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1. INTRODUCTION TO THE MAZE 

This paper introduces a fascinating maze based solely on the distribution of the prime num-

bers. Although it was originally designed as a simple puzzle, the maze revealed some rather 

startling properties of the primes. The rules are so simple and natural that traversing the maze 

seems more like exploring a natural cave formation than a maze of human design. 

We will describe this maze using the language of graph theory. In particular, we first define 

an undirected graph G0 with the set of all prime numbers as the vertex set. There will be an edge 

connecting two prime numbers iff their binary representations have a Hamming distance of 1. 

That is, two primes are connected iff their binary, representations differ by exactly one digit. 

The natural starting point is the smallest prime, 2 = 102. Following the graph GQ amounts to 

changing one binary digit at a time to form new prime numbers. The following sequence demon-

strates how we can get to larger and larger prime numbers by following the edges of G0. 

10, 
112 

1112 
101a 

1101a 
111012 
1111012 
1101012 
1001012 

11001012 

= 2 
= 3 
= 7 
= 5 
= 13 

= 29 

= 61 
= 53 
= 37 
= 101 

Actually, we can get to large primes much faster, since the Hamming distance between 3 and 

4099 = 10000000000112 is just 1. However, the above example illustrates that we can get to 101 

even if we add the restriction that the numbers increase at most one binary digit at a time. Even 

with this restriction, it is possible to reach 4099, but it requires a total of 46 steps. 

We can include this restriction by considering a directed graph, Gl9 whose vertices are again 

the prime numbers. There is an edge from/? to q iff the Hamming distance is 1, and 3p>q. Note 

that this always permits changing a 1 bit to a 0 bit, since q < p implies 3p>q. However, if a 0 

bit is changed to a 1 bit, then the condition 3p>q insures that q-p (which will be a power of 2) 

will be no more than twice the original number/?. 

The directed graph Gx is easier to analyze than the graph G0, since at any given vertex only a 

finite number of edges is possible. We define the valence of a prime number p to be the number 

of edges leaving the vertex p on Gx. It is not hard to have a computer map the first 70 steps 

(from 2) to determine which primes are attainable. A very small portion of the map is shown in 

Figure 1. 

By a lucky coincidence, the distribution of the prime numbers is exactly what is needed to 

keep this graph interesting. As N increases, its number of bits grows as log2 N, so to compute 
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the valence of N, we will need to test [log2 NJ +1 numbers for primality. However, by the prime 

number theorem [4], only about 1/lniV of these numbers will be prime. So, heuristically, the 

expected value of the valence will remain roughly constant throughout the entire graph. 

Figure 1 shows all of the primes that can be reached from the prime 2 without having to go to 

primes larger than 1024. However, this does not show all of the primes less than 1024 that can be 

reached from 2. The number 353 can be reached, but not without first attaining the prime 353 + 

2
27

 + 2
392

+2
441

. 
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TD C[27) 
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FIGURE 1. The First 9 Levels of the Directed Graph G2 

The example 353 shows how the directed graph Gx can make back-tracking very difficult. 

Although only a finite number of primes can be reached from a given prime, there may in fact be 

an infinite number of primes from which one could get to a given prime. Some of the numbers 

involved will be very large, so one must be content with knowing that they are "probably prime" 

via the Miller-Rabin strong pseudoprime test. Since the probability of a composite number pass-

ing this test is about 4"
100

 [7], we can be fairly confident that the pseudoprimes needed to get to 

353 are indeed prime. 

2. THE PARTITIONING OF THE PRIMES 

The prime number 11 is ominously missing in Figure 1. This begs the question as to whether 

one can reach the prime 11 via a much larger prime, as in the case of 353. Obviously, 11 is in the 
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same connected component as 2 in G0, since there is an edge between 11 and 3. But can we get 

from 2 to 11 inGi? 

For each prime p, let us define Gp to be the subgraph of Gx consisting of all vertices and 

edges that can be reached starting from the prime/?. Note that there are many instances when Gp 

is a finite graph. For example, G73 consists of just two vertices, 73 and 89, and the bidirectional 

edge connecting them. The question is whether 11 is a vertex of G2. A simple parity argument 

shows that it is not. 

