
Losing Find

Will Thompson

May 15, 2008

Abstract

Most current desktop environments feature some kind of document indexing and searching tech­

nology: such as Quicksilver on the Mac and 'I)·acker in the GNOME desktop. These are generally

presented to the user in a dedicated search interface, distinct from the normal representation of the

file system structure. As a result, each application needs to be modified in order to make use of this

functionality; some applications have been, but many have not.

Modern Unix implementations allow filesystem drivers to be implemented. in user space; that is,

sections of the system'8 directory hierarchy can be provided by normal, unprivileged applications

rather than by kernel modules. Using this: the results of queries against the document index can

be represented as regular directories and files, allowing such queries to be used anywhere that a

normal path can be used. A model for such a representation is given, along with FindFS, a working

prototype implementation written in Haskell.

Contents

Motivation 2

Design

Conceptual model

Definitions and axioms

4

4

8

Query notation

Meanings of filesystem operations within FindFS

Persistence of queries with mkdir

8

9

10

Implementation

Fuse ..

Tracker

12

12

12

Implementation of FindFS .

Monadic environment

Evaluation of filesystem operations

Caching query results

Lazy evaluation of queries

13

14

15

15

16

1

Future work 17

Moving files into a filtered directory 17

Extending the query model to allow conditions on directories 17

A FindFS-aware shell . 19

Similar projects 20

Acknowledgements 21

Haskell source for modules of the FindFS implementation 22

module FindFS.Util 22

module FindFS.Path 25

module FindFS.Node . 28

module FindFS 30

2

Motivation

The current state of the art for searching for files hased on their attributes and contents from the Unix

shell is to use the find and grep commands. Both of these commands present matching files as a list

of file names, which is not a convenient format if you want to explore the results further. If you want

to open every matching file in a single application, you can pass the -exec flag to find and have it run

that application for you, but if want only to examine some of the matching files, or use different viewers

for different files, you have to manually copy-and-paste the paths. Both commands also suffer from a

more fundamental problem: they must examine every file in the relevant directory hierarchy in order to

evaluate every query. While this is not a problem for searching small sets of files, the size of modern

storage media make this a significant cost when searching many or all of your files, and it is wasted effort

when indices of the relevant information already exist.

For an example, suppose you are a frequent lecturer, and you keep all of your lecture slides within a

slides directory. After years of presenting on various topics, that directory is unmanageably large, so

you would like to go through all slides older than one year and larger than two megabytes to determine

whether to keep them for further use, or archive them into the old-slides directory. So, you issue the

command:

[-]% find -/slides -ctime 365 -size 2m

The output is many, many pages of file names. If you wanted to archive them all, you could enter:

[-]% find -/slides -ctime 365 -size 2m -exec mv {} -Iold-slides

or pipe the ontput of the find command to an invocation of xargs. But since you want to archive only

some of those files, you are stuck with wading through a list of files one by one, copy-and-pasting the file

name into your viewer. If you could view the results of this search as if it were just another directory,

you could use your shell's tab completion functionality to enter the names of files, or even view the set of

matching files in your graphical file browser (which can probably sort by age or size, but not by both).

While grep is adequate for searching the contents of text files, other tools must be used to search the

metadata in more elaborate file types, such as audio and images. Suppose you need to find a number

of images at most 200 pLxels wide by 300 pixels high, to include in a document you are writing. To

find such images, you could open your photograph library application of choice and perform the search

there (assuming that it supports such searches), then copy the images back into your document editor.

But if you have a large volume of photographs not yet imported into the lihrary, as does this author,
such a search would not find all releva.nt results. A diff<>rent approach is to search using the document

indexing and retrieval search on your system, which circumvents the requirement to manually cata.logue'

your photographs ahead. of time. However, in both cases you have had to leave your document editor to

launch the querying interface, rather than choosing the editor's ';Insert image... " option a.nd navigating

to the relevant files, since you did not know ahead of time what those files are, and where exactly they

are stored.

Similarly, suppose you have a scene classification application which, given an image, attempts to calculate

the number of people in that image. The calculation is expensive, so you would like to plug it into your

document indexing system so that the result can be computed once per image and then cached for as

long 8...":i the image is unchanged. However, you would like to be able to use this information from within

various applications on your system without having to modify each application to be aware of this new

knowledge, rather than needing to use the dedicated searching interface provided by the indexing system.

