
Real-Time Innovations, Inc.  Copyright © 2007  1 

 
 
 

Data-Oriented Architecture: 
 

A Loosely-Coupled Real-Time SOA 
 
 

Rajive Joshi, Ph.D. 
 

rajive.joshi@rti.com 
408-200-4754 

 
 

Real-Time Innovations, Inc. 
 

3975 Freedom Circle 
Santa Clara, CA 94054 

 
 

2007 August 
 
 
 
 

 
“Data dominates. If you've chosen the right data structures and organized 
things well, the algorithms will almost always be self-evident. Data 
structures, not algorithms, are central to programming. (See Brooks 
p.102).” 

- Rob Pike, Notes on Programming in C, 1989 



Real-Time Innovations, Inc.  Copyright © 2007  2 

Abstract 
 
As more devices and systems get woven into the fabric of our networked 
world, the scale and the complexity of integration is growing at a rapid 
pace. Our existing methodologies and training for system software design, 
rooted in principles of object-oriented design, that worked superbly for 
small scale systems begin to break down as we discover operational limits 
which requires frequent and unintended redesigns in programs year over 
year. Fundamentally, object-oriented thinking leads us to think in terms of 
tightly-coupled interactions that include strong state assumptions. Large 
scale distributed systems are often a mix of subsystems created by 
independent parties, often using different middleware technologies, with 
misaligned interfaces. Integrating such sub-systems using object-oriented 
thinking poses some fundamental challenges:  
 

(1) it is brittle to incremental and independent development, where 
interfaces can change without notice;  
 
(2) there is often an "impedance mis-match" between sub-systems 
in the quantity and the quality of information that must be 
exchanged between the two sides;  
 
(3) there is a real need to dynamically adapt in real-time to network 
topology reconfigurations and failures;  
 
(4) scalability, performance, and up-time cannot always be 
compromised in this dynamic environment .   

 
A different paradigm is needed in order to address these new challenges 
in a systematic manner. 
 
As the scale of the integration and complexity grows, the only unifying 
common denominators between disparate sub-systems (generally 
numbering more than two) are: 
 

(1) the data they produce and consume;  
 
(2) the services they use and offer.  

 
In order to scale, system software architecture must be organized around 
a common "shared information model" that spans multiple systems. This 



Real-Time Innovations, Inc.  Copyright © 2007  3 

leads us to the principle of "data-oriented" design: expose the data and 
hide the code. 
 
In this paper, we will discuss the principles of data-oriented thinking, and 
discuss why it offers an appropriate paradigm to address large scale 
system integration.  
 
We discuss the critical role played by the middleware infrastructure in 
applying data-oriented design, and describe a generic data-oriented 
integration architecture based on the data distribution service (DDS) 
middleware standard. We analyze popular architectural styles including 
data flow architecture, event driven architecture, and service oriented 
architecture from this perspective and establish that they can be viewed 
as specializations of the generic data-oriented architecture. 
 
Finally we illustrate how the data-oriented integration architecture was 
used to rapidly develop a working demonstration of a real-time package 
tracking system-of-systems, in a short time frame. The information model 
is described once. The tool-chain is used to transform and manipulate the 
shared data model across disparate implementation technologies. 



Real-Time Innovations, Inc.  Copyright © 2007  4 

Table of Contents 

1 Introduction....................................................................................................5 
1.1 A REAL-TIME SYSTEM-OF-SYSTEMS SCENARIO ................................................................. 5 
1.2 KEY CHALLENGES ............................................................................................................ 9 

1.2.1 Incremental and Independent Development....................................9 
1.2.2 Impedance Mismatch ....................................................................11 
1.2.3 Dynamic Real-Time Adaptation.....................................................12 
1.2.4 Scalability and Performance..........................................................13 

1.3 SOLUTION DIMENSIONS................................................................................................... 14 
2 The Data-Oriented Design Paradigm...........................................................15 

2.1 THE PRACTICE OF DISTRIBUTED SYSTEM DESIGN ............................................................ 15 
2.1.2 Loosely-coupled system design requires a paradigm shift ............16 
2.1.3 Reality Check ................................................................................18 

2.2 DATA-ORIENTED PROGRAMMING..................................................................................... 19 
2.2.1 Data-Oriented Programming Principles .........................................20 
2.2.2 DOP and OOP...............................................................................22 
2.2.3 DOP and Application Architecture .................................................24 

2.3 AN EXAMPLE .................................................................................................................. 24 
3 The Role of the Middleware Infrastructure...................................................25 

3.1 MIDDLEWARE INFRASTRUCTURE REQUIREMENTS ............................................................. 26 
3.2 MIDDLEWARE INFRASTRUCTURE CHOICES ....................................................................... 27 
3.3 DATA-CENTRIC PUBLISH-SUBSCRIBE MIDDLEWARE INFRASTRUCTURE .............................. 28 

4 Application Architecture: Applying the Data-Oriented Paradigm..................33 
4.1 APPLICATION ARCHITECTURE STYLES ............................................................................. 33 

4.1.1 Data Flow Architecture (DFA)........................................................35 
4.1.2 Event Driven Architecture (EDA) ...................................................36 
4.1.3 Client Server Architecture (CSA)...................................................38 

4.2 DATA-ORIENTED INTEGRATION ARCHITECTURE................................................................ 40 
4.3 REAL-TIME SYSTEM-OF-SYSTEMS SCENARIO REDUX ....................................................... 41 

4.3.1 Real-Time Package Tracking Scenario .........................................42 
4.3.2 Data-Oriented Edge to Enterprise Integration Architecture ...........43 

5 Conclusions .................................................................................................50 
6 References ..................................................................................................51 
7 Acronyms.....................................................................................................53 
 



Real-Time Innovations, Inc.  Copyright © 2007  5 

 

1 Introduction 

The growing popularity of cheap and widespread data collection “edge” devices 
and the easy access to communication networks (both wired and wireless) is 
weaving in more devices and systems into the fabric of our daily lives.  As 
computation and storage costs continue to drop faster than network costs, the 
trend is to move data and computation locally, using data distribution technology 
to move data between the nodes as and when needed.  As a result, the quantity 
of data, the scale of its distribution and the complexity integration is growing at a 
rapid pace.  
 
The demands on the next generation of distributed systems and systems-of-
systems include being able to support dynamically changing environments and 
configurations, being constantly available, and being instantly responsive, while 
integrating data across many platforms and disparate systems.   
 
How does one systematically approach the design of such systems and systems-
of-systems? What are the common unifying traits that can be exploited by 
architects to build systems that can integrate with other independently systems, 
and yet preserve the flexibility to evolve incrementally? How does one build 
systems that can be self aware and self-healing, and dynamically adapt to 
changes in their environment? Can this be done on the scale of the Internet, and 
yet be optimized for the best performance that can be supported by the 
underlying hardware and platform infrastructure? Can this be done without 
magnifying the ongoing operational and administrative costs? 
 
These and related topics are the subject of this paper. 

1.1 A Real-Time System-of-Systems Scenario 

Let us consider the air traffic control example of Figure 1. It involves a variety of 
disparate systems that must seamless operate as a whole.  
 
On the “edge” is a real-time avionics system inside the aircraft, which may 
communicate with a control-tower. The data flowing in this system is typically at 
high rates, and time-critical. Violating timing constraints could result in the failure 
of the aircraft or jeopardize life or safety. 
 



Real-Time Innovations, Inc.  Copyright © 2007  6 

The control tower is yet another independent real-time system, monitoring 
various aircraft in the region, coordinating their traffic flow, and generating alarms 
to highlight unusual conditions. The data flowing in this system is still time-
sensitive for proper local and wide-are system operation, albeit it may a bit more 
tolerant of occasional delays.  
 
In our simplified example, the control tower communicates with the airport 
Enterprise Information System (EIS). The enterprise information system keeps 
track of historical information, flight status, and so on and may communicate with 
multiple control towers and other enterprise information systems. The enterprise 
system is not in the time-critical path, and therefore can be much more tolerant of 
delays on arrival of data; the data rates are also much lower compared to those 
in a control-tower or an aircraft; however, the volume of data is far greater 
because of the shear magnitude of the scaling factors involved (numbers of 
airplanes, numbers of passengers, historical data, and so on). This enterprise 
system is responsible for synthesizing a composite “dashboard” view, such as 
passenger information, flight arrival and departure status, and overall operational 
health of the airport, from the real-time data originating from the “edge” systems 
(aircraft). 



Real-Time Innovations, Inc.  Copyright © 2007  7 

 

Figure 1 The next generation of distributed systems is dynamic in nature, and must meet 
the demands of constant availability, instant responsiveness, reliability, safety, and 
integrity. They require integration of many platforms, systems, and their data. 

 
This “real-time edge-to-enterprise integration” scenario is representative of many 
other application domains including the US Department of Defense’s (DoD) 
vision of net-centric operations and the global-information-grid (GiG), new 
initiatives on intelligent transportation systems (ITS), telematics, ground traffic 
control, homeland security, medical systems, instrumentation, industrial 
automation, supply chain, simulation, unmanned vehicles, robotics, and systems 
engineering, to name a few.  Indeed, parallels to this “multi-tiered” edge to 
enterprise example can be easily seen around us---for example, instead of 
“airplane, control tower, airport” it could be “cell phone, cell tower, cell base 
station”, or  “power generation systems, power grid centers, power distribution 
centers”.   
 