Definition: Let p > 3 be a prime number. We say that/? is of correct parity if either p = 2 mod 

3 and/? has an even number of 1 bits in its binary representation, or p = 1 mod 3 and/? has an odd 

number of 1 bits. We say that p > 3 is ofincorrect parity if/? is not of correct parity. We do not 

define parity for the primes 2 and 3. Note that 5 and 7 are of correct parity, but 11 is of incorrect 

parity. 

Proposition 1: If an edge in G0 connects two primes /? > 3 and q > 3, then/? and q have the same 

parity. In particular, all of the vertices of G2, besides 2 and 3, are of the correct parity. 

Proof: If an edge connects /? and q, their binary representation differs by exactly one digit. 

Thus, one of the primes will have an even number of 1 bits, while the other will have an odd 

number. 

Also, since/? and q differ by a power of 2, they cannot be congruent mod 3. Neither can be 

congruent to 0 mod 3, for both/? and q are primes > 3. Thus, one of the primes is congruent to 1 

mod 3, while the other is congruent to 2 mod 3. By the way that we defined the parity, if either/? 

or q is of correct parity, then the other must also be of correct parity. 

Finally, we notice that in the graph of G2, 2 only can go to 3, which can only go to 7. Thus, 

any other vertex in G2 must be reached from 7 without going through 2 or 3. Since 7 has the 

correct parity, any prime > 3 in G2 must also be of the correct parity. D 

With this proposition and the fact that 11 has incorrect parity, one sees that 11 is not a vertex 

of G2. In fact, if we delete the vertex 3 from the graph of G0, together with all edges connecting 

to 3, then the resulting graph consists of 2 and at least two large disconnected subgraphs. It is 

highly probable that these subgraphs are both infinite. The connected components of G0—{3} 

form a partition of the prime numbers. By convention, we will include 2 and 3 in the partition that 

contains the vertex 7. 

The parity argument shows that there must be at least two partitions. We will call the parti-

tion containing the first 4 primes the a-partition, which would of course contain all vertices of 

G2. A second partition, the ft-partition, contains the prime 11. All primes in the ^-partition 

would have incorrect parity. 

3. ISOLATED PRIMES 

In asking how many partitions there are, one must ask whether there is any prime /? totally 

isolated from any other primes in G0. In order for this to happen, p + 2" must always be com-

posite whenever 2n > /?. This is closely related to two other problems: the Polignac-Erdos prob-

lem and the SierpiAski problem. 

In 1849, Polignac conjectured that every odd integer > 1 could be expressed in the form 

2n
 + /? (see [10]). In 1950, Paul Erdos [3] disproved this conjecture, and in fact proved that there 
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Is an arithmetic progression of odd numbers, no term of which is of the form 2n + p. In fact, no 

term in this sequence is of the form 2n ±p, where/? is a prime. If we considered negative terms in 

this arithmetic progression, and found a term -k such that k is prime, then k would be a candidate 

for an isolated prime. 

In 1960, SierpiAski [9] asked: for what numbers k is 2m
 • * +1 composite for all m > 1. Such 

numbers are called Sierpiiiski numbers. The smallest SierpiAski number is believed to be 78557, 

but there are several smaller candidates for which no prime of the form 2m
 • k +1 is known [!]. 

SierpiAski showed that, ifk belongs to one of several arithmetic progressions, then any term 

of the sequence k + l, 2k +1, 4£ + l, ..., 2m-k + l is divisible by one of a set of 6 or 7 fixed 

primes. The set of primes is called the covering set for the Sierpiiiski number. The number 

78557 has the covering set {3, 5, 7, 13, 19, 37, 73}, while the next known Sierpiiiski number, 

271129, uses {3, 5, 7, 13, 17, 241} as its covering set [5]. 