All of the previous examples have involved searching for files with particular properties, rather than for

directories. Suppose that you keep all of your software projects in various subdirectories of - /source

(perhaps you keep your "Foo" project in - /souree/personal/foo) and want to see which of them are

under version cont.rol with the Dares version control system. To find such directories, you can look for

directories which contain subdirectories named _dares. Doing this with find is rather counter-intuitive,

as you must search for the _dares directories, and then print to the terminal a list of the parent directory

of each match:

3

[-]% find -/source -type d -name _dares -printf '%h\n'

So, whether we use find and grep or a dedicated desktop search UI, we suffer from being unable to

pose queries and manipulate their results from within arbitrary applications. The proposed solution

is to represent queries against a document index as virtual directories within the normal filesystem

hierarchy, allowing them to be posed and viewed everywhere that standard directories can. FindFS

allows any application to take advantage of the document index-and new facts about files it may learn

to store in the f u t u r ~ w i t h o u t modification. It can also serve to replace many uses of find and grep:

all of the standard shell utilities can be used on query results, without having to resort to xargs and

copy-and-pasting.

This paper proposes a way to expose the querying functionality of a desktop search tool as a virtual

filesystem, named FindFS, so that queries can be posed within unmodified applications and their results

browsed and manipulated using standard shell commands-or indeed a graphical file browser. Queries

are represented by virtual directories, overlaid onto a view of the user's home directory and distinguished

from regular directories by a symbol, 0. The majority of the queries given above can be posed within

FindFS. For a user Alice, the search for old files within the directory - / slides would be represented by

the directory:

/find/alice/slides/0(File:Modified <= 1 year ago)/0(File:Size >= 2 mb)/

To search the whole of /home/alice for images within the given dimensions, you would examine the

directory:

/find/alice/0«Image:Width <= 200) and (Image:Height <= 300»/

Having extended Tracker to run the hypothetical scene classifier over all indexed images, you would be

able to treat the following as a constantly-updated directory of photographs in - /Pictures depicting

groups of at least three people:

/find/alice/Pictures/0(Image:People >= 3)/

The model presented does not allow queries based on properties of directories, so it is not possible to

represent the given example search for version-controlled projects with FindFS. A possible extension to

the model to allow :mch queries will be briefly discussed towards the end of this paper.

4

Design

Conceptual model

x

Figure 1: The contents of a user's home directory, for the following examples

Figure 2: The full contents of Alice's home directory, mirrored under /find.

FindFS is mounted at / find, and contains a directory entry for each indexed directory. Typically, the

user's home directory is indexed, so for a user whose data lives in /home/alice, /find will contain a

directory alice. In the absence of a query, these behave as mirrored views of the underlying directories-­

with the same directories (represented by rectangles in diagrams) and files {ovals)-and can be used in

exactly the same way. Each file is a proxy for the real file; modifying the contents of the proxy will also

modify the real file, and vice-versa.

Queries against the corpus are condi.tions on files (they cannot match directories in this model). In

the filesystem representation, they take the form of virtual directories (denoted by diamonds) within the

replicated directory hierarchy, expressed iu a notation to be defined later. These virtual directories do

not appear in listings of their parent directory, but spring into temporary existence as and when they are

accessed. (I will refer to this "invisible unless directly addressed" behaviour by describiug the directory

as transient, denoted by dotted lines.) The tree below such a query directory is based on the tree below

the parent directory, but restricted to files matching the query and the directories leading to such files.

5

a

y y

Figure 3: Files in /home/alice matched by a query g.

Figure 4: Evaluating the query g at /find/alice.

Each such file is the same inode as the file beneath the parent directory, and as such is once again a

proxy for the underlying file.

For example, take a query q which matches two files of the example hierarchy namely /home/alicela/x

and /home/alice/1iT (indicated by double ovals in Figure 3). Then, as shown by Figure 4, /find/alice/ q

is a directory containing a file called W', since /home/alice/w is matched by q\ and a directory named a,

corresponding to /home/alice/a. In t.urn, /find/alice/ q fa contains a single file, x, since Ihome/alice/a/x

matches g. /find/alice/q /1iT is a proxy for /home/alice/IiT--they have the same contents and at­

tributes, and modifying one will modify the other-as /find/alice/ q falx is for /home/alice/a/x.

(The directory b does not have a corresponding pntry in /find/alicej q since none of its contents

match g, and z does not appear as it does not match g.)

Queries can also be applied at paths strictly below the root of the mirrored structure in the same way. For

6

Figure 5: Evaluating the same query q at /find/alice/a.

the same query q, /find/alice/a/ q is a directory containing only a file x proxying /home/alice/a/x

(as shown in Figure 5).

From this example, we see that query components in a path commute with "real" components, in the

sense that if the directory foo/bar exists in the underlying directory structure, then the contents of

foo/bar/r, foo/r/bar and r/foo/bar are identical for any query r (as shown in Figure 6).

It might seem strange t.o retain the underlying directory structure when presenting a query's results

as a virtual directory, rather than representing the query by a directory containing all matching files.