Real-Time Innovations, Inc.  Copyright © 2007  8 

In business, many forces, including the rise of outsourcing, the need for business 
agility, and the trend towards “on-demand” business, are leading to scenarios 
where independently developed systems must be quickly adapted and re-
adapted to realize new business capabilities. 
 
 
The new emerging class of distributed applications is an integrated “system-of-
systems” (SoS), that brings together multiple independent systems to provide 
new capabilities. In general, the different classes of systems form a continuum; 
however for the purposes of this paper we broadly classify systems into three 
categories, below. 
 

1. Edge systems. These are systems that touch the “real-world” to perform 
various functions, including sensing, and actuation. Often, these systems 
must operate under “real-time” constraints---i.e. their correct operation 
depends on meeting critical design requirements and timing constraints for 
various functions. The timescale is at machine-level, sometimes in the 
order of microsecond resolution. Examples of edge systems include 
instrumentation, robots, radars, communication equipment etc. 

 
2. Enterprise systems. These are the “information technology” (IT) systems 

that traditionally include functions such as high-level user interaction, 
decision support, storage and retrieval of historical data. Often these 
systems provide the executive-level operational “dashboards” that 
integrate data from edge systems. Usually, these systems have “soft” real-
time constraints, and the timescale is at a “human” response level in the 
order of seconds, minutes, hours, days, etc. Examples of enterprise 
systems include application servers, packaged applications, web-servers 
etc. 

 
3. Systems-of-Systems (SoS). These are distributed systems composed of 

many Edge, and/or Enterprise systems, including other SoS. Successful 
examples of SoS include the “World-Wide-Web (WWW)”, and “electronic 
mail”, that run on the public Internet. The US DoD’s GiG is envisioned as a 
SoS that integrates various DoD assets over the DoD’s private internet.  

 
 
SoS are loosely coupled, with many independent entry points, under independent 
control domains, that effectively inter-operate to realize multiple objectives.  
 
 



Real-Time Innovations, Inc.  Copyright © 2007  9 

1.2 Key Challenges 

SoS must effectively deal with various issues, including (1) crossing trust 
boundaries, where each system is controlled and managed independently, and 
involves social, political and business considerations; (2) managing quantitative 
and qualitative differences in the data exchange and performance; for example 
an “edge” system often carries time-critical data at high rates, some of which 
must eventually trickle into an “enterprise” system; (3) operating across disparate 
technology stacks, design paradigms, and life-cycles of the different systems. 
 
Next, we  examine some of the key technical challenges in building successful 
SoS, and leave the non-technical aspects for discussion elsewhere.  
 

1. Incremental and Independent Development arising from the fact that 
systems are generally developed and evolved independently. 

 
2. Impedance Mismatch arising from the non-functional differences in the 

information exchange between systems – both in the quantity and the 
quality of the data exchange. 

 
3. Dynamic Real-Time Adaptation arising from the fact that the environments 

can change dynamically, and it is not practical to have a centralized 
administrator or coordinator. 

 
4. Scalability and Performance, arising from the need to support larger SoS 

as more resources are introduced, with minimal overhead. 
 

1.2.1 Incremental and Independent Development 

Each system can be under an independent domain of control---sometimes both 
from an operational as well as management perspective. Different systems may 
be developed independently.  In the “systems engineering” world, it is common 
development practice to switch a system or a sub-system transparently from a 
“simulated” version to an independently developed  “real” version and vice-versa. 
Furthermore, deployed systems continuously undergo incremental evolution and 
development as capabilities are added or extended. 
 
By their very nature, the systems under consideration are loosely-coupled---
minimal assumptions can be made about the interface between two interacting 



Real-Time Innovations, Inc.  Copyright © 2007  10 

sub-systems. The integration should be robust to independent changes in either 
side of an interface. Ideally, changes in one side should not force changes on the 
other side. This implies that the interface should contain only the invariants that 
describe the interaction between the two-systems. Since, behavior is 
implemented by each independent system; the interface between them must not 
include any system specific state or behavior (Figure 2). The remaining invariant 
is the information exchange between the two systems.  

 

Figure 2 The interface between “loosely-coupled” independent systems should not 
include any system-specific behavior or state. It can include the “data model” of the 
information exchanged between the systems, and the role played by a system. 

 
An information exchange can be described in terms of 

1. the information exchange “data model” 
2. the roles of “producer” and “consumer” participating in the information 

exchange 
 



Real-Time Innovations, Inc.  Copyright © 2007  11 

Thus, when dealing with loosely coupled systems, a system’s interface can be 
described in terms of the “data model” and the “role” (producer or consumer) the 
system plays in the information exchange. Additional assumptions can break the 
loose coupling. 
 

1.2.2 Impedance Mismatch 

The systems on either side of an interface (Figure 2) may differ in the qualitative 
aspects of their behavior, including differences in data volumes, rates, timing 
constraints, and so on.   
 
We use the term “impedance mismatch” to connote all the non-functional 
differences in the information exchange between two systems. Figure 3 
illustrates the impedance mismatch between edge and enterprise systems in the 
current state of affairs.  
 



Real-Time Innovations, Inc.  Copyright © 2007  12 

 

Figure 3 Impedance mismatch between today’s edge and enterprise systems arises from a 
number of factors, including differences in data rates, timing constraints, life-cycle of data, 
persistency, and the differing technology stacks. 

 
The non-functional aspects of a system’s interface (data model and role, Figure 
2) can be conceptually captured as a quality-of-service (QoS) aspect associated 
with the system’s role. A producer may “offer” some QoS, while a consumer may 
“request” some QoS for an interface. A producer and consumer can participate in 
information exchange using that interface if-and-only-if their QoS are 
“compatible”. This approach allows us to conceptually model and deal with the 
impedance mismatch between independent systems.  
 

1.2.3 Dynamic Real-Time Adaptation 



Real-Time Innovations, Inc.  Copyright © 2007  13 

The independently managed systems can appear and disappear 
asynchronously, as they are started, shutdown, rebooted, or reconfigured. The 
environment can change dynamically, causing systems to react differently.  
 
Physical communication links between systems may go down or may be 
unreliable---such failures may be indistinguishable from system failures at the 
other end of the communication link [Waldo 1994].  
 
In general, it is not possible or not practical to have a centralized administrator or 
coordinator of the various systems, especially at the granularity of asynchronous 
changes that may occur dynamically. Thus, each system must detect and react 
to dynamic changes as they occur. The responsibility of detecting dynamic 
changes in connectivity is best delegated to the information exchange 
infrastructure provided by the computing environment 
 
The information exchange infrastructure typically includes the network transport 
hardware, the computing hardware, the operating system, and the 
communications middleware, on top of which an application runs. 
 
Ideally, the information exchange infrastructure would be “self-aware” in the 
sense of being able to detect and inform the systems when changes occur in 
their connectivity with other systems.  
 

1.2.4 Scalability and Performance 

Scalability refers to the ability to handle proportionally more load, as more 
resources are added. Scalability of the “information-exchange” infrastructure thus 
refers to the ability to take advantage of underlying hardware and networking 
resources, and the ability to support larger SoS as more physical resources are 
added. From an component developer’s perspective, this translates to the ability 
of the information exchange infrastructure to naturally scale from systems 
comprising of one-producer and one-consumer pair, to one-to-many, many-to-
one, and many-to-many producers and consumers.. A related notion is that of 
“administrative scalability” of the infrastructure---how the infrastructure 
administrative load increases as the number of components increases. Ideally, 
this should be at a minimum.  
 
Performance refers to the ability to support information exchange with minimal 
overhead. Performance considerations typically include latency, jitter, throughput, 
and processor loading. 



Real-Time Innovations, Inc.  Copyright © 2007  14 

 
Scalability and performance are practical concerns that determine the suitability 
and the justification of a SoS for business objectives in the first place. They 
depend heavily on the implementation of the underlying information exchange 
infrastructure. 
 

1.3 Solution Dimensions 

The key technical challenges in building SoS can be tackled among the following 
dimensions. 
 
1. Design Paradigm. Traditional “object-oriented” design works well for “tightly-

coupled” systems where strong state assumptions about the interaction are 
acceptable. Indeed it is possible to avoid state assumptions with object-
orientation as well; however that is not the general practice or guidance, and 
state assumptions invariably do trickle into the interface specification. For 
loosely-coupled systems, a new “data-oriented” design paradigm (see the 
Section “The Data-Oriented Design Paradigm”) provides a more suitable 
framework to address the challenges of (a) incremental and independent 
development; (b) impedance mismatch. 
 

2. Middleware Infrastructure. It refers to the information exchange infrastructure. 
As noted during the discussion the technical challenges, the middleware 
infrastructure that take on important responsibilities, and provide key 
capabilities that can ease and facilitate the construction of SoS and 
distributed systems in general. The middleware infrastructure is the place to 
address the challenges of (a) dynamic real-time adaptation; and (b) scalability 
and performance. It can also facilitate integration by directly supporting a 
design paradigm for loosely-coupled systems, and thus aid in addressing (c) 
incremental and independent development; (b) impedance mismatch. We 
discuss this in the Section “The Role of the Middleware Infrastructure”. 

