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Abstract:

In our previous studies, we found statistically significant latent periodicity in a huge amount of

protein sequences and a proposition was made that many of periodicity patterns correspond to

structural or functional features of protein families. However, it was unable to test since latent

periodicity is feebly marked and often interrupted by insertions and deletions. A new method of

noise decomposition for isolation of a genetic sequence pattern from its close analogs is introduced.

When used in conjunction with cyclic profile alignment, it is able to isolate structure-related or

function-related patterns of latent periodicity. In this study, we found latent periodicity in catalytic

domains of about 85% of serine-threonine and tyrosine protein kinases. Therefore we presume that

latent periodicity is a common property of these protein kinase catalytic domains. Possible origins

of periodic structure of protein kinase catalytic domains are discussed. Detailed results may be

viewed at http://periodicity.fromru.com

Introduction

The development of mathematical techniques for symbolic sequence studies is now

acquiring ever-growing importance since large amounts of genetic information such as DNA base

or amino acid sequences are being gathered [Benson et al., 2000; Stoesser et al., 2001; Adams et al.,

2000; Venter et al., 2001]. Which information is able to be gained when one investigates symbolic

sequences using today’s mathematical achievements? Answer to this question determines the ability

to extract biologically significant knowledge from genetic texts, the understanding of gene

evolution processes and evolutionary rearrangements of genomes, and also the ability to create a

dynamic model of cell’s genetic regulation and artificial proteins with predefined features.

One of the methods of investigation of symbolic sequence organization is the investigation

of its periodicity. The periodicity investigation has reasonable biological meaning because multiple

duplications of DNA sequence fragments with subsequent substitutions, insertions and deletions of

symbols could serve as the ground for evolution of genes and genomes. The discovery of

periodicity in active centers of enzymes could witness that in the past genes could be built up by

simple repeating of certain relatively short DNA fragments. We may also suppose that such

structure of active centers of proteins could mean possible participation of latent periodicity of

amino acid sequences in choice and stabilization of the proper conformation of protein’s globule.

To find periodicity today the techniques of dynamic programming [Heringa, 1994; Heringa

and Argos, 1993; Heringa, 1998; Benson, 1997; Benson, 1999; Heger and Holm, 2000; Andrade et

al., 2000] or Fourier transformaion [Taylor et al., 2002; Lobzin and Chechetkin, 2000; Dodin et al.,

2000; Jackson et al., 2000; Rackovsky, 1998; Chechetkin and Lobzin, 1998; Coward and Drablos,

1998; Voss, 1992; Silverman and Linsker, 1996; McLahlan, 1993] are commonly used. The

dynamic programming techniques allow one to effectively find repeats in symbolic sequence with



arbitrary number of insertions and deletions. But that approach is limited by symbol similarity

matrix it uses (PAM and BLOSUM matrices are most commonly used for amino acid sequence

studies). It inherently means that dynamic programming-based techniques are capable of finding

periodicity with sufficiently high level of homology between distinct repeats. However, symbolic

sequences may contain so called latent periodicity [Korotkov and Korotkova, 1995; Korotkov et al.,

1997; Korotkov et al., 1999; Korotkova et al., 1999; Chaley et al., 1999], where significant

homology between periods is not observed and periodicity can be only revealed as a property of a

certain set of periods. These types of periodicity, previously found in many DNA and protein

sequences, can be extensively omitted when using dynamic programming-based techniques.

Techniques that use Fourier transformation to search for periodicity in symbolic sequences

are now capable of finding any kind of periodicity in absence of insertions and deletions of

symbols. They represent symbolic sequence as a set of sequences of zeroes and ones, the size of this

set equal to the size of used alphabet [Lobzin and Chechetkin, 2000]. However, using Fourier

technique one can find statistically significant periodicity only if period length is way less than

alphabet size and the investigated subsequence is not noticeably enriched by some symbol or group

of symbols. Otherwise the statistical significance of this periodicity will diffuse over periods of

shorter lengths and that makes it impossible to be found at proper significance level. Moreover,

Fourier transformation does not allow finding periodicity of symbolic texts in presence of many

insertions and deletions.

