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PATTERN MODELLING IN

TIME-SERIES FORECASTING

ABSTRACT

Pattern modelling in time-series prediction refers to the process of identifying past

relationships and trends in historical data for predicting future values. This paper describes

the development of a new pattern matching technique for univariate time-series forecasting.

The pattern modelling technique out-performs frequently used statistical methods such as

Exponential Smoothing on different error measures and predicting the direction of change in

time-series. The paper discusses the prediction results on popular benchmarks and the real

US S&P index for financial markets.
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PATTERN MODELLING IN

TIME-SERIES FORECASTING

INTRODUCTION

Univariate time-series prediction is important in several scientific domains. A forecasting

procedure may be needed for predicting a single time-dependent variable or predicting

several independent variables individually to forecast a dependent variable as in multivariate

analysis. Univariate series may be predicted using a range of available tools. Delurgio(1998)

classifies forecasting procedures as of type quantitative or qualitative. In this paper we are

primarily interested in quantitative methods, especially procedures with computational

intelligence. In particular, we will develop a new methodology for encoding time-series and

pattern modelling for generating accurate predictions on three different benchmarks from

the Santa Fe competition (Weigend and Gershenfeld, 1994). The technique will be finally

evaluated on real data from the US S&P index.

A large number of studies in the past have worked with intelligent techniques for forecasting

(Kingdon, 1997): for example neural networks (Azoff, 1994; Aerrabotu et al., 1997;

Mahfoud and Mani, 1997), genetic algorithms (Teran et al., 1997) statistical techniques

optimised using neural networks and genetic algorithms (Bonnet et al., 1997; Rolf et al.,

1997), and fuzzy techniques (Chorafas, 1994; Daijin, 1997; Motnikar et al., 1996;

Muhammad and King, 1997; Pellizzari and Pizzi, 1997; Studer and Masulli, 1996). A range

of dynamic econometric techniques have also been investigated for forecasting (see Hendry,

1995). In this paper an alternative method based on pattern modelling is discussed. Pattern

modelling refers to the process of describing the time-series as a series of patterns. These

patterns may be specified in terms of the gradient of the time-series at a given time, i.e. an

upward of downward movement, and its size (number of segments in them). Figure 1 shows
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the different types of patterns found in time-series. The pattern shape depends on the total

number of segments in that pattern. A segment may be defined as the transition from state t

to t+1 in a time series, e.g. y(t) - y(t-1) is a segment, and so is y(t-1) - y(t-2). We may

formalise this mathematically. Consider the time series as a vector y = {y1, y2, ... yn} where n

is the total number of points in the series. Often, we also represent such a series as a

function of time, e.g. yn = yt, yn-1 = yt-1. A segment in the series may be defined as a

difference vector δδδδ = (δ1, δ2, ... δn-1) where δi = yi+1 - yi, ∀  1≤i≤n-1. A pattern contains one or

more segments and may be visualised as a string of segments ρ = (δi, δi+1, ... δh) for given

values of i and h, 1≤i,h≤n-1, provided that h>i. In order to define the pattern mathematically,

we may choose to encode the time series y as a vector of change in direction. For this, a

point yi is encoded as 0 if yi+1 < yi, as a 1 if yi+1 > yi and a 2 if yi+1 = yi. Formally, a pattern in

the time-series may be represented as ρ = (bi, bi+1, ... bh) where b is a binary value in most

cases, either a 1 or a 0, expect in cases when the series doesn’t change which is encoded as a

2. For example, a pattern ρ = (0, 1) represents a valley shape as defined in Figure 1.

Figure 1 here

The complete time-series may be encoded as (b1, ...bn-1). For a total of k segments in a

pattern, it is encoded with k b values. For a pattern of size k, the total number of pattern

shapes possible is 2
k
 + 1. In Figure 1, only a brief description of patterns of size two and

three is shown. More complicated structural primitives are found with larger sizes. The

technique of matching structural primitives is based on the premise that the past repeats

itself. The basic procedure involving the use of structural patterns for forecasting is

discussed next.
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FUZZY PATTERN MATCHING

Pattern matching in the context of time-series forecasting refers to the process of matching

current state of the time series with its past states. Consider the encoded time series (b1, bi,