 
3. Application Architecture. It refers to the overall architecture of a SoS to realize 

business objectives. It encompasses the overall interaction patterns, common 
data models, QoS, and application specific semantics. Several approaches 
are prevalent for the application architecture, including client-server 
architecture (CSA), event-driven architecture (EDA), and so on.  The 
application architecture is anchored to the design paradigm, and utilizes the 
underlying middleware infrastructure. Application architecture is the place to 
address the challenges of (a) impedance mismatch; (b) dynamic real-time 



Real-Time Innovations, Inc.  Copyright © 2007  15 

adaptation at an integrated SoS level. We discuss this in the Section 
”Application Architecture: Applying the Data-Oriented Paradigm”, and finally 
illustrate a concrete SoS integration example that ties all the concepts 
together. 

 
The rest of this paper discusses each of these solution dimensions in depth. 

2 The Data-Oriented Design Paradigm 

System design, in general, may be viewed as a collection of interconnected 
components. Depending on the context and granularity of scale, a component 
may be, for example, an entire system (in a SoS), or an application, or a process, 
or a library module. Let us examine the underlying design principles that can 
provide us the theoretical foundation for dealing with the challenges introduced in 
Section “Key Challenges”. 
 

2.1 The Practice of Distributed System Design 

When we examine the practice of system design, we can identify two lines 
primary schools of thought, distinguished along the lines of “tight-coupling” vs. 
“loose-coupling” of components. These have been applied to the design of both 
local and distributed processing systems. 
 

2.1.1.1 Tightly-coupled system design is promoted by a familiar paradigm 

Tight-coupling refers to making strong assumptions about the interface of 
interconnected components. Changes in one component’s interface typically  
have a significant impact on the components that interact with it.  
 
Our existing methodologies and training for system software design, rooted in 
principles of object-oriented design, lead to tightly-coupled interactions. In the 
object-oriented approach, it is common practice to make strong assumptions 
about the interaction state in the interface; the paradigm encourages the notion 
of “distributed state” across the interacting objects. This works superbly on the 
small scale for “local processing” where the components live in a share a 
common “logical” address space, the communication latency is negligible, 
memory can be accessed by shared pointers or references, and there is no “real” 



Real-Time Innovations, Inc.  Copyright © 2007  16 

indeterminism about how much of a computation completed when failures occur 
or when operations are invoked---however these assumptions are not valid for 
distributed system where components do not share a single logical address 
space [Waldo 1994].   
 
Since the object-oriented programming paradigm is so widely popular and 
successful for local processing, it is only natural that we apply it for distributed 
processing as well. The idea is to wash away the differences between local and 
distributed processing, and treat the system as a logical whole around a logical 
distributed shared memory model. The defining mantra for this approach is 
captured by Sun Microsystems tag line: “The network is the computer”. 
 
This path has lead to various endeavors, including the work on distributed 
operating systems, distributed shared memory, remote-procedure calls (or RPC), 
common request-broker architecture (CORBA), enterprise java beans (EJB),  
simple-object access protocol (SOAP), and approaches for clustering and load-
balancing to scale the performance of the “logically” centralized computing model 
across distributed nodes. It is now well established in the literature that it is a 
mistake to wash away the differences between remote and local objects [Waldo 
1994], and at best this approach only works for small and tightly managed 
environments. 
 
Indeed, object-oriented design is an appropriate paradigm for components that 
are intrinsically tightly coupled, and allows one to take advantage of the 
performance optimizations afforded by direct memory access, lower latencies, 
simple failure modes, and centrally managed concurrency and resources.   
 
Object-oriented system design has been used with success in tightly controlled 
and managed distributed environments. However, tightly-coupled solutions are 
more difficult to modify since changes made in one place cause changes to be 
made somewhere else. At the best they require a re-test of the entire system or 
system-of-systems to make certain nothing was broken. They do not robustly 
scale up when the assumptions of centralized control and management no longer 
hold [Waldo 1994], as is the case with the new generation of distributed systems 
(eg SoS). 
 

2.1.2 Loosely-coupled system design requires a paradigm shift 



Real-Time Innovations, Inc.  Copyright © 2007  17 

Our existing object-oriented methodologies and training for system software 
design that worked superbly for local or centralized processing begin to break 
down for distributed or decentralized systems. 
 
When components live in different address spaces, the differences in 
communication latency and memory access among components become 
significant. Working with components in multiple address spaces also introduces 
“true” indeterminism in failure modes [Waldo 1994], and in the invocation of 
concurrent operations [Lamport 1978]. Such systems must deal with partial 
failures, arising from failure of independent components and/or communication 
links; in general the failure of a component is indistinguishable from the failure of 
its connecting communication links. In such systems, there is no single point of 
resource allocation, synchronization, or failure recovery. Unlike local process, a 
distributed system may simply not be in a consistent state after a failure. 
 
The “fallacies of distributed computing” [Van Den Hoogen 2004], summarized 
below, capture the key assumptions that break down (but still are often made by 
architects) when building distributed systems. 
 
   1. The network is reliable. 
   2. Latency is zero. 
   3. Bandwidth is infinite. 
   4. The network is secure. 
   5. Topology doesn't change. 
   6. There is one administrator. 
   7. Transport cost is zero. 
   8. The network is homogeneous. 
 
A different paradigm is needed to build distributed systems, which by nature, are 
“loosely-coupled”. This has been clearly noted in the literature [Waldo 1994]. 
 

“Programming a distributed application will require thinking about the 
problem in a different way than before it was thought about when the 
solution was a non-distributed application. 
: 
One consequence of the view espoused here is that it is a mistake to 
attempt to construct a system that is “objects all the way down” if one 
understands the goal as a distributed system constructed of the same kind  
of objects all the way down.” 

- Waldo, Wyant, Wollrath, Kendall, 1994 
 



Real-Time Innovations, Inc.  Copyright © 2007  18 

An appropriate paradigm for building “loosely-coupled” systems can be found in 
the principles of “data-oriented programming” [Kuznetsov], and discussed in the 
following Section “ 
Data-Oriented Programming”. It is based on the observation that the “data 
model” is the only invariant (if any) in a loosely coupled system (Figure 2), and 
should be exposed as a first-class citizen----in other words “data” is primary, and 
the operations on the data are secondary! Since a common “logical” address 
space cannot be assumed, the information exchange between components is 
based on a message passing interaction paradigm.  
 
When applied to distributed systems, the defining mantra for a loosely-coupled 
approach may be captured by: “The computer is the network”, which 
acknowledges the fact that distributed computing must indeed be cognizant of 
the network and the potential for communication failures. The world-wide-web 
and electronic-mail are good examples. Other examples are seen in the 
availability of various message-oriented middleware (MOMs), Java Message 
Service (JMS), data-centric publish-subscribe middleware (DDS) to support the 
implementation of loosely-coupled distributed systems. 
  
Loosely-coupled system design approaches can be applied to the design of local 
or centralized applications as well, to achieve a more scalable architecture, 
modularize complexity, promote a more robust design, support outsourcing 
activities, merger and acquisition activities, integrate third-party components, and 
so on. For centralized systems, this requires extra effort and discipline, but can 
be well worth the rewards. Examples of such usage are increasingly common in 
the design of application servers (AS), enterprise service bus (ESB) [Richards 
2006], Java Business Integration (JBI) [Richards 2006]; although these are not 
necessarily examples of data-oriented programming.  
 
Thus, loosely-coupled system design approaches work well for both localized 
centralized processing, and distributed decentralized processing, including SoS. 
Loosely-coupled design can lead to more robust systems that are amenable to 
more complex scenarios and interactions. 

2.1.3 Reality Check 

Figure 4 shows a classification of popular technologies with respect to the 
coupling assumptions they make about the components involved. Tightly-coupled 
approaches for distributed systems and loosely-coupled approaches for building 
more complex centralized applications are quite popular. Our focus is on building 



Real-Time Innovations, Inc.  Copyright © 2007  19 

loosely-coupled distributed systems, an emerging area of research and 
technology.  

Data Dist ribut ion Service (DDS)

Messaging-Oriented Middleware (MOM)

Java Message Service (JMS)

World-Wide Web (WWW)

Elect ronic Mail (e-Mail)

Representat ional State Transfer (REST)

US DoD’s Global Inform at ion Grid (GIG)

Remote Procedure Calls (RPC)

Comm on-Object  Request  Broker 

Architecture (CORBA)

Enterprise Java Beans (EJB)

Simple Object  Access Protocol (SOAP)

Dist ributed Shared Memory (DSM)

Dist ributed Databases

Dist ributed Operat ing Systems

Clustering

Load Balancing

Distributed or 
Decentralized 

Processing

Applicat ion Servers (AS)

Enterprise Service Bus (ESB)

Java Business Integrat ion (JBI)

Applicat ion Program s

Local or 

Centralized 
Processing

Loose-couplingTight-coupling
Technology 

Map

 

Figure 4 Classification of popular technologies for centralized and decentralized 
processing with respect to coupling assumptions.  