Previously we had developed the mathematical approach for searching for latent periodicity,

which is based on information decomposition of symbolic sequence [Korotkov and Korotkova,

1995; Korotkov et al., 1997; Korotkov et al., 1999; Korotkova et al., 1999; Chaley et al., 1999]. The

main idea of this approach is that information content of any symbolic sequence could be

decomposed into mutually nonoverlapping constituents. Each that constituent represents mutual

information between the investigated symbolic sequence and artificial periodic sequence with

period length equal to some prime number. For instance, in case of periodicity, which is 2 symbols

long, we generate the artificial sequence 12121212121212... , where symbols are treated as

numbers. This decomposition allows us to eliminate the shortcomings, peculiar to dynamic

programming and Fourier transformation, and makes it possible to find the so called latent

periodicity of symbolic texts. By latent periodicity we mean the periodicity, where significant

homology between periods is not observed and periodicity can be only revealed as a property of a

certain set of periods.

However, information decomposition at its present, just like Fourier-based techniques, is not

capable of finding statistically significant latent periodicity in presence of many insertions and

deletions. This may lead us to a conclusion that substantial part of latent periodicity occurrences in

genetic texts remains unseen by information decomposition-based techniques, as well as other

known methods.

The simplest method of searching for latent periodicity with insertions and deletions is a

combination of information decomposition and modified profile analysis. At that information

decomposition can serve as a method that, in a number of cases, reveals the latent periodicity of

some amino acid sequences and results in periodicity matrix [Korotkova et al., 1999], which can be

used to determine the weights for each amino acid at each position in a period. Then using of the

modified profile analysis allows us to reveal periodicity of this given type (defined by cyclic

position-weight matrix we have just constructed) in all the primary sequence data bank (such as

Swiss-Prot), taking into account possible insertions and deletions, and also to modify the matrix

with the object of increased sensitivity and specificity of the search.

In our present study for the first time we applied the modified profile analysis to latent

amino acid periodicity, previously found in 7 protein kinases using information decomposition.

Subsequent iterative use of the modified profile analysis resulted in noticeable modification of the

initial position-weight matrix and discovery of latent periodicity in active sites of 1074 protein

kinases from Swiss-Prot data bank. The data we gathered witness that latent periodicity is a

property of at least a great majority of eukaryotic protein kinases.



Methods and algorithms

We searched for latent periodicity of amino acid sequences using our previously developed

technique of information decomposition of symbolic sequences. First all amino acid sequences in

Swiss-Prot release 39 were scanned. The algorithm identified more than 12000 subsequences with

statistically significant periodicity of various lengths and types, without insertions or deletions of

symbols (we refer to amino acids in a protein sequence as symbols and to amino acid sequences as

symbolic sequences, because information decomposition technique is regardless of what type of

symbolic information it processes – nucleotides, amino acid residues or even written text). Then

these identified periodicities provided the initial data for searching for given periodicities with the

possibility of insertions and deletions. For this, we chose the cases with latent periodicity that have

the same period length and reside within functionally equivalent domains of different proteins. For

these cases we defined the latent periodicity matrices [Korotkova et al., 1999] that contain the

numbers of amino acids at each position in the period. Finally, we merged all these matrices into

one, which later served to introduce the position-weight matrix for subsequent modified profile

analysis, allowing for insertions and deletions.

Profile analysis is now widely used in research in the fields of molecular biology and

bioinformatics. A profile is a two-dimensional matrix, defining a pseudo-sequence. That is, while in

a conventional comparison of symbolic sequences A={ai} and B={bj}, the value of affinity of the i-

th symbol in A to the j-th symbol in B is determined using the mapping [ai, bj] -> R (with the

mapping usually in the form of a matrix like PAM or BLOSUM), profile comparison uses the

mapping [i, bj] -> R [Gribskov et al., 1987]. This motivates us to call A a pseudo-sequence rather

than a sequence. This technique is effective for data mining in genetic sequence databases, in

contrast to conventional alignment [Smith and Waterman, 1981], appropriate for comparison of two

protein sequences.