... bn-1). Suppose that we are at time n (yn) trying to predict yn+1. A pattern of size k is first

formulated from the last k values in the series, ρ’ = (bn-k, ... bn-1). Smaller sized patterns may

refer to easily identifiable shapes as in Fig. 1 whereas larger patterns may have more

complex shapes. The size of the pattern used for matching has important impact on

minimising the error and correctly predicting the direction of series change. The pattern size

and matching procedure itself must be optimised for obtaining the best results. The aim of a

pattern matching algorithm is to find the closest match of ρ’ in the historical data

(estimation period) and use this for predicting yn+1. The match itself is never exact and may

be loosely termed as ‘fuzzy’ in nature. The magnitude and direction of prediction depend on

the match found. The success in correctly predicting series depends directly on the pattern

matching algorithm. The overall algorithm is described below:

❶     Start with a pattern of minimal size k= 2, i.e. ρ’ = (bn-2, bn-1).

❷    Search the time-series (b1, ... bn-3) to find the closest match for ρ’. Suppose that the

closest match is found as ρ’’ = (bj-1, bj). Corresponding segment lengths for ρ’ and ρ’’

are (δn-2, δn-1) and (δj-1, δj) respectively. Here j is termed as the marker position.

❸     If bj+1 = 1 then predict high

yn+1= ƒ (yn, |bj-1 - bn-2|, |bj - bn-1|)

If bj+1 = 0 then predict low

yn+1= ƒ (yn, |bj-1 - bn-2|, |bj - bn-1|)

      If bj+1 = 2 then

      yn+1= yn
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❹    Minimise the Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE)

by optimising pattern size. Repeat steps 1-4 for patterns of size k = 3, 4, ... Choose the

optimal model: a model which yields minimal error with the least complexity (law of

parsimony).

In the above algorithm, several features of the structural pattern recognition have been

simplified to aid the understanding of the basic procedure. Now we detail more

sophisticated features of the procedure used for a more general definition of patterns ρ’ =

(bn-k ... bn-2, bn-1) and ρ’’ =  (bj-k ... bj-1, bj), each of size k, where the value of j (also called as

a marker) is known. The position of the marker lies between the [1, n-k-1] range.

❺    The matching algorithm tries to find a ρ’’ which is most similar to ρ’ by minimising

offset ∇ .

for J = 1 to n-k-1 do

{

           k

∇  = ∑ wi(δn-i - δj-i) ... (1)

          i=1

If ∇  < low then low = ∇  and j = J

}

Here low is a initial threshold value. The final value of j (representing the closest ρ’’)

at the end of the above loop is used in step 3 for generating a prediction. In our

experimentation, wi is equal to 1.

❻      The function ƒ in step 3 may be further clarified.

If bj+1 = 1 then predict high

   yn+1=  yn + β*δj+1 ... (2)

If bj+1 = 0 then predict low
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                                                         k

   yn+1=  yn - β*δj+1   where β = 1/k ∑ δn-i/δj-i ...(3)

                                                       i = 1

❼     The algorithm is optimised for minimal error in prediction. The error measures used in

this paper include:

Mean Square Error (MSE) =  1/p ∑ (yn - ÿn)
2

Mean Absolute Percentage Error (MAPE) =  1/p ∑ |yn - ÿn|/ y n

Direction of change error =  error when yn - yn-1 > 0 and ÿn - yn-1  ≤ 0

  or error when yn - yn-1 ≤ 0 and ÿn - yn-1 > 0

where yn  is the actual forecast or the event that occurs, yn-1 is our most recent value before

the forecast, ÿn  is our prediction and p is the total number of points predicted (test size).

EXPERIMENTAL DETAILS

In this paper, the algorithm described in the previous section will be used to predict a total

of four series. Three of the benchmark series (A, D and E) considered here come from the

Santa Fe competition (Weigend and Gershenfeld, 1994). The fourth series is the real S&P

index for US financial market (monthly data from August 1988 to August 1996). The details

of these series are introduced below:

Series A : This is a univariate time series measured in a Physics laboratory experiment. This

data set was selected because it is an example of complicated behaviour in a clean,

stationary, low-dimensional non-trivial physical system for which the underlying dynamic

equations are well understood. There are a total of 1000 observations. The correlation

between yt and yt-1 for the original series is .53 and for the difference series is .27.
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Series D: This univariate time-series has been generated for the equation of motion of a

dynamic particle. The series has been synthetically generated with relatively high-

dimensional dynamics. There are a total of 4572 observations. The correlation between yt

and yt-1 for the original series is .95 and for the difference series is .72.