 

2.2 Data-Oriented Programming 

The “data-oriented programming” (DOP) [Kuznetsov] paradigm refers to a 
collection of existing design principles for building interoperable software and 
integrating disparate systems. It is complementary to “object-oriented 
programming” (OOP), often practiced using Java or C++. DOP is like OOP in the 
sense of being a conceptual framework that is above any specific programming 
language or implementation technologies.  
 



Real-Time Innovations, Inc.  Copyright © 2007  20 

DOP provides a solid foundation for constructing loosely-coupled systems, and 
can be seen as the theoretical basis for much of the recent work on service-
oriented architecture (SOA) and web-services. 

2.2.1 Data-Oriented Programming Principles 

DOP is based on the following principles, elucidated by Kuznetsov . 
1. Expose the data and meta-data 
2. Hide the code 
3. Separate data and code, or data-handling and application-logic. 
4. Generate data-handling code from interfaces 

 
An updated version of Kuznetsov’s DOP principles is discussed below. We add 
the notion of QoS (see Section “Impedance Mismatch”), not found in Kuznetsov’s 
original version. 
 
1. Expose the data and meta-data. Meta-data refers to the information about 

the data structure itself, including the name, type, multiplicity, and 
organization of the fields. DOP exposes the data and meta-data as first-class 
citizens, and uses them as the primary means of interconnecting 
heterogeneous systems.  

 
a. The data is the primary means for hooking up components. This DOP 

principle is the exact opposite of the “encapsulation” design principle in 
OOP, which has practical outcome of all data fields being hidden 
behind accessor methods of an object. 

 
b. In addition to the data itself, DOP relies on exposing meta-data that 

includes a formal machine readable format description (FMRFD), so 
that the data is self-describing. For example, a FMRFD meta-data may 
be embedded with the data as in XML's self-describing tags [W3C 
XML], or may be in ASN.1 BER type fields [Kaliski 1993] specified 
alongside the data. Examples of FMRFD include WSDL [W3C WSDL], 
DTD [W3C XML], XML Schema [W3C XMLSchema], XML InfoSet 
[W3C XMLInfoSet], IDL [OMG 2002], ASN.1 [Kaliski 1993], and other 
schema languages. 

 
c. Optionally, the exposed meta-data can include formal quality of service 

(QoS) attributes that adorn the formal data format description, and 
capture the non-structural aspects of the data exchange. 

 



Real-Time Innovations, Inc.  Copyright © 2007  21 

d. We observed in Figure 2, the data model is the primary “invariant” in a 
network of interconnected components.  Changes in the exchanged 
messages can be tolerated while preserving connectivity as long as 
the associated meta-data (FMRFD and QoS) is updated. In addition, 
the meta-data can be extended to support evolutionary changes to the 
data model, without “breaking” existing interactions. 

 
2. Hide the code. DOP hides the code, and relies on message passing to 

model coarse-grain interactions between components, with minimal state 
assumptions. 

 
a. DOP hides any code and direct references to code. For example, the 

meta-data should not contain programming language constructs. As 
we observed in Figure 2, the interface cannot assume any system-
specific state or behavior; thus avoiding code in the interface is critical 
for loosely coupled systems. 

 
b. DOP models the interaction between two components as sending a 

message from one to the other with an operation code. Unlike OOP, 
DOP avoids tight coupling that results when one component invokes 
an operation on another. 

 
c. DOP encourages coarse-grained interactions between systems and 

strives to minimize state assumptions. As noted in Figure 2, state 
assumptions introduce coupling, which runs counter to the notion of 
loosely-coupled systems. 

 
d. A key difference from “remote-procedure call” (RPC) model is that 

there is no context or implied state or coupling across messages. A 
message is self contained, and includes the entire context. This makes 
DOP well suited to the needs of loosely-coupled systems. 

 
3. Separate data and code, or data-handling and application-logic. DOP 

requires clean separation of the declarative meta-data and data 
communication, from the implementation of operations on the data. 

 
a. Sparation of data handling and application-logic code is necessary for 

DOP to be effective for loosely-coupled systems. A great anti-pattern 
for this principle is the traditional C++ header file, with its inline 
methods, and data members; data structures can be mixed in with data 
manipulation logic. 



Real-Time Innovations, Inc.  Copyright © 2007  22 

 
b. The responsibility of data-handling can be delegated to the middleware 

infrastructure, so that the application logic can focus on the processing 
the data. 

 
4. Generate data-handling code from interfaces. A DOP interface is defined 

by the meta-data (FMRFD and QoS), and must be expressed formally. DOP 
explicitly forbids the hand-coding of data parsers, translators or output 
systems; instead it requires that the data-manipulation code be machine 
generated from the meta-data in a form suitable for the implementation 
platform.The meta-data must contain all of the information required to encode 
and decode the data in a given format.  

 
a. The meta-data must contain all the QoS needed to capture the deal 

with the impedance mismatch and the implied “tuning” (see Section 
“Impedance Mismatch”). 

 
b. Systems using completely different implementation platforms must be 

able to generate code for encoding and decoding the data format.  
 

c. A middleware infrastructure can provide the tools for generating data-
handling code specific to the implementation programming language 
and runtime environment, and mechanisms for tuning the impedance 
mismatch. 

 

2.2.2 DOP and OOP 

Figure 5 summarizes the principles of DOP from an OOP perspective.  



Real-Time Innovations, Inc.  Copyright © 2007  23 

Tight ly-coupledLoosely-coupled

Change � read & change codeChange � change declarat ive meta-data

Com bined processing, no rest rict ionsSt rict  separat ion of parser, validator,

t ransformer, im pedance tuner, and logic

Meta-data =  Data Model/Schema +  QoS

API / Object  model is primaryMessages are primary

Must  agree on code runt ime systemMust  agree on data encoding, m apping 

system , QoS semant ics

Mobile codeSend only messages

Interm ix data & codeSeparate data & code

Expose methods – codeHide the code

Hide the data (encapsulat ion)Expose the data and meta-data

Object-Oriented Programming (OOP)Data-Oriented Programming (DOP)

 

Figure 5 Comparison of data-oriented programming (DOP) and object-oriented 
programming (OOP) principles. 

 
DOP and OOP can be viewed as complementary approaches aimed at solving 
different concerns. OOP promotes tight-coupling, while DOP promotes loose 
coupling.   
 
Those familiar with the web-services community debate between Simple Object 
Access Protocol (SOAP) vs. Representational State Transfer (REST) [Prescod] 
will notice that fundamentally, the argument is really about choosing between an 
OOP vs. DOP paradigm for constructing web-services.  
 
In practice, for example on a SoS, OOP might be used for fine grained tightly-
coupled application components; whereas DOP may be used to interconnect the 
loosely coupled components. 
 



Real-Time Innovations, Inc.  Copyright © 2007  24 

2.2.3 DOP and Application Architecture 

DOP can be seen as the foundation of several distributed application architecture 
approaches including service-oriented architecture (SOA) [Wikipedia SOA], 
event-driven architecture (EDA) [Wikipedia EDA], and contract-first design 
[Skonnard 2005].  
 
DOP principles 1 and 2 can be construed to provide the definition of a “service 
contract” used in SOA community. The principles of SOA, namely (1) expose the 
services; (2) hide the objects, are consistent with DOP. The Web Services 
Description Language (WSDL) is an appropriate formalism for a DOP interface.  
 
As can be seen from the above discussion, DOP provides the framework to 
addresses two of the key issues in system design (a) incremental and 
independent development (Section “Incremental and Independent 
Development”); (b) impedance mismatch (Section “Impedance Mismatch”). Thus, 
DOP is well suited to solving integration challenges, in a scalable and agile 
manner.  
 
We should note that it always possible to tighten up loosely-coupled software; 
however it is not possible to loosen up tightly coupled software. Thus, loose-
coupling and messaging are more general idioms than tight-coupling and object 
method invocation; the latter can be built on top of the former. 
 
It is important to note that a design paradigm by itself does not result in well-
designed systems. Like OOP, DOP can also be mis-used and abused. DOP 
provides the principles and guidance for building loosely-coupled systems. 
However, design is fundamentally a human activity; paradigms and tools can 
only facilitate the process. 
 

2.3 An Example 

For illustration purposes, let us consider a very simple example from both an 
OOP and a DOP viewpoint.  
 
Let us consider the simple task of “registering a sale”. The participants involved 
in this task are: a customer, a store, and the item sold.  
s 



Real-Time Innovations, Inc.  Copyright © 2007  25 

From an OOP viewpoint, we would treat customer, store, and item objects as 

opaque, and we might model the task as follows. 

• item.register_sale(store, customer) 

• store.register_sale(item, customer) 

• customer.register_sale(item, store) 

 
A component would have to rely on the specific behavior of all the three object 
implementations to complete the sale transaction. However, if the behavior of a 
customer, store, or item changes---for example an operation used by the 

implementation of register_sale method is removed or its pre/post conditions 

or signature altered, the register_sale method would fail. Thus, this 

approach is brittle to changes in the participants, as it relies on the fact that their 
behavior will not change over time. 
 
From a DOP viewpoint, we would define customer, store, and item, as 

publicly exposed data, and formally describe their structure as public meta-data. 
We might define a message called register_sale that operates on the 

customer, store, and item data to accomplish the task.  