But that representation runs into problem when a query matches two files with the same base name

(that is, the final component of their paths). Consider a query p matching both a/y and b/y in the

running example. Evaluating it beneath either directory would not be problematic were we to flatten

all results into one virtual directory. However, if it were to be evaluated at the root, it would need to

contain two files named y, which is impossible. This problem does not arise when the relevant branches

of the direct.ory hierarchy are preserved, as two files with the same name can only occur within d i f f e r ~ l l t

directories (as illustrated in Figure 7).

7

"::0 ..

"':: ...""'=:::-::--­

x x

Figure 6: Showing how a query r matching faa/bar /x commutes with foo and bar.

­­- ---------------­ ­ ­ ­-­ ­ ­­­-
­ ­ ­ ­ ­ ---­

Figure 7: The result.s of a query p which matches several files sharing the basename y.

8

Definitions and axioms

Consider a general path P d~f e,/ . .. /en relative to a corpus within Ifind for e, components ofthe path

separated by forward slashes in the normal way. (This would correspond to Ifind/alice/ed .. .len in

the above examples.)

• If none of the Ci are queries, then we say P is an unfiltered path; otherwise, if any of the Ci are

queries, P is said to be a filtered path or a query path.

• If q is a query and x is any other path component, then the paths P,lqlxlP2 and PdxlqlP2 are

equivalent. That is, query conlponents commute with other path components.

• Thus, P can be normalized to a path P' = ud ... ludq,/ ... Iqm, where U dJf u,/ ... IUk is

query-free and Q ~f qd . .. I qm consists entirely of query components, by commuting all query

components to the end of the path. So in normal form, a path is a series of non-query components,

optionally followed by a series of query components.

• The underlying path of P is U, relative to the location at which the corpus in question is actually

stored (so Ihome/alicelU in the above examples). The query Q ~f Ai qi is the filter of P. (If P

is unfiltered, then Q will be identically true, matching every file.)

Now the existence and nature of the FindFS node at P is determined as follows:

• Normalize P, and examine its underlying path.

• If there is no object (file, directory, etc.) at the underlying path of P, then there is no node at P.

• If the object at the underlying path of P is a file t, then:

if f matches Q, then the node at P is a proxy for f.

if not, then there is no node at P.

• If the object at the underlying path is a directory d, then P is a directory containing proxies for

those files in d matching Q, and a directory entry for each directory in d with a descendant file

matching Q.

We could insist that the user express all paths in normal form, but we do not for several reasons.

Firstly, if a virtual directory .. ./q contains a directory foo whose contents we want to examine, it would
inconvenience the user to require that f 00 be added to the path before q rather than allowing it t.o be

appended to the path. Secondly, we will later introduce the concept of reifying a path, where the position

of query components within a path may in fact affect the results. That said, the FindFS implementation

does effectively normalize paths in the course of evaluating them, so the concept has a practical purpose.

Query notation

The Tracker document indexing system, which is used by the FindFS implementation, indexes various

aspects of the files under its purview. The size, creation date, etc. of all files is monitored; in addition,

Tracker attempts to determine and record the type of each file, and in some ca..<;es examine type-specific

metadata. For instance, the artist and album metadata for MP3 audio files is indexed, as are the

title, author and contents of text-like files such a..'" PDF documents. Queries can be posed in terms of

conjunctions and disjunctions of propositions based on these attributes; for example, you could search

for files satisfying (last modified more than one year ago or larger than two megabytes) and (is an image).

For the purposes of FindFS, these conditions must be stated in a notation meeting the constraints of Unix

directory names, which can be distinguished from ordinary path components. So, queries are prefixed

with a symbol, 0. The predicates themselves are expressed in a straightforward attribute-comparison­

value fa....,hion; the example just given is written:

9

0«File:1iodified < 1 year ago) or (File:Size > 2 mb» and (File:Type == "image")

Since ultimately we will take the conjunction of all query components in a path, this query could also

be expressed as nested directories:

0(File:Modified < 1 year ago) or (File:Size > 2 mb)/0(File:Type == "image")

As a special case, the condition document contains the string 'joo" is written as Gfoo.

Meanings of filesystem operations within FindFS

In order for FindFS to be useful, it has to behave exactly as the underlying filesystem would do when

dealing with unfiltered paths, and behave predictably and coherently when filtered paths are in use. The

majority of operations have obvious interpretations; for example, reading the contents of a file within

a filtered path should just perform the same read on the file in its true location behind the scenes.

Similarly, modifying the permissions and contents of files viewed through a filtered path makes sense,

although of course modifying a file might make it no longer match the query and thus vanish from the

virtual directory you're looking at!

More problematic are operations that should modify the contents of a directory. Recall the filtered

directory of all images smaller than 200 x 300 pixels:

/find/alice/0«Image:Width <= 200) and (Image:Height <= 300»/

Creating a new (empty) file foo below this directory would be problematic for a number of reasons.

