6
Star Schema Template

The star schema represents data as facts that are bound to dimensions. A fact measuares the
performance of a business or some aspect of a2 business; examples include sales, budget, rev-
enue, profit, and inventory. A dimension specifies one of the bases for facts; examples in-
clude date, location, product, customer, and salesperson.

The star schema is the nsual approach to data warehouse applications. A data warehouse
takes the disjointed, functional applications of a business and integrates them, putting their
data in one database and storing data in a common format for reporting purposes. The simple
structure of the star schema makes it easier to write ad-hoc queries that mine data and gain
insight into an enterprise. However, the simple structure cannot enforce constraints about
data—that is the purpose of the functional applications that handle the day-to-day operations
of a business.

The star schema is not limited to data warehouses and can also be used for functional
applications with much reading and little writing.

There i1s one template for the star schema.

6.1 Star Schema Template

6.1.1 UML Template

Figure 6.1 shows the UML template for the star schema. A fact is surrounded by dimensions.
The diagram happens to show eight dimensions, but there can be any number of dimensions.
[Kimball-1998] suggests that a fact should have between five and fiftecn dimensions for a
well-designed star schema. Most dimensions are mandatory but some can be optional.

84

6.1

Star Schema Template

<Dimensioni>

<Dimension2>

0.1

<Dimension8>

*

0.1

*

ee
N

<Dimension7>

<Fact> *

<Dimension3>

*
oo
o

&*

0.1

*

<Dimension4>

0..1

<Dimension6>

<Dimension5:>»

Figure 6.1 Star schema: UML template. Use when there must be a flexible
structure for querying data and constraints on data are unimportant.

6.1.2 IDEF1X Template

Figure 6.2 restates Figure 6.1 with the IDEF1X notation. All the dimension IDs in Fact are
foreign keys. The dimension foreign keys are specified to be mandatory to simplify database
joins. There is no conflict between the UML and IDEF1X templates, as a conceptual NULL
can be indicated with a special “NONE” record. The combination of dimensions identifies
each fact and is used as the primary key to reduce fact table size.

Dimension1 Dimension2

dimension11D dimension2ID

...data...

|
Fact _‘ é
dimension1{D (FK)
- - ¢ dimension2ID (FK) ¢ - -

...data...

Dimension8 Dimension3

dimension8ID dimension3ID

...data... dimension3ID (FK) ...data...
dimension4!D (FK)
. i dimension5ID (FK) . .
Dimension? Dimension4

dimension6ID (FK)
dimension71D (FK)
- — ¢ dimension8ID (FK)

...data...
L] L]

| |
Dimension6 ! 1 Dimension5

dimension?7ID dimension4lD

...data... ...data...

dimension6iD dimension5ID

...data... ...data...

Figure 6.2 Star schema: IDEF1X template.

86 Chapter 6 / Star Schema Template

6.1.3 SQL Queries

Typically there are two Kinds of queries for this template—querying facts and querying di-
mensions.

Figure 6.3 illustrates the first category of queries— selecting groups of facts and sum-
marizing them for various combinations of dimensions. (Section 6.1.5 discusses the store
sales example.) Such queries can involve massive amounts of data, so performance is always
a concern. Data warehouses use special techniques to speed performance {Inmon-1993}
[Kimball-1998]. The colon prefix denotes variable values that must be provided.

SELECT storelID, SUM({saleQuantity)
FROM Sale
INNER JOIN Product AS P ON Sale.productID = P.productlID
INNER JOIN Date AS D ON Sale.datelID = D.datelD
INNER JOIN Store AS 8 ON Sale.storelD = S.storelID
WHERE P.productID = :aProductlD AND
D.fullDate = ‘July 1, 20600’
GROUP BY storelD
ORDER RBY storelD;

Figure 6.3 Star schema: SQL query. Summarize facts for a combination of dimensions.

The second kind of query searches dimension data to retrieve descriptive details (Figure
6.4). Such queres involve a straightforward search through a table or a few related tables.

SELECT storeName, streethAddress, cityName, stateName,

postalCode
FROM Store
WHERE storelD = :aStorelD

Figure 6.4 Star schema: SQL query. Retrieve dimension data.

6.1.4 Sample Populated Tables

Figure 6.5 shows star schema tables populated with data. The values of the IDs are arbitrary,
but internally consistent. Also for a real problem the dimension tables would have more de-
scriptive attributes than the ones shown. The data is a subset of data for store sales and 1s
covered further in the next section. In practice there are a modest number of dimension re-
cords (tens or hundreds per table) and a large number of facts (thousands or millions).

6.1.5 Examples

Figure 6.6 illustrates the star schema template with a store sales model. Sale is a fact that is
surrounded by the dimensions of product, payment type, cashier, store, date, and customer.