• register_sale(customer, store, item) 

 
The consumer (or provider) of this message would have all the information 
necessary to execute the producer’s (or requestor) request, and its 
implementation is no longer tied to the behavior of the customer, store, 

item objects. If the definition of customer, store, or item changes, the 

associated meta-data is be updated to inform the consumer of those changes, so 
that the data processing in the application logic can be adjusted accordingly. 
Thus, this approach is robust to the changes in the data structure, as well as the 
behavior of the participants. 
 

3 The Role of the Middleware 
Infrastructure 

Middleware refers to the software layer that sits between the application-logic 
and the underlying operating-system (if any). 
Network middleware is responsible interconnecting components in a distributed 
system. 
 



Real-Time Innovations, Inc.  Copyright © 2007  26 

The network middleware infrastructure plays a critical role in the application of 
the DOP paradigm. Let’s examine the role and the array of middleware choices 
available to use, and determine the ones most suitable for building loosely-
coupled systems and SoS. 
 

3.1 Middleware Infrastructure Requirements 

As we noted in Figure 4, there are several middleware choices available for 
building distributed systems. The key requirement is that the middleware 
infrastructure be amenable to DOP principles; which means that the middleware 
infrastructure: 

• Provides a mechanism for formally specifying meta-data (data-models and 
QoS) (principle 1); 

• Does not force a common context or state or coupling across messages, 
and encourages state-less interactions (principle 2); 

• Provides a total separation of data-handling from application logic, and 
does not impose any constraints on application logic (principle 3); 

• Provides an inter-operability protocol for message representation and 
exchange “on-the-wire”, so that independent implementations can 
meaningfully communicate (principle 3). 

• Provides an abstract programming model, so that application specific  
data-handling code can be maintained separately from application logic in 
any desired target programming language (principle 4); 

 
Also, considering the additional needs of dynamic real-time adaptation, 
scalability, and performance in loosely-coupled systems and SoS, the following 
capabilities can go a long way in enabling a clean and effective application 
architecture. 

• Ability to dynamically specify and (re)configure the data flows;  

• Ability to describe delivery requirements per data flow; 

• Ability to specify and control middleware resources such as queues and 
buffering; 

• Resiliency to individual node or participant failures; and  

• Performance and scalability with respect to number of nodes, 
components, and data flows. 

 
In addition, it is always desirable that a middleware technology be an open 
standard and  not a proprietary technology, so that once can benefit from the 
competitive market forces, without incurring the costs of vendor lock-in. 



Real-Time Innovations, Inc.  Copyright © 2007  27 

 

3.2 Middleware Infrastructure Choices 

One can quickly walk through the list of currently available middleware 
infrastructure technologies (some are listed in Figure 4) and narrow down the list 
of suitable technologies. It is not practical to undertake a detailed examination of 
all the popular middleware technologies in the scope of this paper; that will 
remain a subject to be tackled elsewhere. However, we briefly summarize the 
key findings. 
 
We observe that the middleware technologies that support the anonymous 
publish-subscribe paradigm (see Section “Data-Centric Publish-Subscribe 
Middleware Infrastructure”) have the best potential for meeting the requirements 
in the previous section. Dominant publish-subscribe middleware standards 
include: Data Distribution Service (DDS) [OMG 2006], Java Message Service 
(JMS) [JMS], High Level Architecture (HLA) [HLA], CORBA Notification Service 
[OMG 2004]. An overview of DDS is presented in [Joshi 2006b]. A detailed 
comparison of DDS and JMS is presented in [Joshi 2006a]. A detailed 
comparison of DDS and HLA is presented in [Joshi 2003].  
 
Upon an in-depth examination of these middleware standards, DDS [Joshi 
2006b] is the only middleware standard that meets and exceeds the 
requirements of the previous section for loosely-coupled systems and SoS. The 
key reasons include (1) DDS is the only publish-subscribe middleware standard 
that specifies both an API specification and an interoperability wire-protocol; (2) 
DDS supports a request/offered paradigm central to the design of loosely 
coupled systems; (3) DDS provides mechanisms for applications to be self-aware 
by informing them of network topology changes; (4) DDS does not make any 
assumptions about the state at the other components; (5) DDS requires that the 
data model be specified formally in a programming language neutral manner. 
 
Specifically, JMS [Joshi 2006a] and message-oriented middleware (MOM) does 
introduce coupling via the use of a message “destination”. Destinations are a 
point of tight-coupling for the following reasons: (1) in most implementations, 
destinations must be configured explicitly before they can be used; (2) a 
destination is a shared resource, accessed by producers and consumers; (3) a 
destination is specified when sending a message; (4) destinations can become 
communication bottleneck and a single point of failure. Additional reasons why 
JMS falls short of the requirements of DOP can be found in [Joshi 2006a]. 
 



Real-Time Innovations, Inc.  Copyright © 2007  28 

Lets us examine the suitability of DDS for the needs of loosely-coupled systems 
and DOP. 
 

3.3 Data-Centric Publish-Subscribe Middleware 
Infrastructure 

DDS [OMG 2006, Joshi 2006b] is an abstract programming model specification 
and an inter-operability wire-protocol, that defines a “data-centric” publish-
subscribe model for connecting anonymous information producers with 
information consumers.  
A standard language independent programming model (or abstract API 
specification) ensures that application source code is portable across different 
implementations, and can be precisely defined for current and future 
programming languages. A standard wire-protocol ensures that applications 
written to different vendor implementations of the standard API will inter-operate 
because they all use the same low-level hand-shaking protocol on the network. 
 
A distributed application is composed of “participants”, each potentially running in 
a separate address space, possibly on different computers. A participant may 
simultaneously publish and subscribe to typed data-flows identified by names 
called “topics". The DDS APIs allows typed “data readers” and “data writers” to 
present type-safe programming interfaces to the application. A typical DDS 
application architecture can be represented as software “data-bus" shown in 
Figure 6. 
 



Real-Time Innovations, Inc.  Copyright © 2007  29 

Middleware Infrastructure “Data Bus”

ConsumerProducer

ProducerProducer Consumer

Consumer

Consumer Consumer

Data-Centric Publish-Subscribe Middleware

Producers and Consumers are Decoupled

Declare Intent Register Interest

Deliver

 

Figure 6 DDS data-centric publish-subscribe middleware decouples data producers from 
data consumers in location, space, platform, and multiplicity.  

 
A producer declares the intent to produce data on a topic by creating a data 
writer for it; a consumer registers interest in a topic by creating a data reader for 
it. The middleware infrastructure manages these declarations, and automatically 
establishes direct (peer-to-peer) data-flows between data writers and data 
readers matching a topic. Thus, an application programmer can essentially 
ignore the complexity of the data flow; each node gets the data it needs from the 
bus, or puts the data it updates on the bus. The bus logically represents a 
“shared data space” that any participant can read and write via data readers and 
data writers.  
 
As a result, the communications are decoupled in space (participants can be 
anywhere), time (delivery may be immediately after publication or later), flow 
(delivery QoS can be precisely controlled), platform (participants can be on 



Real-Time Innovations, Inc.  Copyright © 2007  30 

different implementation platforms, and written in different languages), and 
multiplicity (there can be multiple data writers and data readers of a topic). 
 
DDS has several unique aspects that make it especially suited for loosely-
coupled systems and DOP. These include: 
 

• The ability to define a type system for topics on the data bus. A type 
formally specifies the data-model or schema that describes the data on a 
topic. This directly supports DOP (principle 1).  

 

• The ability to formally associate QoS with each data writer and data 
reader. DDS formally defines semantics of QoS parameters along with a 
partial-ordering on their values. A producer can “offer” a certain QoS, 
while a consumer can “request” a certain QoS. The middleware 
infrastructure establishes direct data flow if-and-only-if the requested QoS 
is “compatible” (as defined by the partial ordering) with what is offered. 
This gives us a mechanism to formally address the impedance mismatch 
challenge (see Section “Impedance Mismatch”) and directly supports DOP 
(principle 1). 

 

• Mechanisms for the application to detect and specify what should happen 
when QoS assertions are violated. This is consistent with DOP (principle 
3). 

 

• Mechanism to “discover”  when data readers and data writers for a topic 
are created or deleted, when a direct data flow is established, and when a 
direct data flow could not be established due to incompatible QoS. This 
gives us a framework to address the challenge of dynamic real-time 
adaptation (see Section “Dynamic Real-Time Adaptation”). 

 

• No assumptions about the reliability of the network transport. The 
applications can deal with reliability, and connection management using 
the relevant QoS policies.  

 

• Data is physically transmitted on the network if-and-only-if there are data 
readers requesting a QoS compatible with a data writer’s offered QoS. 
Thus, DDS uses the network conservatively. In general, the DDS APIs 
and wire-protocol strives to deliver the highest possible performance 
(Section “Scalability and Performance”) for the available resources and 
requested capabilities.  

 



Real-Time Innovations, Inc.  Copyright © 2007  31 

• To increase scalability, topics may contain multiple independent data 
channels identified by "keys". This allows a consumer to subscribe to 
many, possibly thousands, of similar data channels with a single 
subscription. When the data arrives, the middleware infrastructure can sort 
it by the key and manage it on behalf of the application logic, to enable 
efficient processing. This is one way in which DDS addresses the 
challenge of scalability and performance (see Section “Scalability and 
Performance”). 