Profiles are usually obtained as a result of multiple alignment of proteins, having some

common property, and then used to search for homologues in data banks. However, we are also

concerned with inverse problem: how to form a new profile from the results of profile analysis of

data bank? It should have the following properties:

a) stability, i.e. it should be capable of finding at least a major part (ideally all) of the

proteins it was formed from;

b) optimality, i.e. the score of these proteins should be as high as possible and statistical

probability of casual finding of unrelated subsequence scoring this high should be as low as

possible;

c) selectivity, i.e. we should find the least possible number (ideally no) proteins not having

this property. The difference between b) and c) is that in the former case we deal with some

statistical model of sequence data bank (usually in the form of a long sequence with given

probabilities of symbols or groups of symbols), while in the latter case we we deal with real data

bank. As we will see below, the difference is important.

If we create new profile from the results of searching a data bank and repeat this process, we

can determine the iterative refinement of the initial profile. To make this possible, the iteration

method should be asymptotically stable, i.e. after a certain number of iterations the new profile

should be a good match to the previous one. This condition virtually defines the choice of formula

to fill the position-weight matrix, since a theorem exists that specifies the connection between

asymptotic frequencies of symbols in high-scoring segments (namely, the results of searching a data

bank) and the scoring scheme [Karlin et al, 1990]. It can be written in this form:

,
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where Wi,j is an element of the position-weight matrix for symbol of type i at position j, pi,j is

fraction of symbol of type i occurring at position j within the high-scoring segments, and fi is the

frequency of occurrence of symbols of type i in the sequence being scanned, namely, in the data

bank. The scaling parameter C in the formula may be arbitrarily chosen (multiplying all weights and



scores by a factor does not change the path of the alignment or its statistical significance, provided

that deletion costs are multiplied by the same factor), so we can choose it large enough to round the

weight values to integers without substantial loss of precision in order to speed up the computation.

Our numerical experiments showed that using other admissible variants of position-weight matrix

calculation, successive iterations leaded to:

a) continuous increase in number of results and complete loss of selectivity, or

b) contrarily, decrease in number of results right down to zero, or

c) deformation of the initial profile from one iteration to another, as a rule, the results skewed to

unrelated homologous repeats (we believe that it was due to irrelevant overestimation of

difference between most frequent and less frequent, but valid, symbols).

These results conform with the principles of operation of the popular profile analysis

package PSI-BLAST, whose authors came to similar conclusions [Altschul et al., 1997; Altschul

and Koonin, 1998; Aravind and  Koonin, 1999].

From the viewpoint of information theory, the problem is similar to that of useful signal

extraction from a noisy channel [Schmidt, 1998; Wilbur and Neuwald, 2000]. However, it would

not be correct to consider a set of real protein sequences to be like a mixture of uncorrelated noise

and useful signals. It is clear that certain patterns, corresponding to frequent structural and

functional features of proteins, are over-represented (compared to what we could expect from their

length and amino acid composition). Since profile searching is very sensitive, in most realistic cases

some of the representatives of these structural units could be found even with a distantly related

profile. If we include them in the multiple alignment for determination of a new profile, they will

skew it into the direction of that over-represented group. It is likely to lead to a subsequent sharp

increase of such representatives and the initial motif will be completely changed [Altschul and

Koonin, 1998]. This property is of a certain heuristic value, for example, for characterization of

distant relationships between proteins and protein families; nevertheless, it may lead to unwanted

effects when defining a common profile for a family of proteins or domains. Moreover, it makes

automation of successive iteration process hardly possible – one has to choose “correct” results of

scanning by hand to avoid profile “pollution”. When the number of results runs into the hundreds

and thousands, “time-consuming” turns into “impossible”.