There might already exist a file foo in the underlying directory not matching the query, so the operation

would have to fail with a "File exists" error despite the clashing file not being visible. More importantly,

the newly-created foo would be empty, and so would not match the query and would not be shown in the

filtered directory! Thus, we forbid creating new files in filtered directories. This might prove frustrating

in cases where the newly created file will ultimately match the relevant queries, or if an editor attempts

to create a temporary file in the same directory as a file you are editing, but I can see no straightforward

way around it..

On the other hand, deleting files from a filtered directory is permitted, and is interpreted as deleting

the files from the underlying directory. To justify this behaviour, consider again the virtual directory of
large, old slides:

/find/alice/slides/0(File:Modified <= 1 year ago)/0(File:Size >= 2 mb)/

Looking over these slides, you might decide that some are obsolete and want to permanently delete them.

It would be annoying to have to manually find the underlying file in order to delete it, and is in keeping

with the proxying behaviour of files to delete the underlying file when the proxy is deleted.

Since we permit deleting files from any directory (filtered or not), and permit creating files in unfiltered

directories, then it follows that we should allow files to be moved from filtered directories to unfiltered

ones. Continuing the example. you may instead want to move all old slides of any size to an archive

directory:

[/find/alicel% mv slides/'0(File:Modified <= 1 year ago)'/_ old-slides/

The rename(from, to) system call-nsed both for renaming files within a directory and for moving them

between directories on the same filesystem-is specified to do nothing if from and to are the same path.

FindFS generalizes this: if from is a filtered path, and to is an unfiltered path identical to the underlying

10

path of from, then rename(Jrom, to) is a successful no-op. We do not allow moving files into a filtered

directory. just as creating new files in a filtered directory is forbidden.

Because of the manner in which directories are filtered, it turns out that deleting directories below a

filtered path makes sense when the directory is empty. which is a precondition for deleting a direc­

tory on any filesystem. Consider the query q from Figure 3, which matches no files in the directory

/home/alice/b. Listing /find/alice/q/b will show it to be an empty directory, so we would expect

to be able to delete that directory. But the contents of /find/alice/q does not include b, since no

files beneath it match q, so we can interpret rmdir /find/alice/q/b by doing nothing and returning

success! In general, calling rmdir on a filtered directory path ending in a non-query component succeeds

if and only if the filtered directory is empty; if the underlying directory is also empty, it is removed, but

if not it remains untouched.

Persistence of queries with mkdir

Because every valid query is a Silbdirectory of any directory viewed in FindFS, it does not. make sense

to have all possible queries appear when calling Is on a directory: you would have to include infinitely

many queries in the listing! But you might want a commonly-run query to appear in certain directory

listings. We can attach this behaviour to calling mkdir and rmdir on filtered paths: calling mkdir on a

filtered path succeeds (providing the underlying path exists). and causes the query components of the

path to be in a sense reified-they will appear in subsequent listings of their parent directory. Calling

rmdir on a filtered path that has previously being reified undoes this effect; that is, the query is no

longer reified.

Figure 8: Before calling mkdir on /find/alice/@(File:Size > 1 mb) /Documents/@(File:Type

"pdf ll
)

For example. consider calling mkdir on the path /find/alice/@(File:Size > 1 mb) /Documents/®(File :Type

== II pdf II). Thereafter, listing the contents of /find/alice will return a directory entry ®(File: Size >

1 mb) alongside the other contents of the directory, and the contents of /find/alice/®(File: Size > 1

mb) /Documents will include an entry & (File :Type == "pdf II). As seen in Figure 9, listing /f ind/alice/Documents

will not include the 0(File: Type == "pdf") sub-directory. since the former was not part of the reified

path.

11

Figure 9: After calling mkdir on lfind/alice/0(File:Size > 1 mb)/Documents/0(File:Type
Il pdf ll)

As mentioned, this causes the position of query components within a path to affect the results of ex­

amining that path. In the presence of reified paths, the normalized form of a path is not equivalent

to the original path if the original path is the prefix of a query component of at least one reified path.

Indeed, they will differ precisely by those query components; in the above examples, if we normalize

0(File: Size> 1 mb) IDocuments before evaluating it, the implementation must remember to add the

0(type == "pdf ll) entry to the results. In all other cases, a path can be normalized without changing

its meaning.

12

Implementation

FindFS Is implemented as a Haskell application, acting as a filesystem through the Fuse library and

Llnux kernel module. It delegates querying and indexing to the Tracker daemon.

Fuse

The Haskell interface to Fuse (which is a very thin wrapper around the C API) provides a record type (see

Listing 1) with fields for each of the operations a filesystem may support. The application fills in as many

of these fields as it can, then passes the record to the fuseHain function , which provides the main loop of

the application. Each field is an action in the 10 monad, which is invoked with the relevant parameters

by the main loop as applications manipulate the mounted filesystem. Since multiple applications can

access the filesystem concurrently, several actions may be called at once in different threads; it is up to

the application to ensure that this is safe.

