M308 -Advanced Algebra 2
Second Semester Review
Packet - Short Answer
Name \qquad
Teacher

Chapter 4: Inverse Functions, Exponential Functions, and Logarithmic Functions

1) (calculator) Sketch a graph of the following:
a) $f(x)=4^{x}$
b) $f(x)=e^{-x}$

c) $f(x)=e^{3 x}$ make sure to enter as
$y=e^{\wedge(3 x)}$

d) $f(x)=\log _{3} x$
enter as $\log (x) / \log (3)$ by using the change of base formula

2) Solve $4^{x}=2$
take \ln of both sides

$$
\ln 4^{x}=\ln 2
$$

bring exponent to front, then divide
3) Write the following in logarithmic form.

$$
\begin{aligned}
& x \ln 4=\ln 2 \quad\left\{\frac{\text { or }}{\text { base }}\right. \text { rewrite with same } \\
& x=\frac{\ln 2}{\ln 4}=\frac{1}{2}\left\{\begin{aligned}
& 2^{2 x}=2^{1} \\
& \text { set exponents }=r \text { solve } \\
& 2 x=1 \\
& x=\frac{1}{2}
\end{aligned}\right.
\end{aligned}
$$

a) $3^{4}=81$
b) $5^{-3}=\frac{1}{125}$
$\log _{3} 81=4$

$$
\log _{5} \frac{1}{125}=-3
$$

4) Write the following in exponential form.
a) $\log _{3} \sqrt[3]{9}=2 / 3$
b) $\log _{c} t=a$
c) $\log _{4}(1 / 64)=-3$
$3^{2 / 3}=\sqrt[3]{9}$
$c^{a}=t$

$$
4^{-3}=\frac{1}{64}
$$

5) Find the value of the following.
a) $\log _{25} 5=x$
b) $\log _{8} 8=x$
$25^{x}=5 \quad 2 x=1$
$5^{2 x}=5^{\prime} \quad x=\frac{1}{2}$

d) $\log _{3} 81$
$3^{x}=81$
$3^{x}=3^{y} \quad x=4$
e) $\log _{7} 1$

$\lg 1$ alurayp $=0$
c) 2
f) lng

6) Write the following expressions as a sum, difference, or product of logarithms.
a) $\log _{5}\left(\frac{5 \sqrt{7}}{3}\right) \quad \log _{5} 5+\log _{5} \sqrt{7}-\log _{5} 3$
b) $\log _{z} \frac{x^{5} y^{3}}{3 a^{2}} \quad \log _{z} x^{5}+\log _{z} y^{3}-\log _{z} 3-\log _{z} a^{2}$

$$
5 \log _{z} x+3 \log _{z} y-\log _{z} 3-2 \log _{z} a
$$

7) Write the following as a single logarithm.
a) $3 \log _{a} x-2 \log _{a} y-\log _{a} m$
b) $\log _{b}(x-2)+3 \log _{b} x-\log _{b} 8$

$$
\log _{b} \frac{(x-2)\left(x^{3}\right)}{8}
$$

8) Solve: $\ln (y+2)-\ln (y-7)=\ln 4$

$$
\ln \frac{(y+2)}{y-1}=\ln 4
$$

9) Solve: $\log _{4}(z+3)+\log _{4}(z-3)=1$

$$
\begin{gathered}
\log _{4}(z+3)(z-3)=1 \\
y^{\prime}=(z+3)(z-3)
\end{gathered}
$$

10) Solve: $3^{a+2}=5$

$$
\begin{aligned}
(a+2) \ln 3 & =\ln 5 \quad \approx-5350 \\
a \ln 3+2 \ln 3 & =\ln 5 \quad O R \\
\frac{\ln 3}{\ln 3} & =\frac{\ln 5-2 \ln 3}{\ln 3}
\end{aligned}
$$

12) (calculator) Solve: $\log _{10} x=2.437$

$$
\begin{aligned}
10^{2.437} & =x \\
x & =273.5269
\end{aligned}
$$

14) (calculator) Solve: $2^{x}=-3 x+4$
same as 13

$$
(0.7663,1.7010)
$$

11) (calculator) Solve: $\mathrm{e}^{2 \mathrm{x}+3}=7$

12) (calculator) Solve: $3^{x}=2 x+3$
easlest way: graph $y_{1}=3^{x}$

$$
\begin{aligned}
& (-1.3916,-2168) \\
& (1.6856,6.3711)
\end{aligned} \quad \begin{aligned}
& y_{2}=2 x+3 \text { and find } \\
& \text { point of } \\
& \text { intersection }
\end{aligned}
$$

15) (calculator) Solve: $\ln _{e} x=1.967$

$$
\begin{aligned}
& e^{1.967}=x \\
& 7.1492
\end{aligned}
$$

16) (calculator) How much would you need to invest in an account earning 3.25% interest compounded weekly to have $\$ 15,000$ after 8 years?

$$
\begin{array}{rl}
A=P\left(1+\frac{r}{n}\right)^{n t} & 15000
\end{array}=P\left(1+\frac{.0325}{52}\right)^{52(8)} \quad 1 \quad \begin{aligned}
& 15000
\end{aligned}
$$

17) Consider the function defined by $f(x)=\sqrt{4-x}$. Find $f^{-1}(x)$. Find the domain and range for $f(x)$ and for $\mathbf{f}^{-1}(x)$. $f(x) \quad f^{\prime}(x) \quad f(x) f^{\prime}(x)$ To find invers, sura $x+y$ var and solve for y. The $D \rightarrow R$ and $R \rightarrow D$
$D:(-\infty, 4] \quad[0, \infty)$
$f^{-1}(x)=4-x^{2}$
$R:[0, \infty) \quad(-\infty, 4]$

$$
x^{2}=4-y
$$

$$
y=4-x^{2}
$$

18) Find the inverse of the function $f(x)=x^{2}+1, x \leq 0$. Find the domain and range for $f(x)$
and for $\mathrm{f}^{-1}(\mathrm{x})$.
$f(x) \quad f^{-1}(x)$
D $(-\infty, 0] \quad[1, \infty)$
$R[1, \infty) \quad(-\infty, 0]$

$$
\begin{aligned}
& \frac{f-1(x)}{x=y^{2}+1} \\
& x-1=y^{2} \\
& y=\underset{y}{y} \sqrt{x-1}
\end{aligned}
$$

19) (calculator) Find the future value if $\$ 3200$ is invested at 4.35% compounded monthly for

$$
\begin{array}{rlrl}
A & =P\left(1+\frac{r}{n}\right)^{n t} & A=3200(1.3552) \\
& =3200\left(1+\frac{.0435}{12}\right)^{12(7)} & & =\$ 14336.64
\end{array}
$$

20) (calculator) Find the future value of $\$ 1750$ compounded continuously for 5 years at 3.25%.

$$
A=\begin{aligned}
& P e^{\sqrt{ }} \\
& 1750 e^{.0325(5)}
\end{aligned} \quad A=\$ 2058.78
$$