To this end in our present paper, we propose a different probabilistic consideration of a set

of genetic sequences, which we call “noise decomposition”. Let us represent it as a mixture of

“uncorrelated noise”, composed of sequences, having no homology to the proteins under

investigation and characterized by “background” symbol probabilities fi, and “correlated noise”,

composed of sequences, generally unwanted but having sufficient level of homology to be found

with profile analysis together with the desired sequences. The main difference of correlated noise

for us is that the distribution of the numbers of symbol occurrences over different positions of

profile alignment is not casual, because we propose the existence of a pattern (or patterns) of these

false positives. The resulting noise will apparently be position-specific, let us denote its distribution

πi.j.

It is clear that correlated noise may be not of a single type, but a composition of a few

different types. We assign a distribution to each of these types and call it q
a

i,j, where the upper index

corresponds to different constituents of the correlated noise, composed of different types of false

positives. Then the correlated noise can be expressed by this formula:
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according to it, we rewrite the expression for calculation of the elements of the position-

weight matrix (1) with
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Here ck are “relative magnitudes” of different types of noise, in other words, their

contribution into the resulting noise, with normalization, which is required for this condition to

hold:
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since πi.j are probabilities.

We will weight different types of noise as follows. Weighting coefficients ck should be

proportional to the relative fraction of the corresponding type of noise in the total input signal, i.e. if

the source bank contains M1 sequences with correlated noise type 1, M2 sequences with correlated

noise type 2 and so on, and also M0 sequences without correlation with our pattern, then the relative

contribution of these noises into the resulting noise will be proportional to these numbers, i.e.
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However, in fact, the numbers M0, M1, M2... are unknown. Therefore, we will estimate them

from the results of an initial search. Moreover, since the insignificant subsequences should be

treated as noise, we will take into account only statistically significant results. At that the number of

results of any type (hence, the quantitative composition of noise) will depend on the chosen

significance threshold, however, our experiments showed that this assumption is valid for our

problem. In other words, if the search results contain N1 sequences with correlated noise type 1, N2

sequences with correlated noise type 2 and so on, we assume that

...
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Notice that N0 could not be estimated this way (if we do that, c0 will be set too low, and the

new profile (3) will be distorted; our experiments demonstrated that the iterative process diverges

under this condition). So we set N0 equal to the total number of false positives in the initial search

results; experiments showed that iteration process converges in this case.

To obtain values of q
a

i,j and pi,j we have to divide the initial search results into true positives

and false positives of different types. We have tested two methods to accomplish this: using

keyword analysis and using clustering. As we determined, the keyword analysis technique provides

a more precise decomposition of results, but it is applicable only when the data bank we work with

is already curated with appropriate keywords; the clustering technique works on uncharacterized set

of sequences but requires sequence similarity within each class. Details on our implementation of

these techniques will be given below.

It is clear that noise decomposition is quite applicable to conventional (linear) profiles

[Gribskov et al., 1987], but in the present study it was used for periodic profile training with the aim

of latent periodicity investigation of protein sequences [Korotkov et al., 1999; Korotkova et al.,

1999]. The reasoning given above is valid and expressions (1)-(6) hold in both cases. The problem

of finding a good cyclic profile is much more sophisticated than the linear problem, because in

cyclic alignment we have a number of diverged copies (repeats) of a pattern within a sequence

instead of one. Internal divergence of repeats superimposes on divergence of different sequences;

hence, cyclic patterns are much more feebly marked and hard to assign to some structural or

functional unit. For the cyclic profile search problem we have made a modification of the algorithm

of [Fischetti et al., 1992], called locally-optimal cyclic alignment. Our main idea is to present cyclic

alignment in the form of a path that connects the nodes of a two-dimensional cylindrical lattice,

where one of the coordinates corresponds to a position in the linear sequence and another (cyclic

one) is for a position in the cyclic profile (compared to conventional sequence alignment, which can

be presented in the form of a path between nodes of the two-dimensional lattice, coordinates being

the positions in compared sequences). This path contains diagonal steps, which describe matching

of a symbol from the sequence and a position of the profile, as well as steps along the axes, which

describe insertions or deletions. Every such path has a total score, which is the sum of gap penalties

and weights of symbol-to-position matches.