The Fuse API imposes no particular internal representation for the filesystem hierarchy on the appli­

cation; all paths are provided as strings, relative to the mount point. So if a Fuse-based filesystem is

mounted at /mnt/misc, and an application tries to make a directory bar inside Imnt/rnisc/foo, then

the fuseCreateDirectory operation will be passed lico/bar as the FilePath argument. It is up to the

application to transform this path into its structured representation as necessary.

For operations examining or modifying a file's contents, the application can represent a file handle by

an arbitrary object of its choosing, which will be passed as an argument to future operations on that

file. FindFS takes advantage of this to represent proxied files as a standard Haskell Handle opened on

the underlying file, and then simply delegates all subsequent operations to that handle via the usual

Haskell file 10 actions. (The C API for Fuse allows the application to Instruct the kernel to perform this

delegation directly; in effect, the application passes the real file handle back to Fuse, along with a flag

specifying that all future operations on the handle-apart from closing it---£hould be performed directly

on the real file handle, bypassing Fuse entirely. This dramatically improves performance, as it avoids

making a large number of context switches to and from the filesystem process when performing file 10.
However, the functionality is not currently exposed in the Haskell API, so FindFS does not make use of

it.)

Tracker

Tracker is an indexing and docuffif'nt ff'tricval serviC'P for the Linux desktop. It knows how to extract

metaclata from most common types of file, and allows that metadata to be searched in various ways.

Applications communicate with it via the D-Bus inter-process communication framework, or using a C

library that wraps the D-Bus APIs with a pair of C APIs, one blocking and one asynchronous. While

a Haskell library for D-Bus exists, it is in a poor state, so the C library was used to communicate with

Tracker; since all Fuse operations are execnted in their own thread, only the blocking API was wrapped

for use in Haskell.

Listing 1: Some of the members of the FuseOperations record

data FueeOperations fh = FuseOperations

{

fuseCetFileStat .. PilePath .- 10 (Either Errno PileStat).

fuseCreateDirectory :: FilePath - FilePlode ----0 10 Errno.

fuseOpen :: FilePath ---> OpenPlode _ OpenFileFlags ---> 10 (Either Errno fh).

fuseRead :: PilePath _ fh _ ByteCount - FileOffset - 10 (Either Errno ByteString).

fuseWrite :: FilePath ----0 fh _ ByteString - FileOffset - 10 (Either Errno ByteCount).

-- many more operations elided

}

13

Listing 2: Key elements of Haskell API for Tracker

module System. Tracker where

-- A connection to the Tracker daemon, which can execute one query at a time.

nevtype Client =.

-- Creates (I new connection to the Tracker daemon.

connect :: 10 Client

-- In fact, this junction has many more arguments, which have been omitted for clarity.
searchQuery Maybe String optional search terms for a full text search

Maybe Goadi t i on an optional query condition

rnt Offset from start of list of hits
rnt maximum number of hits to return

­­­­f Client
_ 10 [PHePath] paths to matching JiLes

nevtype Condition ~ Condition { unCondition :: Clause}

d.ata Clause Atom Operator Property Value
And [Clause] I Or [Clause] I Not Clause

d.ata Operator = Equals I GreaterTban \ GreaterEqual I LessThan I LessEqual
I Contains I StartsWith

nevtype Property s Property String
data Value = lntV lnt J DateV String I StringV String I FloatV Double

The function most relevant to FindFS is searchQusry, which searches for files matching a full-text search

(which correspond to 8-prefixed queries in FindFS's representation) and/or a predicate on files' metadata

(corresponding to the more general 0-prefixed queries). Valid property names include File: Mime (the

file's MIME type, such as text/htm1), Doc: PageCount, Image: Date, and many others, largely based on

the freedesktop.org file metadata specification l .

It is an unfortunate limitation of Tracker that, despite the fact that files' full paths are of course indexed,

it does not seem to be possible to limit queries to descendants of a particular directory (and the maintainer

seems opposed to adding such functionality). As a result, FindFS has t.o filter the results to the relevant

path itself, possibly retrieving a large number of irrelevant results in the process. Of course, whether

FindFS or Tracker does this filtering ultimately makes no difference to the results; on the other hand,
the SQLite database underlying Tracker is in a position to do a much qUIcker job of pruning irrelevant

matches than FindFS, which has no indices to assist it and must fetch each rpsult over a relatively slow

IPC system. This is mitigated somewhat by the offset and limit parameters of eearchQuery: if the first n

results tell us everything we need to know, we need request no more from the daemon.

Tracker's query language and D-Bus interface is set to change in the relatively short term to match the

XESAM2 standard. When this occurs, migrating FindFS to the new interfaces would allow it to work

with other indexers for the Linux desktop without further modification.