           

Series E: This univariate time-series is a set of astrophysical data (variation in light intensity

of a star). The data set was selected because the information is very noisy, discontinuous and

non-linear. There are a total of 3550 observations. The correlation between yt and yt-1 for the

original series is .81 and for the difference series is -.44.

Series S&P: This series represents the S&P index over a period of eight years. This data is

noisy and exponentially increasing in nature. There are a total of 2110 observations. The

correlation between yt and yt-1 for the original series is .99 and for the difference series is

.04.

The statistical characteristics of these series are summarised in Table 1.

Table 1 here

In our experimentation, we compare the results obtained using the fuzzy pattern matching

algorithm and the well known statistical exponential smoothing method. The exponential

smoothing method is a special class of ARIMA model (Delurgio, 1998) explained by the

following equation:

yn+1 = α(yn + (1-α)yn-1 + (1-α)
2
yn-2 + (1-α)

3
yn-3 + (1-α)

4
yn-4) ... (4)
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In our experiments, the optimal value of α for series A, D, E and S&P are .99, .99, .3 and .6

respectively. The time-series is initially divided into an estimation (training) period and

forecast (test) period. The estimation period is used for finding structural patterns in past

data (calculating statistical characteristics of the series for statistical techniques). The test

period is used for making the forecasts on the basis of previously known values and these

results are compared against actual events for computing the test error. Good models are

characterised by low MSE and MAPE in test phase along with low direction error. Another

important feature of good forecast models is that they yield errors with a random

distribution. For forecast techniques that optimise parameters during estimation phase, for

example neural networks, usually both train and test errors are quoted. However, for a

pattern matching technique where such an optimisation is not performed, only test errors

will be quoted in the next section.

RESULTS

In this paper we compare the performance of the proposed structural pattern recognition

method with the Exponential smoothing method of forecasting which is a special case of

ARIMA model. The results section is split into two sub-sections: the first section discusses

the results on the three benchmark series A, D and E; the second section discusses the

results on the US S&P index. In both sub-sections, we forecast the last 10% (estimation

period of 90%) and the last 25% (estimation period of 75%) of the time-series to document

results. The results are reported for the different error measures as described in section II.

Performance on Benchmark series

As mentioned before, the time series is divided into two parts: estimation or training period

which contains either 90% or 75% of the total data, and the test part with 10% or 25% of the

remaining data for forecasting. The forecast errors are averaged over the test data. Table 2
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shows the results obtained on the benchmark series A. In Table 2, the fuzzy pattern

recognition method performance is shown for patterns used for matching ρ’ of varying size

(k =2 ...5). This procedure of using patterns of varying size for deriving the optimal model is

very much similar to the development of an optimal neural network architecture by

optimising the number of hidden nodes. The best performance on different measures has

been italicised in Table 2 (also Tables 3, 4 and 5; only the best performance for the

Exponential Smoothing method are displayed for optimal α).

Table 2 here

It was observed experimentally that increasing pattern size beyond a certain threshold gives

a poor model with higher error. In general we find that patterns of size k = 4 give reasonably

good performance. The overall performance is much superior to that obtained using the

exponential smoothing method. The MSE and MAPE error measures show acceptable

values for the proposed system; the direction error quoted here at nearly 5-6% is very

encouraging.

Table 3 shows the results on series D which is supposed to be more difficult to predict than

the previous series. Here we observe the best performance of the pattern recognition system

for pattern ρ’ of size k = 3. The MSE and MAPE measurements are lower than those

obtained using the Exponential smoothing method.

Table 3 here
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Finally, Table 4 shows the results for series E. This is the most difficult of all benchmark

series to predict. This may be directly observed as the success in predicting the direction of

series change is much lower than Table 2 and Table 3.

Table 4 here

Here, the best results are obtained for small k, e.g. k = 2. The pattern recognition approach

to prediction is superior on the direction of error and better on the MSE and MAPE

measures.

We summarise the following points of observation from Tables 1, 2 and 3.

•  The pattern recognition approach is superior to the statistical exponential smoothing

 approach on all three benchmark time-series when compared on the MSE, MAPE and

direction of series change error measure.