The optimal cyclic alignment is the path with the highest possible total score. We have

shown that, just like finding of the best linear alignment using Smith-Waterman formula [Smith and

Waterman, 1981], it can be found when we fill cell-by-cell the similarity matrix Si,j, having a cyclic



(wrapped) index i, namely, Si-L,j ≡ Si+L,j ≡ Si+2L,j ≡ ... ≡ Si,j, where L is length of the period. The

formulae for recursive filling of Si,j are:

]}dS[max,Smax{S kj),ki(
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Here wi,j is the weight of the jth symbol in the sequence at the ith position in the profile, dk is

the gap penalty for insertion/deletion of k successive symbols. As usual, to find the optimal local

alignment we find the highest element of S-matrix and recreate the path down to the first zero

element. The value of the highest element is the total score of optimal local alignment; this value

was used to check whether the alignment is statistically significant.

A Monte-Carlo method was used to assess the statistical significance of alignments. The

assessment was performed separately for each sequence, taking into account its length and

composition. To assess the statistical significance of an alignment in this study we aligned the

appropriate random sequences of the same length and composition as the real sequence (to avoid

composition bias effects) using the same cyclic profile. Then, considering the distribution of

obtained weights to be normal [Webber and Barton, 2001; Korotkov et al., 2000], we could estimate

the Z-value of the obtained alignment from the mean and the variance of these random scores:

)S(D

)S(ES
Z real −

= (9)

The threshold value of Z was chosen to be equal to 6.0. Our numerical experiments showed

that we are unlikely to observe Z-values greater than 6.0 when analyzing a random test sequence

with the same number of symbols as the total number of symbols in Swiss-Prot.

The preliminaries for cyclic profile alignment were given in [Laskin et al., 2002]; proofs and

implementation details will be discussed elsewhere. The described algorithms were implemented in

C++, and are available upon request by e-mail (for details visit our Web site

http://periodicity.fromru.com).

Results

In previous studies [Korotkov et al., 1999; Korotkova et al., 1999] we identified 7 protein

kinase amino acid sequences with latent periodicity of length 18 amino acids, in the absence of

insertions and deletions (Table 1). The example of latent periodicity is shown in Fig.1.

Fig. 1. Information decomposition spectrum

for amino acid sequence
WWAFGVLIYQ MLLQQSPFRG

EDEDEIYDAI LADEPLYPIH

MPRDSVSILQ KLLTREPELR

LGSGPTDAQE VMSHAFFRNI

NWDDIYHKRV PPPFLPQISS PTD

from KPC1_ASPNG (residues 954 – 1056).

Full protein kinase domain of this protein

contains residues 770-1030.

 All of them were serine-threonine

protein kinases except M3KA_HUMAN,

having dual specificity. The periodicity was

located in the protein kinase catalytic domains

(in a number of cases we also encountered

periodicity with period lengths of multiples or divisors of 18). This suggested that the periodicity of

18 amino acids is a characteristic property of protein kinase active sites. We set a problem to find
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out, first, to what extent this periodicity is peculiar to protein kinase active sites if insertions and

deletions are permitted, and, second, do serine-threonine and tyrosine protein kinases share the

same periodicity pattern and can we improve sensitivity and specificity of search by using separate

periodicity profiles for different kinase types instead of one.

We averaged amino acid occurrence frequencies in different profile positions of all 7 cases

mentioned above and made the initial position-weight matrix using formula (1). This matrix was

used to scan Swiss-Prot release 40 [Bairoch and Apweiler, 2000] using cyclic profile alignment. A

number of values of gap opening and extension costs were tried out, taking into account sensitivity

and specificity. Values of 3.5 for gap opening and 0.7 for gap extension were found to be optimal

and used thereafter.