Implementation of FindFS

In the current implementation, FindFS only supports mirroring a single directory, namely the user's home

directory. Whl:"n invoked, it determines the path from the $HOME environment variable, and mounts itself

at If indo presenting a mirror of $HOME in a directory sharing its baseuame. (So a.'3 in the above examples,

if $HOME is Ihome/alice, then Ifind/alice will be the root of the mirror.)

All Fuse operations return a Unix Ermo value on failure. When a successful operation needs to a value

of type G, its return type is Either Errno a, using the standard mnemonic that Right signifies success.

Other operations need produce no value on success, so the return type of the callback is Ermo, with the

Ihttp://frsedeaktop org!wiki!Spscifications!shared-filemetadata-spsc.
2http://xssam.org/

14

Listing 3: FindFS's monad transformer stack

data FindEnv = FindEnv { envCorpus :: FilePath, envState :: MVar FindState }
data FindState = FindState { reifiedPaths :: Set FilePath }

type Find = ReaderT FindEnv (ErrorT Errno 10)
type StatefulFind = StateT FindState Find

-- R ~ n s a statef~l action in the Find monad.

atatefully :: StatefulFind a _ Find a

atatefully act = do
stateVar +­ asks envState -- Retrieve the state's box from the environment

-- R e m o ~ e the current ~ t a t e from the b o ~ ; further attempts to read the box's

-- c o n t e n t ~ will block u n t i ~ a new value is put in.

a _ littlO (takeHVar stateVar)

-- Run the supplied action starting from the current state, y i e ~ d i n g a

-- result and a possibly-modified state.
(result, s') _ runStateT act s

-- Place the modified state back into the shared box, anowing threads

-- blocking on the state to continue.
liftlO (putMVar stateVar s')

return result

constant eOK = Errno 0 being the "error" code signifying success. This matches the underlying C Fuse

API, but the inconsistency is clumsy, so FindFS wraps the latter style of operation to have return type

Either Errno ().

Monadic environment

Rather than operating directly within the 10 monad, FindFS code is embedded in a stack of of monad

transformers around 10 , providing clean access to early termination with an error code and appropriate

immutable and mutable state for the application. The stack seen in Listing 3 is built up as follows:

• Working din'cUy within monadic actions returning IO (Either Errno a) is inconvenient. Instead,
FindFS actions operate within ErrorT Ermo 10 a, allowing computations to short-circuit on error
by calling thro....Error with the relevant error code, and otherwise yield a value of type a on success.

• The root directory of the underlying corpus will be needed at various points. Rather than ex-

plicitly passing around a string, FindFS uses the ReaderT monad transformer to allow access

to a global immutable value of type FindEnv. So we define the monad Find a as an alias for

ReaderT FindEnv (ErrorT Errno 10) a.

• Some mutable state is needed; in particular, the set of reified query paths needs to be tracked,

and we need to ensure that modifications to that set are made atomically. We can fu lfil both

requirements by keeping a pointer to a mutable cell in the immutable environment; using the PlVar

pointer­like structure provides synchronized access and updates to that cell. To simplify code using

the state, FindFS has a wrapper function­statefully­­exposing it as a Statet­transformed version

of the Find a monad
l

so that modifications can be made through the standard MonadState actions.

Thanks to the synchronization features of PlVar, such stateful actions are atomic with respect to

othl2'r actions manipulating the shared state, while allowing actions that don't need to inspect the

state to continue unimpeded.

In order to invoke a Find a action from a Fuse callback, all of the FuseOperations members are wrapped

with a function calling (runErrorT . runReaderT env) on the action, having constructed the appropriate

environment.

15

Listing 4: Delegating operations to the underlying filesystem

type Component '"

type FindPath = [Component]

data Node = Node { nodeName :: Component

nodeVirtualPath :: FindPath

nodeUnderlyingPath :: FilePath

nodeTextQuery ., Maybe String

nodeCondition :: Maybe Condition
}

-- Raises "eNOENT" (file not found) if the path cannot be parsed

parsePath .. FilePath ­+ Find Node

-- Calls the given primitive 10 operation on the underlying path of a FindFS

-- path, throwing "eNOENT" if the file does not e:z:ist or does not match the query.

evaluateAtPath :: (FilePath -----I 10 a) ­+ FilePath Find-----I a

-- Calls the given primitive 10 operation on the underlying path of a FindFS

-- path, throwing "eACCES" (operation not permitted) if the FindFS path is filtered.