•  The proposed approach may be vulnerable to wrong matches in highly noisy series as in

Series E. This should require further detailed investigation in future studies.

•  The number of segments used to formulate ρ’ has an important bearing on the prediction

success.

Performance on the US Financial Index - S&P series

One of the advantages of evaluating new forecasting systems on artificial benchmarks is the

ability to reliably describe the operational characteristics of the prediction algorithm since

the underlying nature of the problem domain is well specified. In other words, since the

mathematical nature of the time-series is well defined, the evaluation of forecasting systems

is easier. It may be reasonably claimed that what works on a given time series, will continue

to work well on another time-series which has a similar mathematical framework.. However,
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it is equally important that forecasting systems perform reasonably well on real data. A large

amount of real data in time-series research mostly comes from financial domains, e.g.

predicting sales, profit, labour costs, financial index, etc. A large number of studies have

tried to predict the financial indices usually taking a multivariate approach with neural

networks, e.g. (Delurgio, 1998). One of the most popular series often predicted is the US

financial index, the S&P series whose characteristics have been detailed in section III of this

paper.

The prediction of most financial indices is not straightforward. The S&P series is not

stationary. A stationary series is one whose mean, variance and other statistical indices are

uniform with time (as in Series A, D and E, Fig. 2-7). The S&P series shows an exponential

upward growth. For this reason, one of the standard models used in the markets is the

random geometric walk model which is defined as:

yn+1 = yn (1+ ε) ... (5)

where  0 ≤ ε ≤ 1. The optimal value of the constant ε used for S&P series is .0056 [Delurgio,

1998, p. 297].

Another simpler method of working with non-stationary time-series is to predict the

difference of a time-series or a difference of the difference time-series. These series are

usually stationary in nature and statistical methods perform better on these resultant series.

If our predictions on the difference time-series are better than the original series, we can

translate our predictions to original series predictions with better results. A word of caution

before moving on to the results. The aim of our experimentation is not to develop a market

strategy for making profit but to demonstrate how well the proposed system predicts

compared to a well established statistical method on the same data. However, a more
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detailed analysis would allow us to plot profit graphs and outline a market strategy advising

the trader when to stay in the market and how to invest. A more general discussion on the

nature of international markets may be found in (Levich, 1987).

Table 5 here

Table 5 shows the performance of the pattern recognition system on the difference of

difference S&P series. Pattern size of k = 3 yields the best performance. The pattern

recognition system has an impressive performance on all measures. Specially, the important

result in favour of the pattern recognition method is the high accuracy on predicting the

direction of series change. This measure is of considerable importance to traders in the

financial markets. At a give time t with the market in state yn, it is important for the traders

to know whether the market will go up yn+1 > yn or down yn+1 < yn. In case the market goes

up and the trader predicts correctly that the market will go up, i.e. (yn - yn-1 > 0 and ÿn - yn-1

> 0), the trader makes a profit; similarly if the market goes down and the trader correctly

predicts that the market will go down, i.e. (yn - yn-1 < 0 and ÿn - yn-1 < 0), the trader

minimises any risks taken. However, if the trader makes an error on predicting market

change, they mostly end up making losses. Hence, a good forecast system should correctly

predict the market position in relation to its current index with better than chance (50%)

accuracy. Table 5 shows that the proposed system performs well roughly three out of four

times. This is a very encouraging performance.

It was mentioned earlier in this paper that a good forecast model can be evaluated by

observing its error statistics. Ideally, a good forecast model should generate random errors

(there should be no relationship between error en and past errors en-1, en-2, ... en-r where r is

the error lag). One method of evaluating a model is therefore to calculate the correlation

between its test error at time t and time t-r. This is known as auto-correlation at lag r. The
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auto-correlation will lie within the [-1, +1] range: an auto-correlation coefficient of -1

represents a very strong inverse relationship, whereas an auto-correlation coefficient of +1

represents a very strong positive relationship. Ideally, this coefficient should be as close to

zero as possible showing no relationship between error values as different lags (random

errors).

Table 6 here

 

 Table 6 shows the auto-correlation coefficients between error at a given time t and at lags t-

1, t-2, t-3 and t-4. The first value in each table box shows the result for the test size of 10%

and the second value in italics shows the result for 25% test size. The results are very

impressive. In all benchmark series and S&P series, the coefficients are very low as desired.

