# Date:10/08-13/2014Topic IV: Set Theory and Venn Diagrams1st Class

**Objective:** the students will

- 1. Symbols, Terminology, Set Builder Notation
- 2. Sets of Numbers
- 3. Rules for Operations on Sets
- 4. Venn Diagrams

#### Agenda:

- Bell ringer
- vocabulary:
- **Examples : Topic 4 Resources**
- Class work: Topic 4 Resources
- Closing Activity : Exit Ticket
- Homework:

#### Set Theory

A set is a collection of objects, or elements. Sets are represented by capital letters, and elements by lower case (usually).  $A = \{1,3,5,7\}$ Set A contains elements 1, 3, 5, and 7.

\*elements do not need to go in any particular order \*there are many ways to represent certain sets

# Set Theory and Venn Diagrams When working with sets, Venn Diagrams become very useful in determining the truth of statements.







#### The shaded region represents all of set A.





#### The shaded region represents all of set B.





The shaded region represents all of set C.



A set with no elements is called an empty set (null or void).



$$A = \{ \} \qquad A = \phi$$

Set A, in either case, represents the empty set.

# U universal set is the set of ALL elements.

 $U = \{everything\}$ 



Set U represents the universal set. The symbol for the universal is **U** 

#### Set Theory: Using Venn Diagrams



A set A is a subset of the set B, if the set of A is also an element of B

IV

Set Theory and Venn Diagrams

*Can write this relation as*  $A \subseteq B$ 

 $A \subset B$ 

 $B = \{-2, -1, 0, 1, 2, 3\} \quad A = \{-1, 0, 2\}$ 



#### A subset



The complement of a set is the set of all elements in the universal set that are not in the set . Denotation of a complement by A'

 $U = \{2,4,6,8,10,12\}$   $A = \{2,4,6\}$ 

 $A' = \{8, 10, 12\}$ 

-A, or A'

#### The complement of a set

IV



#### The complement of a set

IV



# The union of sets (A U B) is the set of all elements in A or B.



$$A = \{1, 2, 5\}$$

IV

$$B = \{1, 3, 9\}$$

$$AUB = \{1, 2, 3, 5, 9\}$$

The union of two students' math skills!



#### The union of sets





#### The union of sets

#### The shaded region represents $A \bigcup C$



#### **The union & Complement sets**







#### The intersection of sets

#### The shaded region represents $A \cap B$



#### The intersection of sets

## The shaded region represents $A \cap (B \bigcup C)$



# The shaded region represents $(A \cap B) \cup (A \cap C)$





#### The intersection of sets

# Notice $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$

are the same!





When working with sets, Venn Diagrams become very useful in determining the truth of statements.

The Venn Diagrams on the previous slide showed the statement  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ was true.

# Venn Diagrams also serve as a nice way to represent data..

At a restaurant, Bella, Edward, Jacob, Alice, and Jasper were asked if they had **ordered (not eaten** ()) any of the following: chicken marsala, lasagna, or coke.

3 people ordered chicken marsala (Edward, Alice, Jacob).
2 people ordered lasagna (Bella and Jacob).
3 people ordered coke (Alice, Bella, and Jasper).
1 person ordered both chicken marsala and lasagna (Jacob).

Jasper (coke)

Jacob

lasagna

IV



Alice

Jasper

coke

#### chicken marsala

Edward

Bella



#### Alice (chicken marsala, coke) Bella (lasagna, coke)





#### Jacob (chicken marsala, lasagna)



The cross product of sets A and B, written as  $A \times B$  is the set of all ordered pairs (a,b)where a is an element of set A and b is an element of set B.

























# Image: Set Theory and Venn Diagrams $A = \{1,2\}$ $B = \{40,50,60\}$ Find $A \times B$

## $A \times B = \{(1,40), (1,50), (1,60), (2,40), (2,50), (2,60)\}$

#### Now Class work 1<sup>st</sup> class



IV

# Practice time!

IV