As a result of this initial scanning we obtained about 100 statistically significant periodic

subsequences from both serine-threonine and tyrosine protein kinases. It is a fact that catalytic

domains of serine-threonine and tyrosine protein kinases have fairly homologous primary sequences

as well as similar 3D structure [Taylor et al., 1995]. Hence, we decided to form two periodic

profiles, according to these two types of protein kinase catalytic cores. To do it we divided results

into classes and formed two new position-weight matrices using (2)-(6), so that in one case serine-

threonine protein kinases were considered to be true positives and tyrosine protein kinases were

considered to be a kind of correlated noise, and vice versa for the other matrix. Two ways of

division into classes were tried out, keyword analysis and clustering.

Table 1. Proteins where latent periodicity without insertions and deletions was previously found.

Swiss-Prot ID Start

positio

n

End

position

Protein description in Swiss-Prot

KDBE_SCHPO 400  478 PUTATIVE SERINE/THREONINE-PROTEIN

KINASE C22E12.14C (EC 2.7.1.-).

KEMK_MOUSE 85 181 PUTATIVE SERINE/THREONINE-PROTEIN

KINASE EMK (EC 2.7.1.-).

KPC1_ASPNG 954 1056 PROTEIN KINASE C-LIKE (EC 2.7.1.-).

KPCL_RAT 526 565 PROTEIN KINASE C, ETA TYPE (EC 2.7.1.-)

(NPKC-ETA) (PKC-L).

M3KA_HUMAN 97 181 MITOGEN-ACTIVATED PROTEIN KINASE

KINASE KINASE 10 (EC 2.7.1.-)(MIXED

LINEAGE KINASE 2) (PROTEIN KINASE

MST).

CC22_XENLA 85 148 CELL DIVISION CONTROL PROTEIN 2

HOMOLOG 2 (EC 2.7.1.-) (P34

PROTEINKINASE).

CC2_CARAU 88 160 CELL DIVISION CONTROL PROTEIN 2

HOMOLOG (EC 2.7.1.-) (P34

PROTEINKINASE) (CYCLIN-DEPENDENT

KINASE 1) (CDK1).

We worked with the Swiss-Prot data bank, which is curated and contains relevant

information about protein kinase type [Junker et al., 1999]. We extracted information about proteins

under investigation from their descriptions (DE field), keywords (KW field) and feature tables (FT

field). We divided the results into three classes depending by keywords.  Class 1 comprised

proteins, which did not contain the keyword “protein kinase”.  Class 2 comprised proteins, which

were identified as a tyrosine protein kinase, while class 3 comprised all other proteins. Then we

consider one of the classes (2 or 3) to be true positives and another 2 classes to be different types of

correlated noise. This approach is applicable when relevant information is presented in Swiss-Prot

or any other database (one can use SQL to query a number of databases at a time).



If such information is absent in a data bank, clustering can be used to split the proteins into

classes. We performed the protein kinase clustering experiment as follows. First, we made pairwise

comparisons of identified subsequences using a global alignment method [Needleman and Wunsch,

1970]. Then we built the matrix of distances between subsequences using the formula:

Distance(A,B)=(AlignmentScore(A,A)+AlignmentScore(B,B))/2–AlignmentScore(A,B).

This distance matrix was used in cluster analysis with the single linkage method, and merge

threshold adjusted to output 2 large classes. Then we checked if these clusters related to 2 types of

protein kinases, and found incomplete correlation (about 90%), i.e. there were both serine-threonine

and tyrosine kinases in each cluster, but the prevalence was about 90%. We conclude that the

information in Swiss-Prot is more reliable than clustering and should be used when possible. From

this point on we used the keywords method.

Class separation resulted in 2 position-weight matrices, which were later optimized (trained)

with iterative searches (described above) to find the highest number of serine-threonine or tyrosine

protein kinases, respectively, while keeping the specificity. We performed iterations until the result

set was nearly stable (generally 3-5 iterations turned out to be adequate).

Table 2. Summary of Swiss-Prot scanning using two profiles described in text.