This confirms that the proposed model does not produce errors that are related or biased in

any way.

CONCLUSION

In this paper, a new pattern recognition method for time-series forecasting has been

proposed. The method uses structural primitives (patterns) for forecasting. Present patterns

are matched with past patterns to identify the direction and magnitude of the next prediction.

The proposed method was evaluated against the Exponential smoothing method used for

forecasting. The results on three benchmark series and the real S&P index prediction are

very encouraging. The proposed method is simple to use and works in real-time (especially

used for tick-type data in financial markets where the system can be re-trained in real-time).

Further work should now be prompted at investigating the ability of the proposed method to

work with series contaminated with noise of different underlying distribution and comparing

its performance against other artificially intelligent methods such as neural networks.
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Figure 1. Pattern description for size two and three in any univariate series y(t).
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Table 1. Series A, D, E and S&P statistics

______________________________________________________________

Series Min Max Mean SD Size

______________________________________________________________

A 2 255 59.90 46.87 1000

D .05 1.15 .58 .23 4572

E -.31 .34 0 .10 3550

S&P 257.10 678.50 422.74 100.32 2110

_________________________________________________________
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Table 2. Series A performance of the pattern recognition system with varying

segment size k compared with the Exponential Smoothing method

_________________________________________________________

No. of

segments k

MSE MAPE % direction

success

% size

predicted

_________________________________________________________

2 169.7

201.1

14.4

12.1

95

94

10

25

3 216.9

115.5

13.0

9.1

94

94

10

25

4 202.4

126.7

11.8

8.7

95

94

10

25

5 184.0

115.6

13.0

9.0

94

94

10

25

ES method 3158.8

1930.2

83.9

61.6

70

70

10

25

___________________________________________________
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Table 3. Series D performance of the pattern recognition system with varying

segment size k compared with the Exponential Smoothing method

_________________________________________________________

No. of

segments k

MSE MAPE % direction

success

% size

predicted

_________________________________________________________

2 .003

.003

9.6

9.1

82

79

10

25

3 .003

.003

8.6

8.8

84

81

10

25

4 .003

.004

9.4

9.7

82

79

10

25

5 .003

.004

9.2

9.6

81

80

10

25

ES method .005

.003

9.4

8.8

80

79

10

25

____________________________________________________
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Table 4. Series E performance of the pattern recognition system with varying

segment size k compared with the Exponential Smoothing method

_________________________________________________________

No. of

segments k

MSE MAPE % direction

success

% size

predicted

_________________________________________________________

2 .015

.014

8.6

8.9

66

68

10

25

3 .020

.023

10.2

11.1

69

69

10

25

4 .086

.557

12.2

14.5

68

70

10

25

5 .481

.213

16.3

13.9

65

68

10

25

ES method .033

.034

17.55

17.37

56

57

10

25

____________________________________________________
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Table 5. Series S&P performance of the pattern recognition system with varying

segment size k compared with the Exponential smoothing method.

_________________________________________________________

No. of

segments k

MSE MAPE % direction

success

% size

predicted

_________________________________________________________

2 82.9

54.7

1.1

0.9

73

71

10

25

3 82.3

52.9

1.1

0.9

76

72

10

25

4 83.0

57.0

1.1

1.0

72

67

10

25

5 92.4

59.3

1.1

1.0

69

69

10

25

ES method 4379.2

2786.2

9.6

8.2

48

49

10

25

____________________________________________________
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Table 6. Performance validation of the pattern recognition model:

Auto-correlations between lagged error values for 1 ≤ r ≤ 4.

________________________________________________________

Time lag →
     Series ↓

1 2 3 4

________________________________________________________

A .17

.11

-.03

-.01

-.03

-.03

.01

-.01

D .10

.08

.005

.02

.005

.04

.04

.04

E .04

-.04

.02

-.01

-.08

-.07

.01

.009

S&P -.50

-.44

.13

.08

-.10

-.09

.08

.05

___________________________________________________
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Figure 2. Plot of Series A                 Figure 3. Plot of the difference of series A
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Figure 4. Plot of Series D                 Figure 5. Plot of the difference of series D
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Figure 6. Plot of Series E                Figure 7. Plot of the difference of series E
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                              Figure 8. Plot of S&P index                   Figure 9. Plot of the difference of S&P index
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