 
Keys are also a mechanism to specify a relational data model to the middleware 
infrastructure; the middleware can manage the relational data model on behalf of 
the application. This is consistent with DOP (principle 3).  
 
In typical DDS usage, the data-model or FMRFD of types is expressed in a data 
description language such as IDL [OMG 2002]. A middleware implementation 
infrastructure specific code-generator (Figure 7) is used to generate the type 
representation in the target programming language and type specific facades for 
data readers and data writers, for use by the application in the target 
programming language. The generated code completely encapsulates the data-
handling, while isolating the application logic as required by DOP (principles 3 & 
4). QoS can be formally associated with the data readers and data writers by the 
application logic, in a manner consistent with DOP (principle 1). 



Real-Time Innovations, Inc.  Copyright © 2007  32 

Code

Generator

Data Types &

Handling
Data

Model

Compile & Link

Application
Source Code

DDS 
Runtime

Library

Application
Executable

 

Figure 7 Typical DDS application workflow. 

 
Unlike other publish-subscribe middleware infrastructure, DDS has a very strong 
emphasis on data modeling (as noted above). Besides supporting basic 
messaging and events, there is support for formally defined types, relational data 
modeling; data lifecycle management; content based filtering; and data 
transformations directly in the middleware infrastructure. For these reasons, DDS 
is often referred to as a “data-centric” publish-subscribe middleware.  
 
The best DDS implementations [RTI DDS] do not impose any centralized 
configuration requirements on the applications. In particular, the applications 
don’t require information about the other participating applications, including their 
existence or location. A DDS implementation can automatically handle all 
aspects of data exchange, without requiring any intervention at the application 
level. 
 



Real-Time Innovations, Inc.  Copyright © 2007  33 

The data-centric nature of DDS, and the fact that there is no intrinsic point of 
coupling between DDS applications (for example a shared resource) is the 
reason why DDS is especially well suited for implementing a very broad class of 
applications, using DOP principles.  
 

4 Application Architecture: Applying 
the Data-Oriented Paradigm 

“Application” refers to the domain specific portion of a system, to realize some 
purpose. The application-layer sits above the middleware-layer, and contains 
logic specific to the purpose of the system. “Architecture” refers to the 
organization of a system’s components, their inter-connections, properties, and 
relationships with one another. 
Thus, “application architecture” refers to the organization of application-logic 
components and their relationships, built on top of a middleware infrastructure. It 
encompasses the overall interaction patterns, common data-models, QoS, and 
application specific semantics.   
 
In this section, we examine the implications of the DOP paradigm and the 
supporting middleware infrastructure on the application architecture, and relate 
them to currently popular application architectural styles. We describe some 
emerging categories of “of-the-shelf” application components to address the 
emerging needs of SoS, especially edge to enterprise integration (see Section “A 
Real-Time System-of-Systems Scenario”).  
 
Finally, we concretely illustrate the application architecture for a realistic edge to 
enterprise integration scenario that was implemented using the DOP principles in 
a relatively short amount of time, using commercially available “off-the-shelf” 
middleware infrastructure and application components. 

4.1 Application Architecture Styles 

An application architecture style defines a pattern for organizing and developing 
application components to achieve certain objectives. The successful use of an 
architectural style anchors on the underlying design paradigm used for 
component development, and supported by the middleware infrastructure. An 
architectural style may be realized in software using a tightly-coupled design 
approach or a loosely-coupled design approach. 



Real-Time Innovations, Inc.  Copyright © 2007  34 

 
The DOP paradigm and the DDS middleware infrastructure are extremely 
versatile in their ability to support multiple architectural styles, and realize 
loosely-coupled software implementations. The generic application architecture 
addressing enabled by DOP and DDS can be thought of as “wiring diagram”, 
shown in Figure 8.  A topic represents a “virtual wire” managed by the DDS 
middleware infrastructure. A topic may be viewed as organized into “records” or 
“data-objects” that are managed by the middleware. A component uses a data 
reader to access a data-object on a topic, and a data writer to update a data-
object on a topic.  

Component

ComponentComponent

Component

Data Bus (DDS Middleware Infrastructure)

Component

Component

Topic

Topic

 

Figure 8 Data-oriented integration architecture, for developing loosely coupled 
applications. Components can be added and removed independently, without any 
knowledge of other components. Data readers and data writers of topics (data-flows) can 
be created, used, and deleted independently by a component, without requiring any 
centralized configuration or changes. Direct data  paths are automatically established 
between data readers and data writers of a topic, and managed by the middleware 
infrastructure. 

 



Real-Time Innovations, Inc.  Copyright © 2007  35 

This generic architecture meets the needs of a wide range of applications, which 
may be characterized as follows. 
 

1. Components are loosely-coupled; 
2. Interactions between components are data-centric and not object-centric; 

often these can be viewed as “dataflows” that may carry information 
about identifiable data-objects;  

3. Data is critical because of large volumes, or predictable delivery 
requirements, or the dynamic nature of the entities;  

4. Computation is time sensitive and may be critically dependent on the 
predictable delivery of data; 

5. Storage is local.  
 
The predominant styles found in the Edge and Enterprise systems, and SoS 
including data flow architecture, event driven architecture, service-oriented 
architecture can be realized as specializations of this generic architecture. It is 
important to note that the above architectural styles can also be realized as 
tightly-coupled software---in fact that is typically the case in current practice. Our 
aim here is to illustrate how these can be realized as loosely-coupled software, 
utilizing the DOP design paradigm and the DDS middleware infrastructure. 
 

4.1.1 Data Flow Architecture (DFA) 

The data flow architectural (DFA) style is most common in sensor based edge 
systems and control systems. Sensors are data producer components that feed 
data into processing components. Controller components consume the data 
inputs, and produce data outputs for actuators or other components. Thus, the 
components naturally form an acyclic directed data flow graph. This architectural 
style can be viewed as a special case of the generic data-oriented integration 
architecture, as shown in Figure 9. 



Real-Time Innovations, Inc.  Copyright © 2007  36 

Controller

Component

Data Bus (DDS Middleware Infrastructure)

Sensor

Component

Actuator

Component

Topic

Topic

Data Flow Architecture

 

Figure 9 Data flow architectural style can be seen as a specialization of the generic data-
oriented application architecture enabled by using a DOP and DDS. 

 
The QoS are chosen to achieve the desired flow characteristics. For the sensor 
data topics, QoS are chosen to retain only the latest most up-to-date values. 
 
In this architecture, components operate periodically and concurrently. A 
controller component may have an operational loop as follows. 

 

• Latch all the inputs 

• Process data 

• Write output 
 

4.1.2 Event Driven Architecture (EDA) 



Real-Time Innovations, Inc.  Copyright © 2007  37 

The event driven architectural (EDA) style is most common in enterprise 
systems. An “event” is defined as something “notable”, for example, a significant 
change in state that happens inside or outside the system. An “event generation 
component” produces events. An “event processing component” consumes 
events. An event can be a trigger for initiating downstream action(s). It processes 
the events against various rules and initiates actions. In addition, it may post new 
events for other “downstream activity” components. This architectural style can 
be viewed as a special case of the generic data-oriented integration architecture, 
as shown in Figure 10.  
 

Event

Processing

Component

Data Bus (DDS Middleware Infrastructure)

Event

Generator
Component

Downstream

Activity

Component

Topic

Topic

Event Driven Architecture

 

Figure 10 Event driven architectural style can be seen as a specialization of the generic 
data-oriented application architecture enabled by using a DOP and DDS. 

 
The QoS are chosen to achieve the desired flow characteristics. For event data 
topics, QoS are chosen to retain all the last N events, in the order they 
happened. 
 



Real-Time Innovations, Inc.  Copyright © 2007  38 

Events are commonly used to drive the real-time flow of work, and take the lag 
time and cost out of a business operations. Generally, an event processing 
component is a rule-based engine. In a simple event processing engine, each 
event occurrence is processed independently. In a complex event processing 
engine (CEP), new event occurrences are processed in context of prior and 
future events.  
 

4.1.3 Client Server Architecture (CSA) 



Real-Time Innovations, Inc.  Copyright © 2007  39 

The client-server architectural (CSA) style is most common in enterprise 
systems, and is also applied for integrating edge and enterprise systems. A 
“service” a discretely scoped business or technical functionality, and is offered by 
a “service provider” or server to “service requestors” or clients. Operationally, a 
service is defined by messages exchanged between clients and servers.  
This architectural style can be viewed as a special case of the generic data-
oriented integration architecture, as shown in Figure 11. 

ClientClient

Server

Data Bus (DDS Middleware Infrastructure)
Topic

Topic

Client Server Architecture

Request Response

Server
(Redundant)

Request Response

Redundant Server “Cloud”

 

Figure 11 Client-Server architectural style can be seen as a specialization of the generic 
data-oriented application architecture enabled by using a DOP and DDS. 

 
The request and responses are correlated with a client specific 
“correlation_id” field in the data model. The QoS and are chosen to achieve 

the desired flow characteristics. For request and reply topics, QoS are chosen to 
deliver all the data samples in the order they happened. Content filtering is used 
on the response topic to receive only the responses intended for the requestor.  
 