Matrix type Serine/threonine-protein

kinases

Tyrosine-protein

kinases

Total number of protein kinases

present in Swiss-Prot release 40

963 (43 – dual specificity

kinases)

369 (43 – dual

specificity kinases)

Total  number of protein kinases

having the Z more than 6.0

774 301

False positives 55 5

Another type protein kinases found

among false positives

47 (tyrosine kinases) 5 (serine/threonine

kinases)

The summary of final results is presented in Table 2. In both cases, we found latent

periodicity in more than 80% of the target protein kinases and reached kinase separation levels

higher than 94%, most errors being due to dual-specific kinases (usually found using serine-

threonine profile rather than tyrosine). To obtain the latest versions of latent periodicity profiles and

results sets for these and other investigated instances, visit the authors’ Web site at

http://periodicity.fromru.com.

Discussion

The latent periodicity notion and search technique was initially presented in [Korotkov and

Korotkova, 1995] and refined in subsequent works [Korotkov and Korotkova, 1996; Korotkov et

al., 1997; Korotkov et al., 1999; Korotkova et al., 1999; Chaley et al., 1999]. As a result of

performed studies, we revealed the existence of various types of latent periodicity in numerous

amino acid sequences [Korotkov et al., 1999; Korotkova et al., 1999]. These found latently periodic

sequences belonged to various proteins, with various period lengths and periodicity patterns.

However, the question of functional significance of identified latent periodicities and its correlation

with protein structures remained open. To a great extent this resulted from the information

decomposition method being incapable of revealing latent periodicity interrupted with insertions

and deletions, so this approach omitted a substantial subset of proteins with certain functional

domains, so that no inference about the relationship between latent periodicity and protein

functionality could be made. This paper presents a pioneer work that shows the existence of latent

periodicity type that is common for a whole protein superfamily. We have achieved this result by

means of the development of novel mathematical methods and software, capable of finding

statistically significant latent periodicity of a predefined type in presence of insertions and deletions.

Protein kinases, i.e. enzymes whose function is to transfer phosphate residues from ATP to

other proteins, are known to provide a important role in cell signaling. There are many subfamilies



of protein kinases with internal homology of 90% and higher. Mutual homology between

subfamilies is much weaker, usually about 30%. Two classes of protein kinases are structurally very

similar, serine-threonine kinases and tyrosine kinases (according to the phosphorylated residue).  In

addition, there also exist protein kinases with dual specificity [Kentrup et al., 1996]. While there are

also other types of protein kinases structurally dissimilar to these kinases, which phosphorylate

other residues. They do not share the types of periodicity described in this paper, nor they were

found to have any other common periodicity pattern. In 1999, we found a few latent periodicity

instances in histidine protein kinases. We applied the same techniques to these results, however,

iterated cyclic profile searches found only a few close homologues, and so latent periodicity was not

found to be common for the whole histidine protein kinase superfamily.

As is well-known [Hanks et al., 1988; Hunter, 1991], the catalytic domain of protein

kinases, where our periodic subsequences reside, could be divided into 12 subdomains, on the one

hand, highly evolutionarily conservative and, on the other hand, related to 3D structure elements

[Taylor et al., 1992; Goldsmith and Cobb, 1994]. Subdomains I-IV are responsive for ATP binding

and form antiparallel β-sheets. Subdomains VIa-XI bind the substrate and initiate the phosphate ion

transfer. They are a bit more variable (presumably to provide substrate specificity) and composed of

mostly α-helices.