evaluateAtUn£ilteredPath :: (FilePath _ 10 a) ­+ FilePath _ Find a

Evaluation of filesystem operations

Having parsed a path supplied by Fuse into t.he underlying path and the query conditions, it remains to

evaluate the request.ed operation against it. l\.fany of the operations on a file-such as fuseSetFileMode ,

which corresponds to the chIDod command at the Unix shell, changing the permissions of a file-follow the

same strategy: if the underlying file exists, and matches the query (if present), then simply call the stan-

dard setFileMode function on the underlying file; ot.herwise, fail with "File not found", We can abstract

this pattern into a function evaluateAtPath, which takes a primitive 10 operation and a virtual pa.th a.nd

dops the necessary parsing, querying and ultimate evaluation, significantly reducing the boilerplate neces-

sary to implement many of the Fuse callbacks, Similarly, operations Like fuseCreateDevice which may only

succeed in unfiltered paths (as discussed previously) can be implement.ed with evaluateAtUnfilteredPath,

which fails if the supplied virtual path is filtered and otherwise delegates the given 10 action down to the

underlying file.

Caching query results

Compared to operations on unfiltered paths, listing the contents of a filtered direct.ory or acting upon a

file below a query is a relatively slow process. In the currpnt implementation, no qnery results are ever

cached by FindFS, so listing the contents of the same filtered directory twice in succession will involve

FindFS rerunning the necessary queries and recomputing the contents, even if (as is likely) the contents

are unchanged. Given a way to monitor files and directories for changes, FindFS could cache the results

of recent queries until it receives a signal that the cache has been invalidated, at which point it could

decide whether to npdate the cache or to drop the cached entry based on how recently the results were

needed. One way that this could be implemented is with the Linux kernel's inotify interface, through

which applications can register to be notified of changes to particular files and directories. However,

only changes to a directory's immediate children are signalled by inotify, so FindFS would have to

recursively register its interest in everything below the relevant. directory in order to recpive the reqUired

notifications, which would be error­prone and unwieldy.

In the future, it will be possible for applications to inform Tracker that a particular query should be

live: after returning the requested results, the Tracker daemon will send a signal to the application

whenever the contents of the results change, until the application instructs it to stop. This would be

ideal for FindFS, but unfortunately is not yet implemented. When it is, FindFS could cache query

results, updating the cache when signalled by Tracker, and garbage­collect old queries after a certain

period of time or when too many queries are live. Furthermore, FindFS could take the fact that a filtered

16

path has being reified as a hint to cache the query results ahead of time, so that even the first use of
such paths in a session is speedy.

Lazy evaluation of queries

One of the great strengths of the Haskell language is its built-in support for lazy evaluation of values.

It would seem sensible to treat the list of paths matching a given query as a lazy list, so that if FindFS

is checking that a particular file matches, it can retrieve only as many results as are needed. However,

repeated calls to the searchQuery action must be used to fetch segments of the result set, which are then

concatenated to yield the full list; since this is an 10 actioll, and such actions imposed a sequenced order

of execution, the list will be fully evaluated before it is ever consumed. To work around this, we use the

unsafelnterleaveIO :: 10 a - 10 function to delay the execution of each action until its section of the Go

result list is needed. The term "unsafe" signify that some of the ordinary ordering guarantees about 10

actions is lost, and it is up to the programmer to ensure this does not lead to erroneous behayjour. In

this situation, it does not. as the order of calls to searchQuery relative to one another is maintained.

Using this technique, FindFS contains a function

searchAll :: Maybe String Maybe Condition _ 10 [FilePathJ_---0

which returns a lazy list of results, fetched 100 at a time on demand (a figure arrived at by trying various

orders of magnitude and observing how long various queries took to be evaluated). So when checking

whether a particular file matches a query, FindFS can just call the standard list function 810m on the

result of searchAll; behind the scenes, once the desired path is found no more results will be fetched.

This reduces the cost of FindFS having to filter the results list itself, rather than having some way to

instruct Tracker to restrict the set of results returned based on a path.

Sadly, in the case of listing a directory's contents, there is currently no benefit to handing a lazy list

to FUse, as the code marshalling the result of fuseReadDirectory back to the C API consumes the entire

list immediately. While this is acceptable if the application reading the directory's contents wants the

complete list (as does Is, for instance), in some cases the application will only need a few entries. The

C API for Fuse supports returning only the requested number of entries: since readdir(3) operates on

a fixed snapshot of the directory, it would be reasonable for Fuse's Haskell API to SUppOlt consuming

the returned list lazily. (Since this is an uncommon case, this modification was not made.)

17

Future work

Moving files into a filtered directory

As previously noted, it does not make sense in general to permit moving files into a filtered directory, as

the files mey well not match the filter. In some limited cases, FindFS might be able to observe that the

file being moved does in fact match and hence permit the move. A slightly more interesting situation

is where a file's metadata could be modified to match the filter; in this case, we could allow files to be

moved into filtered directories in a number of useful cases.

