extract bytes from file. It focuses on

the static unpacking methods.

Plugins represent the standalone unpackers them-

selves. Every plugin should take care of one packer but

multiple versions. The packer and version it supports

is passed to the core during the plugin registration.

They are just regular shared/dynamic libraries, which

must follow certain API rules to be treated as a valid

generic unpacker plugin.

5.1 Integration to Retargetable Decompiler

The structure of the retargetable decompiler was de-

scribed earlier in Section 2. It was using single purpose

third-party unpackers, which bring the disadvantages

mentioned in Section 4. This part of preprocessing

needs to be replaced completely with the new generic

4https://code.google.com/p/fuu/
5http://www.sysreveal.com/tag/

packerbreaker/

unpacker and its plugin system. The updated schema

is depicted in Figure 5. The new parts are highlighted

with a red color.

PE ELF ...Input

files

Compiler/Packer Detection
Signature

Database

Generic

Unpacker
MPRESS

UPX

...

Plugins

Configuration

File

Decompiler

G

E

N

E

R

A

T

O

R

Figure 5. Updated preprocessing scheme. [3]

The generic unpacker uses an XML configuration

file to get a list of possible packers and percentage

probabilities for every packer and its version. The

matched plugins are then run in order from the highest

to the lowest probability.

6. Generic Unpacker Plugins

This section is dedicated to existing plugins in the

generic unpacker and those that are still in develop-

ment. We will take a look at two real packers; how

they work, and how they are unpacked.

6.1 MPRESS

MPRESS6 is a packer from Matcode Software. It is ca-

pable of packing PE and .NET executable files, but we

will focus on PE. The current version is 2.19, but there

are still files packed with 1.xx versions on the Internet.

It uses an LZMAT7 compression algorithm for small

files and LZMA8 for larger files. Both algorithms be-

long to the LZ compression algoirthms family. LZMA

is well known and partially documented. However,

LZMAT is custom made and not documented at all.

The MPRESS packed file contains just two sec-

tions, .MPRESS1 and .MPRESS2. Exceptions are

only resources, which are left untouched if present in

the original file. The imports are totally destroyed. The

section .MPRESS1 contains the compressed content

and .MPRESS2 represents the unpacking stub. Af-

ter the unpacking stub decompresses the content of

section .MPRESS1 into the same section, the code

jumps to the routine that fixes imports and relocation

entries. The decompressed section contains import

6http://www.matcode.com/mpress.htm
7http://www.matcode.com/lzmat.htm
8http://www.7-zip.org/sdk.html

https://code.google.com/p/fuu/
http://www.sysreveal.com/tag/packerbreaker/
http://www.sysreveal.com/tag/packerbreaker/
http://www.matcode.com/mpress.htm
http://www.matcode.com/lzmat.htm
http://www.7-zip.org/sdk.html


hints, which are just ill-formed ILT. The fixing routine

uses them to fill the real IAT, taking the role of a loader.

The control is then transferred to the OEP.

To unpack MPRESS, it is required to recognize

whether LZMA or LZMAT was used. This can be

detected from the bytes at the entry point, as each have

its own specific signature. This can also recognize the

different versions of MPRESS. After the content of

the section .MPRESS1 is decompressed, the positions

of the real IAT and OEP can be read from it. The last

step is to fix the imports based on the import hints.

A problem arises when the unpacked file is decom-

piled. Almost the whole original file is present in just

one huge section in this new unpacked file. This sec-

tion contains the OEP so it is marked as the code. The

retargetable decompiler tries to decompile everything

in this section, even though there are data. This leads

to false results of decompilation.

This is the reason why we have deployed heuris-

tics that analyze the unpacked section based on known

facts and observations. These heuristics detect where

are borders of the original sections. The big unpacked

section is split at specific point into two sections. This

continues until it is not able to split the section any-

more. The sections of the packed file can be seen in

Figure 6. The unpacked file without any heuristics

applied is displayed in Figure 7. The impact of the

heuristics can be seen in Figure 8.

6.2 UPX

UPX9 is one of the most popular packers since it is

open-source. It is often modified, thus cannot be un-

packed by a default UPX unpacker. It uses NRV10

compression algorithms, but it also has an option for

LZMA compression. It has a wide scale of supported

executable file formats like PE, ELF, Mach-O, and also

supports multiple architectures like x86, ARM, MIPS,

and PowerPC.

It works very similar to MPRESS. It creates two

sections .UPX0 and .UPX1 in the packed file. The

section .UPX0 does not contain anything in the begin-

ning. The unpacking stub with the compressed content

is placed in the section .UPX1. The content is un-

packed into the section .UPX0. Routines for fixing

imports, relocations, and others are part of the unpack-

ing stub.