Real-Time Innovations, Inc.  Copyright © 2007  40 

It is interesting and ironic to note that despite the hype, the vast majority of the 
implementations of SOA relies on tightly-coupled technologies and design 
principles, resulting in tightly-coupled SOA software. This runs counter to the 
promise of SOA, and can prove detrimental to its success in the long run. We 
have outlined an approach that results in “loosely-coupled SOA” software, and 
can indeed unleash the full potential of SOA. 
 

4.2 Data-Oriented Integration Architecture 

Large scale distributed SoS are loosely often a mish-mash of systems with 
different architectural styles, created by independent parties, often using different 
middleware technologies, with misaligned interfaces. A naïve approach to 
integrating such systems results in N*N point-to-point custom integrations, for 
each pair of systems. This approach does not scale, yet, often it is the end 
outcome in practice.  
 
A better approach is to use the DOP paradigm, and explicitly formalize the data 
and meta-data produced and consumed by a system. The DDS middleware 
infrastructure can be used as the integration “glue” to connect the disparate 
systems, as shown in Figure 8. This generic architecture can accommodate a 
wide variety of architectural styles, and reduces the integration problem from an 
O(N*N) problem to an O(N) problem. 
 
Can we do better? We observe that a larger number of application components 
are built using “off-the-shelf” application platform components. These include 
databases for storing and retrieving data, event processing engines, application 
servers providing web services, enterprise service bus for transformation and 
routing of data, workflow engines using business process execution language, 
and so on. Thus, an “out-of-the-box” integration of DDS and these popular 
application platform technologies can indeed reduce the integration problem from 
O(N) to that of exposing the data and meta-data of just the legacy “one-of” 
application components, and integrating them into the DDS middleware 
infrastructure bus. New integration projects can leverage the widely available and 
tested integrations for the popular application platforms. This concept is 
illustrated in Figure 12. 



Real-Time Innovations, Inc.  Copyright © 2007  41 

Data Bus (DDS Middleware Infrastructure)
Topic

Topic

Event Processing 
Engine

Enterprise 

Service Bus (ESB)

Database

Workflow 
Engine (BPEL)

Web Service

Legacy 
Bridge

 

Figure 12 “Out-of-the-box” integrations for popular application platform components can 
speed up the integration task, when used with the generic data-oriented integration 
architecture enabled by DOP and DDS.  

Leading DDS middleware infrastructure vendors have already begun providing 
products that integrate popular application platform technologies into the DDS 
software bus [RTI]. 
 

4.3 Real-Time System-of-Systems Scenario Redux 

In this section we illustrate the concepts discussed in the previous sections with 
the help of a real-time package tracking scenario. We illustrate how the data-
oriented integration architecture (Figure 14) based on the DOP design paradigm 
and DDS middleware infrastructure can be used to rapidly develop a working 
demonstration in a very short time frame. The rapid implementation was a direct 
result of the ready availability of a DDS bridge for relational databases, and 
supporting tools. 



Real-Time Innovations, Inc.  Copyright © 2007  42 

4.3.1 Real-Time Package Tracking Scenario 

Consider a real-time package tracking scenario, shown in Figure 13. Packages 
shipped by various means need to be tracked, and a unified view presented in a 
web browser based unified “dashboard” for in-time executive level decision-
making.  
 

 

Figure 13 A system-of-systems for real-time package tracking. Status of the packages 
shipped by various means is displayed in an executive “dashboard” for real-time decision 
making. Each means of shipment is a separate system, independent of the executive 
dashboard system. 

 
There are five independent systems involved: each mode of shipment is an 
independent system, and the executive “dashboard” is yet another system that 
interacts with all these systems. 
 



Real-Time Innovations, Inc.  Copyright © 2007  43 

Each shipping system uses a different method for keeping track of its operations, 
and makes its package status data available in its own format, at different 
intervals, by different means. For example, the “railway” shipping system logs the 
status of its packages into a persistent storage database, whenever a train 
makes a stop. The roadways shipping system produces a comma separated 
value file containing the current package status, and sends it over email every 4 
hours. The trans-continental shipping system updates an XML file accessible 
over FTP, with the package status whenever it crosses a border or changes 
carriers. The special courier shipping system is decentralized: each courier uses 
RFID sensors to publish its local snapshot of packages on a periodic basis, at 
least once every hour. The courier updates are published over a DDS 
middleware infrastructure bus.  
 
The special courier shipping system might be classified as real-time “edge” 
system; the rest might be considered “enterprise” systems. 
 

4.3.2 Data-Oriented Edge to Enterprise Integration Architecture 

The data-oriented edge to enterprise integration architecture is shown in Figure 
14. 



Real-Time Innovations, Inc.  Copyright © 2007  44 

 

Figure 14 Data-oriented edge to enterprise integration architecture for the real-time 
package tracking SoS.  

 
The architecture includes several application components, summarized below. 

• The decentralized special courier shipping device, capable of publishing 
package status over DDS. These may provide a user-interface for the 
courier operator to augment additional information, not sensed by RFID 
tags. 

• The enterprise dashboard system which includes 
o A database for caching the “edge” data from the distributed special 

courier devices. A readily available DDS-SQL bridge is used to 
automatically store the data on the DDS topics.  

o A workflow engine using business-process execution language 
(BPEL, Figure 15) to orchestrate among the different systems, and 
fuse the incoming data in different formats into a common fused 
data schema. 



Real-Time Innovations, Inc.  Copyright © 2007  45 

o The BPEL workflow engine has adapters for accessing data in a 
Database, an XML files, a CSV file, and eMail, produced by the 
railway, trans-continental, and roadway shipping systems.  In our 
implementation, these adapters were used to access the different 
data sources from the BPEL engine. A downside of this approach is 
that it introduces a very tight coupling between the BPEL processes 
and the systems, and the data is not easily accessible from other 
applications. 

� Ideally, to be completely loosely-coupled, we would publish 
the data produced by the railway, trans-continental, and 
roadway shipping systems on the DDS software bus. 
However this was not practical in the available short time. 
Had there been, off-the-shelf bridges available for these data 
formats, the situation might be different. We opted to accept 
the tight-coupling for our demonstration purposes. 

o The BPEL workflow engine has concurrently running asynchronous 
processes (for each shipping system) to load the incoming data; 
transform it into a common fused data schema; and save it into a 
local database table. 

o The BPEL workflow engine has a synchronous process waiting to 
serve up requests for the fused data.  

• A web-browser to access the executive “dashboard” which offers unified 
view of package status across all modes of shipment, and supports 
querying. A secure web-services gateway is used to guard against un-
authorized access to the data. 

 



Real-Time Innovations, Inc.  Copyright © 2007  46 

 

Figure 15 Workflow engine uses Business Process Execution Language (BPEL) process to 
orchestrate services and manipulate data. 

 
The data-path from the special courier “edge” system in the field, to the 
“enterprise” executive dashboard in the boardroom, is shown in Figure 16. 



Real-Time Innovations, Inc.  Copyright © 2007  47 

 

Figure 16 End to end data paths from the “edge” data collection system in the field to the 
“enterprise” executive dashboard in the boardroom. The sequence A.1…A.4 shows the 
data path from the edge system to the enterprise system. The sequence B1..B.5 shows the 
secure access of the integrated view maintained by the enterprise system from the 
executive dashboard. 

 
The data from the special courier’s device is published on a DDS topic (A.1) and 
received by a DDS-SQL bridge. The DDS-SQL Bridge logs it into a table 
associated with the DDS topic (A.2). Note that the DDS-SQL bridge 
(commercially available) is capable of automatically creating the table schema 
from the meta-data associated with a DDS topic. The DDS-SQL bridge is also 
the impedance matching device for filtering and sub-sampling the real-time data 
being produced at much higher rates than the capacity of the BPEL workflow 
engine. The impedance tuning is achieved by adjusting the DDS QoS for the 
DDS consumers associated with the DDS-SQL bridge. An in-memory database 
is used with the DDS-SQL bridge for real-time performance. 
 



Real-Time Innovations, Inc.  Copyright © 2007  48 

An asynchronous BPEL process loads the changes in the data table (A.3) using 
a BPEL-Database Adapter (commercially available). It transforms the data into a 
common “fused” data format that unifies the data schema across all the different 
shipping systems (Figure 17). The BPEL process stores the transformed data 
into a different table (A.4), which is a cache of the fused data. Similar BPEL 
processes are concurrently active for the other shipping systems, and updating 
the fused data cache. 

 

Figure 17 Data in one schema is mapped into a common fused data schema. Missing fields 
in the source format are given default values. Arbitrary transformations can be inserted in 
the mapping process. 

 
A web browser is used to access the fused data. A request to access the fused 
data (B.1) is first intercepted by a web-services gateway (commercially 
available), that authenticates the request, An authenticated request is forwarded 
(B.2) to BPEL process waiting to serve up such requests. It looks at the request 
parameters, formulates an appropriate query and retrieves (B.3) the request 



Real-Time Innovations, Inc.  Copyright © 2007  49 

fused data from the database table. The response is sent back (B.4 and B.5) to 
the web-browser. 
 