Subdomains alternate with less conservative sites that usually form loops, with the period of

these alternations being close to 18 residues. Using our protein kinase periodicity profiles, in

various protein kinases we find periodic sites, about 100 residues long, located in subdomains VIb,

VII, VIII and IX. These subdomains contain functionally important features such as the catalytically

active asparatic acid residue in subdomain VIb and the activation loop between subdomains VII and

VIII. Many amino acid residues within these subdomains are of critical importance for proper

folding and functioning of the active center. These are the asparatic acid residue mentioned above,

the valine residue that interacts with ATP adenine, the lysine residue that interacts with phosphate

ion, the asparagine and asparatic acid residues in subdomain VII that retain inhibiting and activating

Mg ions, the asparatic acid residue in subdomain IX that stabilizes the catalytic loop, and also a few

other residues that provide ionic bonds and regulate enzyme activity, being subject for

phosphorylation or autophosphorylation [Taylor and Radzio-Andzelm, 1994]. Notice that, for

example, the aforementioned asparatic acid residues are separated from each other by 18 and 36

residues (the numbers are given for cAMP-dependent mammalian protein kinase A, which is

usually a model enzyme for studying kinase structure; we obtained similar values for other

proteins), so they are both placed at the same position in the periodic repeat (namely, position 2),

although their functions are different. Therefore, we see that the period length is close to a

subdomain. To make sure we compared cyclic profile alignment of protein kinase A (Swiss-Prot

accession P05132) with its subdomain structure. It turned out that subdomain borders are located at

period positions 14 and 15. Hence, there is a clear relationship between periods and subdomains.

It was previously proposed [Kruse et al., 1997; Muller et al., 1999] that tyrosine protein

kinases were evolutionarily derived from serine-threonine ones by means of isolation of catalytic

domain nucleotide sequences by insertion of introns and subsequent pasting of these mobile

elements, slightly altered with mutations, into some other proteins with kinase activity, called

“ancestral kinases”. This would result in greater variability of catalytic domain lengths in tyrosine

kinases, because there are no gap restrictions for mobile elements. Our results favor that hypothesis,

because we found out that insertions and deletions occur almost 2 times more frequently in tyrosine

kinases than in serine-threonine ones (on average, 5.96 vs 3.05 indels per site), i.e. we observe

larger deviations from perfect periodicity.

Indubitably, the crucial outcome of our studies is the very fact that there is (as we suppose,

far from unique) very important class of proteins whose active center turned out to be latently

periodic. Our hypothesis about existence of latent periodicity types, common for whole protein

classes, has been verified.

At this time the origin of observed latent periodicity is unclear, however, we can propose a

few possible explanations of this phenomenon. First, we may suppose that catalytic domains were



initially much smaller than what we observe now. However, they were able to duplicate and

duplications were properly arranged to form even more catalytically active domain. It is a fact that

repeats in DNA sequences facilitate replication errors at their location, thereby promoting new

tandem repeats. We suppose that as the number of repeats grew, the ancestor protein benefited, i.e.

its catalytic activity and structure stability increased. Subsequent mutations formed even bettter

packed structure of these domains and fine-tuned the functionality, at the same time the mutations

resulted in periodicity diffusion, loss of homology between distinct repeats. That means that we

may call the residual internal similarities “echoes” of the ancient protein formation processes.

Latent periodicity may be also involved in stabilization of protein structure and proper

folding. It is well known that protein folding is supervised by chaperone proteins that bind to

growing polypeptide chain [Ruddon and Bedows, 1997; Thulasiraman et al., 1999]. This binding is

not strictly specific but there are certain binding preferences, the main factors being charge and

hydrophobicity of amino acid sequence sites [Takenaka et al., 1995; Knarr et al., 1999]. We

suppose that periodic distribution of these properties along the sequence facilitates uniform

distribution of chaperones and such uniformity is required (or desirable) for fast and proper folding.

For many cases we observe structure-related periodicity, that is, different positions in a period

correspond to different secondary structure preferences. For example, a period may consist of two

parts, one showing α-helix preference and another showing β-structure preference. At that, the

periodic motif itself determines a supersecondary structure peculiar to a type of protein domains or

single-domain proteins [Laskin et al., 2002].

To what extent is latent periodicity a common property of structural and functional protein

units? This question can be answered only after building of complete database of latent periodicity

profiles and their structural and functional features. Its creation is likely to demand great processing

power and development of new methods for latent periodicity detection and characterization. It is

now under consideration.
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