The relationship between the Sierpiiiski numbers and the Polignac-Erdos numbers is given in 

[10]. Since the Polignac-Erdos numbers are in turn related to the isolated primes, there is a direct 

connection between the Sierpiiiski numbers and the isolated primes. The following proposition is 

taken from [10]. 

Proposition 2: Let k be a Sierpiiiski number with a covering set S. Then, for all w, k + 2n
 will be 

divisible by some prime in S. 

Proof: Let Nbt the product of the odd primes in the set S. If we let L = $(N), then N will 

divide the Mersenne number 2L -1 by Euler's theorem. We then have that, for all m, 

gcd(2m>k + l,N)>l. 

Multiplying the first part by 2L"m
 gives 

gcd(2
L
^ + 2

L
~

w
,#)>l . 

Since 2L
 s= 1 mod N9 we can replace 2L

 • k with k and write n for L - m to give us 

gc&{k + 2n,N)>\. 

Hence, for all n,k + 2n
 is divisible by some prime in S. Note that this process is reversible, so any 

covering set which shows that k + 2n
 is always composite will show that k is a Sierpiiiski num-

ber. D 

This proposition makes it clear how to search for isolated prime numbers. We need to find a 

Sierpiiiski number that is prime, and for which changing any 1 to a zero in its binary representa-

tion results in a composite number. A quick search through the known SierpiAski numbers [11] 

reveals tat 2131099 satisfies both the extra conditions, and so 2131099 is an isolated prime. 

However, 2131099 may not be the smallest isolated prime. The prime 19249 is still a candi-

date for being SierpiAski. If a covering set is discovered for this number, it will be the smallest 

isolated prime. 

A natural question that arises is whether there is an infinite number of isolated primes. To 

answer this question, we introduce two more sets of numbers related to the SierpiAski numbers, 

the Riesel numbers, and the Brier numbers. 
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Definition: A Riesel number is a number k for which 2n
 • k -1 is composite for all n > 0. A Urfer 

number is a number that is both SierpiAski and Riesel 

We can use an argument similar to that in Proposition 2 to show that, if k is a Riesel number 

with a covering set S, then k - 2n
 will always have a divisor in the set S. 

In 1998, Eric Brier [2] discovered the 41-digit number, 

29364695660123543278115025405114452910889, 

and suggested that it might be the smallest such number. However, this record for the smallest 

known Brier number has been beaten numerous times by Keller and Nash [6] and by Gallot in [8]. 

The current record is the 27-digit Brier number, 

5 = 878503122374924101526292469, 

using the covering set 

5 = {3,5,7,11,13,17,19,31,37,41,61,73,97,109,151,241,257,331, 61681}. 

Just one Brier number is sufficient to prove the following proposition. 

Proposition 3: There is an infinite number of isolated primes. 

Proof: Let B be the above Brier number, and let N = 2
17

 times the product of the primes in 

S. Since B and N are coprime, by Dirichlet
f
s theorem [7] there is an infinite number of primes of 

the form aN + B with a a positive integer. All that needs to be shown is that these primes are all 

isolated. In fact, we can prove that aN + B ± 2n
 is composite for all a > 0 and n > 0. Note that 

i f n : 

if n i 

i f n : 

i fn • 

if n : 

if n : 

if n • 

if n ; 

if n i 

if n = 

0 (mod 2), 

2 (mod 3), 

7 (mod 12), 

13 (mod 24), 

1 (mod 48), 

9 (mod 16), 

0 (mod 9), 

15 (mod 18), 

3 (mod 36), 

21 (mod 36), 

3|a7V + B - 2
n 

7\aN + B ~ 2n 

13|aiV + B - 2n 

24l\aN + B~2n 

97\aN + B - 2
n 

257|o7V + B - 2n 

73\aN + 5 - 2
n 

19|aiV 4 - £ - 2
n 

37\aN + B - 2n 

109|a7V + B - 2
n 

if n = 

i fn • 

if n • 

if n ; 

if n ; 

if n \ 

if n : 

if n i 

i f n ; 