In this architecture, we see a confluence of many different design paradigms, 
middleware infrastructure, and architectural styles. Albeit simple, this example 
captures the flavor of the real-life integration issues we face today. In reality, 
practical constraints and economic factors will dictate where to put (and not put) 
points of tight coupling, as we did in this exercise. 
 
It is important to note that DOP is a central tenet of this architecture. The meta-
data (the FMRFD) is specified only once, in an IDL file, as shown in Figure 18. All 
the other technology specific data schemas were “derived” from this FMRFD in 
IDL.  
 

DDS

Code
Generator

Data Types &
Handling

Data

Model
(IDL)

Compile 

& 
Link

Application
Source Code

DDS 
Runtime

Library

Application
Executable

BPEL
Developer

IDE

SQL 
Table

Schema

DDS-SQL

Bridge

XML

Schema

runtime

 

Figure 18 The meta-data is defined once by the developer in a FMRFD. The supporting 
tool-chain converts it into various representations for use with different technologies. 

 



Real-Time Innovations, Inc.  Copyright © 2007  50 

Thus, for the edge courier shipping devices, the meta-data was an IDL file 
describing the structure of the package status data. The DDS code generator 
produced the language specific types used by the application programs in the 
courier shipping system’s edge devices. The DDS-SQL bridge automatically 
created the table schema for storing the contents of a topic, by looking at the 
runtime type-code information (meta-data) associated with the DDS topic. The 
BPEL Developer Integrated Development Environment (IDE) was capable of 
importing a database table schema and converting it into an XMLSchema, which 
was needed by BPEL processes to transform and manipulate the data. 
 
Note that while DOP is critical to this integration architecture, the ready 
availability of a supporting tool-chain is what made this practical, and have a 
quick turnaround. 
 

5 Conclusions 

 We looked at the key challenges in building the next generation of distributed 
systems. These will be loosely coupled systems that support incremental and 
independent development, and are tolerant of interface changes; can 
systematically deal with impedance mismatches; and work well in dynamically 
changing real-time situations; and can scale in complexity while delivering the 
required performance. We established that the existing design techniques that 
are effective for tightly-coupled systems do not work well in these scenarios. We 
established that a new design paradigm is needed. 
 
We introduced the “data-oriented” design paradigm to address the design of 
loosely-coupled systems. We presented the fundamental principles with an 
example, and argued it as the basis of popular concepts of REST and SOA. 
 
We examined the role of the middleware infrastructure when using data-oriented 
design, and argued that the data distribution service (DDS) is the best suited 
among the currently available standards, for data-oriented design.  
 
We described a data-oriented application architecture based on data-oriented 
design and DDS middleware infrastructure. We shows that popular architectural 
styles, including data flow architecture, event driven architecture, service oriented 
architecture can be regarded as special cases, by the appropriate assignment of 
roles and choice of QoS.  
 



Real-Time Innovations, Inc.  Copyright © 2007  51 

We argued that data-oriented application architecture can cut down the 
complexity of the integration problem from O(N*N) to O(N), while preserving 
loose-coupling and scalability. 
 
We illustrated the data-oriented application architecture by describing a working 
implementation of a real-time package tracking system-of-systems, built using 
off-the-shelf application platform components. We concluded that having readily 
available middleware infrastructure bridges for popular application platform 
components can greatly boost productivity and the pace of integration. 
 

6 References 

[HLA] DMSO. High-Level Architecture. US DoD Defense Modeling and 
Simulation Office. https://www.dmso.mil/public/transition/hla/ 
 
[JMS] J2EE Java Message Service (JMS), http://java.sun.com/products/jms/ 
 
[Joshi 2006a] Rajive Joshi. Building a effective real-time distributed publish-
subscribe framework Part 1 – 3. Embedded.com. Aug 2006. 
http://www.embedded.com/showArticle.jhtml?articleID=191800680 
 
[Joshi 2006b] Rajive Joshi and Gerardo Pardo-Castellote. OMG’s Data 
Distribution Service Standard: An overview for real-time systems. Dr. Dobbs’s 
Portal. Nov 2006. http://www.ddj.com/dept/architect/194900002 
 
[Joshi 2003] Rajive Joshi and Gerardo Pardo-Castellote. A Comparison and 
Mapping of Data Distribution Service and High-Level Architecture. Simulation 
Interoperability Workshop. Fall 2003. 
http://www.sisostds.org/index.php?tg=fileman&idx=get&id=2&gr=Y&path=Simulat
ion+Interoperability+Workshops%2F2003+Fall+SIW%2F2003+Fall+SIW+Papers
+and+Presentations&file=03F-SIW-068.pdf 
 
[Kaliski 1993] Burton S. Kaliski Jr. A Layman's Guide to a Subset of ASN.1, BER, 
and DER. An RSA Laboratories Technical Note. Revised November 1, 1993  
http://www.columbia.edu/~ariel/ssleay/layman.html 
 
[Kuznetsov] Eugene Kuznetsov. DOP: Data Oriented Programming.  DataPower 
Technology, Inc. kuznetso@alum.mit.edu, eugene@datapower.com. 
 



Real-Time Innovations, Inc.  Copyright © 2007  52 

[Lamport 1978] Leslie Lamport. Time, Clocks, and the Ordering of Events in a 
Distributed System. Communications of the ACM 21(7). July 1978. 
http://research.microsoft.com/users/lamport/pubs/time-clocks.pdf 
 
[OMG 2002] OMG. Interface Description Language (IDL). 
http://www.omg.org/cgi-bin/doc?formal/02-06-39 
 
[OMG 2004] OMG. Common Object Request Broker Architecture. 
http://www.omg.org/docs/formal/04-03-12.pdf 
 
[OMG 2006] OMG. Data Distribution Service for Real-time Systems, v1.2, 
http://www.omg.org/cgi-bin/doc?ptc/2006-04-09  
 
[Pike 1989] Rob Pike. Notes on Programming in C. February 1989. 
http://www.lysator.liu.se/c/pikestyle.html 
 
[Prescod] Paul Prescod. Roots of the REST/SOAP Debate. ConstantRevolution 
Consulting. http://www.prescod.net/rest/rest_vs_soap_overview/#section_1 
 
[Richards 2006] Mark Richards. The Role of the Enterprise Service Bus. Oct 
2006. http://www.infoq.com/presentations/Enterprise-Service-Bus 
 
[RTI DDS] RTI Data Distribution Service, 
http://www.rti.com/products/data_distribution/RTIDDS.html 
 
[RTI] Real-Time Innovations, Inc. http://www.rti.com 
 
[Skonnard 2005] Aaron Skonnard. Contract-First Service Development. MSDN 
Magazine. May 2005. 
http://msdn.microsoft.com/msdnmag/issues/05/05/ServiceStation/ 
 
[Waldo 1994] Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall. A Note on 
Distrbuted Computing. Sun Microsystems Labs Technical Report TR-94-29s. 
Nov 1994. http://research.sun.com/techrep/1994/abstract-29.html 
 
[Van Den Hoogen 2004] Ingrid Van Den Hoogen. Deutsch's Fallacies, 10 Years 
After. Java Developer’s Journal. Jan 2004. http://java.sys-
con.com/read/38665.htm?CFID=716161&CFTOKEN=D3D89802-A102-8FD9-
08669AC052B6E771 
 



Real-Time Innovations, Inc.  Copyright © 2007  53 

[W3C WSDL] W3C. Web Services Description Language (WSDL) Version 2.0. 
http://www.w3.org/TR/wsdl20-primer/ 
 
[W3C XML] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition). 
http://www.w3.org/TR/REC-xml/ 
 
[W3C XMLInfoSet] W3C. XML Information Set (Second Edition). 
http://www.w3.org/TR/xml-infoset/ 
  
[W3C XMLSchema] W3C. XML Schema Part 0: Primer Second Edition. 
http://www.w3.org/TR/xmlschema-0/ 
 
[Wikipedia EDA] Wikipedia. Event Driven Architecture. 
http://en.wikipedia.org/wiki/Event_Driven_Architecture 
 
[Wikipedia SOA] Wikipedia. Service Oriented Architecture.  
http://en.wikipedia.org/wiki/Service-oriented_architecture 
 

7 Acronyms 

 
Acronym Description 
API Application Programming Interface 
CORBA Common Object Request Broker Architecture 
DDS Data Distribution Service 
DCPS Data Centric Publish Subscribe 
DLRL Data Local Reconstruction Layer 
EJB Enterprise Java Beans 
HLA High Level Architecture 
JDBC Java Database Connectivity 

JMS Java Message Service 
JNDI Java Naming and Directory Service 
Java EE Java Enterprise Edition (previously known as J2EE) 
JTA Java Transaction API 
MOM Message Oriented Middleware 
OMG Object Management Group 
P-S Publish Subscribe 

PtP Point-to-Point 



Real-Time Innovations, Inc.  Copyright © 2007  54 

Pub/Sub Publish Subscribe 
RTI Real-Time Innovations 
RTOS Real-Time Operating System 
SOA Service Oriented Architecture 

TCP Transmission Control Protocol 
UDP User Datagram Protocol 
UML Unified Modeling Language 
 