In data warehouse terminology Figure 6.6 is called a snowflake schema-—the dimen-
sions are not shown as a single entity type, but rather as several associated entity types. For

6.1 Star Schema Template 87

Fact table
|dimen- |dimen- |dimen- |dimen- [dimen- |dimen- |quantity [price |saletime!
sionlID |sion2ID | sion31D | siondID | sionSID | sion6ID
1 2 1 1 1 2 3 0.50 113:20 |
2 2 1 i 1 2 1 325 |13:20
3 2 1 1 1 2 1.35 4.05 1320
1 1 1 1 1 1 2 0.50 |13:30
1 1 2 1 1 0 6 0.50 13:30
3 1 2 1 1 0 115|345 1330
Dimension1 table Dimension2 table
| dimension1ID | name | | dimension2ID [name |
1 16 oz can generic green beans 1 cash
2 iresh pineapple 2 credit card
3 lean ground beef 3 debit card
Dimension3 table Dimension4 table
dimension3ID [name dimension4ID | name |
1 John Doe 1 primary store
2 Sally Smith LZ secondary store
Dimension5 table Dimensioné6 table
dimension5ID | date | dimension6ID | name
1 January 1, 2010 0 NONE
2 January 2, 2010 i1 Yohn Jones
2 Mary James |

Figure 6.5 Star schema: Populated tables.

example, the Product dimension is associated with Category and Industry. When designing
data warehouse tables, 1t is a common practice to denormalize dimensions and collapse their
details. For example, Industry and Category could be folded into a Product table to reduce
the number of tables and simplify the database.

The example shows six store dimensions. There could be additional dimensions including:

» promotional data (such as coupons)

* customer visit (enabling the grouping of products purchased by the customer in a visit)

= product placement (end of aisle, next to checkout, location on Web site)

* price range

a8 Chapter 6 / Star Schema Template

Customer

| customerName |

s || _produl 1, [ty _

soviaicose | | roductiumoa heuciare
0.

fullDate 1 *' Sale P Day(;n.tgntgype

[saleQuantity | r
?n%yrft)tw eek saleQuantity u
quarter S_alePrice . ; .
year timeQOfSale Cashier

cashierName

Store + 1 District
storeName districtName regionName
streetAddress districtNumber regionNumber
cityName
stateName
postalCode
. I—

Figure 6.6 Star schema: Store sales model.

Note that Customer is optional in the store sales example; a person paying with cash may not
be identifiable to the store. All other dimensions are mandatory.

Figure 6.7 shows another example for processing an insurance application on a property.
Various events occur as an application is processed and they must all be tracked. The star
schema can store the events but does not enforce constraints such as the order of the process-
ing. (That is the purpose of the functional applications.) The star schema can answer ques-
tions regarding:

» the status of each application (the latest event type that has been processed)
» the average time for processing between each event as an application progresses
+ the fastest employces

» the fastest offices
A property may have more than one owner and hence there can be multiple applicants. For
example, a husband and wife may own a property. Thus there is a many-to-many relationship
between ApplicationEvent and Applicant. Many-to-many relationships are troublesome for
a star schema and the Applicants dimension groups together the multiple owners of a prop-
erty to finesse the issue. The owners of a property may have unequal ownership.

TP T T

bt i

i cd i

6.2 Chapter Summary 89
Property Application EventType
propertyldentifier applicationNumber eventTypeName
1 1 1
Applicant . * . Date
gﬁgle?A ddress Applicants ApplicationEvent fjuzi?c?ft\?\leek
cityName ot 1 * time * 1| month
stateName - - - quarter
postalCode year
share 1
1
Office Employee
officeName | name

Figure 6.7 Star schema: Application processing model.

6.2 Chapter Summary

The star schema template is pervasive for data warehouse applications and sometimes occurs
for functional applications. Table 6.1 summarizes the star schema template.

Table 6.1 Summary of the Star Schema Template

Template Synopsis UML diagram Use when Frequency

Represents data
as facts that are

bound to dimen-
sions.

There must be a | Occasional

flexible struc- (frequent
ture for query- for data

ing data. warchouse)

Star schema

Note: Consider when there must be a flexible structure for querying data
and constraints on data are unimportant.

Bibliographic Notes

[Blaha-2001] has a further explanation about data warehouses. Chapter 4 of [Fowler-1997]
also discusses the star schema. Inmon and Kimball are prominent authors in the data ware-
house community and have written excellent books.

80 Chapter 6 / Star Schema Template

References

[Blaha-2001] Michael Blaha. A Manuger's Guide to Database Technology: Building and Purchasing
Better Applications. Upper Saddle River, NI Prentice Hall, 2001.

[Fowler-1997] Martin Fowler. Analvsis Patterns: Reusable Object Models. Boston, Massachusetts:
Addison-Wesley, 1997

(lnmon-1993] W. H. Inmon. Building the Data Warehouse. New York, New York: Wiley-QED. 1993,

[Kimball-1998] Ralph Kimball. Laura Reeves, Margy Ross, and Warren Thornthwaite. The Dara
Warehouse Lifecycle Toolkit. New York, New York: Wiley, 1998.