i fn i 

1 (mod 2), 

0 (mod 4), 

6 (mod 8), 

1 (mod 5), 

0 (mod 10), 

18 (mod 20), 

34 (mod 40), 

12 (mod 15), 

22 (mod 30), 

2 (mod 60), 

3|aiV + B + 2n 

b\aN + 5 + 2
n 

\7\aN + B + 2
n 

31|o7V + J5 + 2
n 

n|aiv-hJe-h2
n 

41|a7V + B + 2n 

61681|a7V + J 5 + 2
n 

151|a7V + B + 2
n 

331\aN + B + 2n 

61|aiV + JB + 2
n 

so the only case left to consider is if aN + B~2n
 happens to be one of the primes in the set S. If 

n < 17, we have aN + B - 2n > B - 2
17

, which is of course greater than all the primes in S. If, on 

the other hand, n > 17, then 

aN + B-2n
 =5EE67573 (mod2

17
), 

which is again greater than all of the primes in S. Thus, aN+B±2n
 is always composite, and so 

there is an infinite number of isolated primes. 

In the search for isolated primes, a few primes were discovered that were almost isolated, 

meaning that there was only one edge in Gx directed away from the prime/? rather than toward it. 

The prime 36652489 is a SierpiAski number, so we can tell that the only edge in G0 is one that 

connects to the prime 3098057. Yet this is a directed edge in Gl9 so there are no edges that con-

nect a prime number to the prime 36652489. Hence, for p ^36652489, the vertex 36652489 is 
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not In Gp. Ironically, G36652m not only contains 36652489, it also contains the vertex 2; hence, 
G2 is a strict subgraph of G36652489. 

One could also ask whether there are any finite partitions of G0 other than the isolated 

primes. We may never be able to answer this question, since such a partition would have to con-

tain a prime/? that is "almost Sierpiriski," that is, p + 2n
 would be composite for all n with one 

exception, that being another member of the partition. The one exception would preclude the 

possibility for a covering set for/?. Without a covering set, proving p + 2n
 is composite for all 

other n would be at least as difficult as proving that there are exactly 4 Fermat primes. A 

computer search will likely produce some "candidates
9
' for finite partitions, but no amount of 

computation would be able to prove that the partition is really finite. 

4. SOME CONJECTURES ABOUT THE MAZE 

Conjecture 1: All Fermat primes are vertices in G2. 

This is a very safe conjecture, for it is almost certain that the only Fermat primes are 3, 5, 17, 

257, and 65537, which can be verified to be in G2. Furthermore, any Fermat prime will have the 

correct parity. The first three primes show up quickly in Figure 1, but getting to 257 requires as 

many as 627 steps in the maze, since one first must reach the number 2
91

 +2
26

 + 769. The prime 

65537 requires first getting to 2
268

 + 2
100

 + 2
98

 + 2
83

 + 3. Finding the shortest path to these primes 

remains an. unsolved problem. 

Conjecture 2: All Mersenne primes are vertices in G2. 

The binary representation of the Mersennes makes them the natural goal for this maze of 

primes, and by a fortunate coincidence all Mersenne primes have the correct parity. Besides the 

easy ones found in Figure 1, 8191 requires exactly 38 steps, 131071 requires 48 steps, and 2
19

 - 1 

requires 62 steps. The shortest path to 2
31

 - 1 is unknown, since one must first reach 2
74

 + 2
31

 - 1 . 

Getting to 2
61

 - 1 and 2
89

 - 1 are straightforward; however, getting to 2
107

 - 1 requires first going 

to 2
135

 + 2
107

 - 2
47

 - 2
33

 - 4097. Reaching 2
127

 - 1 requires first getting to 2
182

 + 2
127

 - 1 . By back^ 

tracking, a computer has verified that 2
521

-1 is in G2, but the smallest neighbor to 2
6 0 7

- l is 

2
1160

 + 2
607

 - 1 , which is currently too large for the computer to handle. 

Conjecture 3: There are four infinite partitions of G0 - {3} that contain primes less than 1000. 

