\qquad
TEST: Chapter 4.1-4.2 FORM A, CALCULATOR PERMITTED
I. Multiple Choice: Place the capital letter of the answer choice in the blank to the left of the number.

1. The graph of the function $g(x)=8^{x+1}$ can be obtained from the graph of $f(x)=2^{x}$ by
(A) Horizontally compressing f by a factor of 3 (B) Horizontally stretching f by a factor of 3 (C) Horizontally shifting f left onequif $x+1$ (D) Horizontal shifting f right one unit (E) None of these
\qquad

2. What is constant percentage decay rate (as a percentage) of $P(t)=1.23(0.951)^{t} ?$
(A) 95.1
(B) 9.51
(C) 1.23
(D) 23
(E) 4.9
A
3. What is the growth factor in the equation $M(t)=3\left(\frac{5}{2}\right)^{t}$? Growth "factor"" $\begin{gathered}\text { is not percent " }\end{gathered}$
(A) 2.5
(B) 1.667
(C) 250%
(D) 167%
(E) 3
4. What is the equation of the exponential model, $y=A b^{t}, t$ in weeks, for quantity that starts with an initial value of 5 , and decreases by a factor of 5 every week?
(A) $y=5\left(\frac{1}{5}\right)^{1 / t}$
(B) $y=5^{t-1}$
(C) $y=\left(\frac{1}{5}\right) 5^{t}$
(D) $y=5^{t+1} \quad$ (E) $y=5^{1-t}$
$\begin{aligned} y & =s\left(\frac{1}{s}\right)^{t} \\ & =s(S)^{t}\end{aligned}\left\{y=s^{1-t}\right.$

H
5. What is the equation of the exponential model, $y=A b^{t}, t$ in hours, for quantity that starts with an initial value of 3.4 , and increases by 200% every day?
(A) $y=3.4\left(3^{t}\right)$
(B) $y=3.4\left(3^{t / 24}\right)$
(C) $y=3.4\left(2^{t}\right)$
(D) $y=3.4\left(2^{t / 24} t\right)$
(E) $y=3.4\left(200^{t / 24}\right)$
6. Which of the following is equivalent to the function $f(x)=7^{x}$?
(A) $g(x)=-\left(\frac{1}{7}\right)^{-x}$
(B) $g(x)=\left(\frac{1}{7}\right)^{x}$
(C) $g(x)=-\left(\frac{1}{7}\right)^{x}$
(D) $g(x)=\left(\frac{1}{7}\right)^{-x}$
(E) $g(x)=-7^{-x}$
7. A single cell amoeba triples every 4 days. About how long will amoeba to produce a population of 5000?
(A) 11 days
(B) 21 days
(C) 31 days
(D) 41 days
(E) 51 days
8. If a particle has an initial mass of 250 grams and doubles its mass every 7.5 hours, then what is the approximate mass of the particle at $t=2$ hours? $\quad y=250(2)$
(A) 300.8 g
(B) 8192000 g
(C) 468750 g
(D) 14062.5 g
(E) 8333.3 g

9. For $x>0$, which of the following is true?
(A) $3^{x}>4^{x}$
(B) $7^{x}>5^{x}$
(C) $\left(\frac{1}{6}\right)^{x}>\left(\frac{1}{2}\right)^{x}$
(D) $9^{-x}>8^{-x}$
(E) $0.17^{x}>0.32^{x}$
II. Free Response: Show all work in the space provided below the horizontal line. Use correct units where appropriate.
10. The number of people at Wassailfest infected with holiday cheer after t minutes is modeled by the function

$$
W(t)=\frac{12456}{1+56 e^{-0.7 t}}
$$

(a) What was the initial number of Wassailers infected with
 cheer? (round to the nearest person)
(b) After how many minutes will the number of infected Wassailers be 5000 ? Give an approximation rounded to the nearest minute.
(c) After how many minutes is the holiday cheer spreading at the fastest rate? (round to the nearest minute)
(d) How many Wassailers are infected after a 15 minutes? (round to the nearest person)
(e) According the model, how many people attended Wassailfest?
(f) If the Grinch has a plan to crash the Wassailfest festivities if 75% of the Wassailers get infected with the holiday spirit, after how many minutes will he try to implement his sinister plan? (round to the nearest minute)
a) $w(0)=218.526$ ≈ 219 Wassailers
b) $w(t)=5000$

$$
t=5.179
$$

\approx Sminutes
C) $w(t)=12456 / 2=6228$

$$
t=5.750
$$

$t \approx 6 \mathrm{~min}$
d) $w(15)=12436.822$

$$
\approx 12437 \text { wassailers }
$$

e)

$$
12456 \text { wassailers }
$$

f)

$$
w(t)=(0.75)(12456)=9342
$$

$$
t=7.319
$$

$t \approx 7 \mathrm{~min}$