The imports are not destroyed completely. There

is one remaining import from each library. In this way,

the unpacking stub just needs to add the other imported

symbols to the import symbol table. The loader takes

9http://upx.sourceforge.net/
10http://www.oberhumer.com/products/nrv/

care of the library load.

This plugin is still in development. The UPX sam-

ples are being reverse engineered and analyzed.

7. Experiments & Testing

The tests aim at the MPRESS plugin of the generic un-

packer. We have downloaded 99 in-the-wild samples

from VirusTotal11 that were tagged as an MPRESS

samples. These were analyzed prior to the testing.

Only 91 of them were truly executable. These 91 sam-

ples are used as the test suite for MPRESS unpacking.

The two important criteria are observed—success-

ful unpacking ratio and executability ratio. The suc-

cessful unpacking ratio compares how many executable

files were successfully unpacked to the number of files

in the whole test suite. The executability ratio then

compares how many of the unpacked files remained

executable to the number of successfully unpacked

files. The reason why we observe the executability

ratio is that we may still be able to statically analyze

the file and get the right results.

The results of the MPRESS plugin are compared

to the results of the internal AVG unpacker and Packer-

Breaker as can be seen in the Table 1.

Table 1. The results of unpacking

Unpacker Successful

unpacking

ratio

Executability

ratio

Generic unpacker 93.41% 100%

Internal AVG unpacker 93.41% 100%

PackerBreaker 93.41% 95.29%

The generic unpacker and internal AVG unpacker

ended up with the same results. They unpacked 85 of

91 samples, while every single unpacked file remained

executable. The PackerBreaker also unpacked 85 of

91 files, but 4 of them were not executable. The 6 sam-

ples that neither of the unpackers was able to unpack

require manual unpacking. They are all packed with

MPRESS, but they have obscured important informa-

tion for unpacking. The most of them are packed twice

using a very simple packer on the top of MPRESS.

The decompilation testing is a hard task on these

downloaded samples, since we do not have the original

source code to compare the results. Even if we make

our own samples, the output of the other unpackers is

not decompilable. The other unpackers focus mainly

on the executability, they do not care about the getting

11https://www.virustotal.com/en/

http://upx.sourceforge.net/
http://www.oberhumer.com/products/nrv/
https://www.virustotal.com/en/


Figure 6. The sections in the packed file.

Figure 7. The sections in the unpacked file (no heuristics used). .MPRESS1 contains the whole unpacked

content of the original file. The unpacking stub in .MPRESS2 is zeroed, but the section is left in the file as it

may still be referenced from the header. The new section containing ILT was added.

Figure 8. The sections in the unpacked file (heuristics used). The section .MPRESS1 was divided into smaller

sections .text, .data3 and .data0. The section .text contains the entry point so it is the only one

marked as code. Even though the others are data, it does not matter during the execution.

the file into its original state as much as possible. The

only decompilable unpacked files are those from the

new generic unpacker.

8. Conclusions

This paper described the generic unpacker of exe-

cutable files. First, it provided information about the

retargetable decompiler it is going to be integrated in.

Then, brief insight of executable files, packing, and

unpacking was given. In the end, the inner structure of

the new generic unpacker was described together with

its plugins. The existing unpacking plugins were then

tested on the real malware samples.

The described design, implementation, and packer

analysis are all author’s contribution. The decompres-

sion algorithms are inspired by an existing solutions.

The generic unpacker was shown to be reliable

and produced results comparable to the unpackers al-

ready used in practice for many years. Even the static

unpacking resulted in accurate results. It unpacked

93.41% of all tested packed executable files, while

all of them remained executable. It even defeated the

PackerBreaker unpacker. The static unpacking allowed

us to test the unpacker on the real malware samples

without any damage. Last, but not least, it filled the

gap between unpackers and decompilers by provid-

ing the required output using hueristics for the section

detection.

Its future depends on how fast can plugins be de-

veloped and our ability to keep up with the packer

creators. These two points are the biggest issues in

this field as we can see in cases of PackerBreaker and

FUU.

A possible improvement for the future is to extend

the unpacking library, which is very thin at the moment.

This requires the implementation of more plugins to

combine all the common techniques together.

References

[1] Eldad Eilam. Reversing: Secrets of Reverse En-

gineering. Wiley Publishing, Indianapolis, IN,

2005.

[2] Cristina Cifuentes. Reverse Compilation Tech-

niques. PhD thesis, Queensland University of

Technology, 1994.

[3] Jakub Křoustek and Dušan Kolář. Preprocess-

ing of binary executable files towards retargetable

decompilation. In ICCGI’13, pages 259–264.

IARIA, 2013.

[4] John R. Levine. Linkers and Loaders. Morgan

Kaufmann, San Francisco, 2000.

[5] Michael Sikorski and Andrew Honig. Practi-

cal Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software. No Starch Press,

2012.