Proving this conjecture if the fundamental unsolved problem of this maze. We have already 

seen using parity that there are at least two main partitions, the ^-partition and the /^partition. 

But as. we explore G0, two more partitions seem to crop up. Although there is no proof that these 

extra partitions do not connect in some way to the a-partition or the /^partition, there is very 

strong evidence that no such connection is possible, hence the conjecture. A table of the four par-

titions that seem to exist is shown below. 

The conjectured partitions 

a-partition 

^-partition 

7-partition 

| <5~partition 

Lowest prime 

2 

11 

277 

683 

Starting point 

2 

547 

4957 

35759 

Comments 

Main maze
 ! 

Can go from /3 —> a via 3 

Incorrect parity 

Correct parity 
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The primes less than 16000 in the ^partition are {683, 2699, 2729, 2731, 6827, 8363, 8747, 

8867, 10427, 1067, 10799, 10859, 10883, 10889, 10891, 10937, 10939, 10979, 10987, 11003, 

11171, 11177, 11243, 11939, 12011, 12203, 14891, 15017, 15083,...}. All other primes < 16000 

of correct parity are in the ^-partition. 

Likewise, {277, 337, 349, 373, 853, 1093, 1109, 1117, 1237, 1297, 1301, 1303, 1362, 1367, 

1373, 1381, 1399, 1429, 1489, 1493, 1621, 1861, 1873, 1877, 1879, 2389, 3413, 3541, 4177, 

4357, 4373, 4421, 4423, 4441, 4447, 4549, 4561, 4567, 4597, 4933, 4951, 4957, 5077, 5189, 

5197, 5209, 5233, 5237, 5333, 5381, 5393, 5399, 5407, 5413, 5431, 5437, 5441, 5443, 5449, 

5471, 5477, 5479, 5501, 5503, 5521, 5527, 5557, 5569, 5573, 5581, 5591, 5623, 5653,-5701, 

5717, 5749, 5953, 5981, 6007, 6037, 6101, 6133, 6229, 6421, 6469, 6481, 6997, 7237, 7253, 

7477, 7489, 7507, 7517, 7537, 7541, 7549, 7573, 7621, 7639, 7669, 8017, 8053, 10069, 12373, 

12613, 12637, 12757, 13381, 13397, 13399, 13591, 13597, 13633, 13649, 13669, 13681, 13687, 

13693, 13781, 13789, 14149, 14173, 14197, 14293, 15733, ...} are in the ^partition. All other 

primes < 16000 of incorrect parity, with the possible exception of 6379, are in the /^partition. 

(Analyzing 6379 requires working with numbers larger than 2
1396

, which takes too long to 

determine which of these two sectors it is in.) 

This table includes the starting point for each partition. The starting point is the smallest 

prime s in the partition for which Gs apparently contains an infinite number of the vertices of the 

partition. In other words, for all smaller values of p in the partition, Gp produces a finite graph. 

(For the primes in the /̂ -partition, we would delete the vertex 3 before computing Gp.) It would 

be tempting to think that Gs would contain all of the vertices of the partition, but the almost iso-

lated" primes in the partition, such as 36652489, would be excluded. Hence, the most we could 

say is that Gs contains almost all of the vertices of the partition. In fact, all primes less than 

16000, with the possible exception of 6379, are in either G2, G547, G4957, or G35759. Furthermore, 

for all primes less than 50000, Gp is either finite or contains one of the four graphs. Thus, if there 

were a fifth infinite partition, the starting point would have to be larger than 50000. So the four 

partitions in the above table are the first four partitions in every sense. 

5* CONCLUSION 

It is amazing that the simple rules of the prime maze can raise so many theoretical questions. 

What started out as a simple puzzle turned into a fountain of problems, some of them solvable, 

while others may never be solved. It is ironic that the solution to some of the problems, such as 

finding an infinite number of isolated primes, turns out not involving the binary number system but 

rather just the powers of two. Therefore, the results of the prime number maze is likely to have 

significance in other areas of number theory. 
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