For example, suppose that Alice has a file My_Monkey.mp3 downloilded from a particular musician's web

site, but that the file lacks the MP3 metadata tag specifying the artist. One could imagine a command

metamv which would allow Alice to run:

[ffind/alice]% metamv My-Monkey.mp3 Music/'®(Audio:Artist == I1Jonathan Coulton")'/

This command would cause FindFS to check whether the file matches the query, find that it doesn't,

and use an MP3 manipulation library to add the artist metadata to the file before moving it into

the underlying directory, Music. Of course, this operation would fail if FindFS could not modify the

file to match the filter without damaging the file; for instance, an image cannot be made to have

particular dimensions without scaling or cropping it. (It seems sensible to suggesting making this a

separate command, rather than adding it to the standard rename operation, since the behaviour might

be surprising if you were not expecting it.)

Extending the query model to allow conditions on directories

Figure 10: Bob's home directory; b has one child, while a and c have two.

The query model presented and implemented only allows predicates to contain conditions on files; as we

have already noted, this is insufficient for certain types of query. Introducing conditions on directories

is not straightforward, as they will not in general commute with other path components.

To illustrate this, let q denote the query has exactly one child, and consider Bob's home directory (Figure

10). We would expect /find/bob/q to contain those entries in /find/bob matching q, alld directories

in /find/bob with a descendant matching q, just as we do when working with conditions on files. So

18

w

Figure 11: Evaluating q d~f contains only one child at lfind/bob and at lfind/bob/b.

Figure 12: Evaluating r ~f contains two children at If ind/bob and at If ind/bob/b.

19

/find/bob/q should contain b, as shown in Figure 11. Below q/b, we consider q to have been satisfied,

and thus q/b contains a full proxy of b/c.

However 1 /find/bob/b/q is a different story. b contains no directories matching q, and no directories

with descendants matching q; thus, /find/bob/b/q is empty, unlike /find/bob/q/b. This example

shows that q does not commute with b, because b satisfies q.

Now, let r denote the query has at least two children. As depicted in Figure 12, this query does commute

with b, as it is not b but a child of b that satisfies r. Thus, we see that conditions on directories can be

pushed to the right until they reach the directory satisfying them. Since we cannot know which directories

satisfy such conditions without evaluating them, we can no longer take find the normal form of a query

before evaluating it. So, evaluation of a path would have to be done in stages. Firstly, each directory

condition would be evaluated in left-to-right order, each restricted to children of directories matching

previous directory conditions in the path. This will yield a set of underlying paths; the non-directory

conditions would then be evaluated at each underlying path, and the results reassembled. Directories

below a directory condition and above the directory satisfying that condition should contain no files,

only subdirectories. When searching for directories, you are ultimately interested in the locations of such

directories and the files they contain; it follows that you are not interested in files outside of matching

directories.

In such an augmented system, the search for version-controlled projects under - /source described earlier

might be represented by the directory

/find/alice/source/0 (has-child "_dares") /

for 0 the prefix for these hypothetical conditions on directories. (This example raises the need for a way

to enumerate all matching files or directories in some cases, rather than traversing the restricted tree

manually; this will be discussed shortly.)

Another consideration for conditions on directories is whether they should be satisfied by the deepest

matching directory, the shallowest matching directory, or at a matching directory in between. All are

reasonable choices; a default would need to be chosen. One might also want a way to specify a condition

on files, but show the full contents of any directory containing matching files; for example, you might

want to search for directories containing at least one Haskell source file, but then check what. other non­

Haskell files are st.ored in those directories. This would require a significantly more complicated query

model than presented here; it would be interesting to study suitable models to find one which is both

easy to use and practical to implement.

Of course, f\TI external tool could be wriu't;>11 to jump to the underlying directory of a filtered directory,

either by modifying FindFS to expose the underlying path as an extended attribute of the filtered direc-
tory's virtual inode or by performing the necessary stripping of query components itself. Vvith such a

tool, you could simulate the search for directories containing Haskell source by searching for all Haskell

source files. taking their parent directories, and finding t.he underlying paths of those dirl2'ctories. So some

such queries could be supported with the existing model, albeit in a convoluted manner that somewhat

contradicts the goal of allowing applications to make use of querying funct.ionality unmodified.

A FindFS-aware shell

While FindFS can be used from an unmodified shell, entering conditions is significantly harder than

entering normal path components, since the latter is assisted by tab-completion. Navigating a FindFS

would be made easier if the shell were aware t.hat a path component beginning with G is a condition, and

suggested completions when you hit Tab: lists of possible attributes, operators, and (where reasonable)

values; recently-used queries; and so on.

A common use of find is to run a command on every file matching the condition. A consequence of

FindFS preserving the directory structure is that you cannot simply use the'" shell "globbing" operator

after a filtered pat.h to enumerate all matching files: you must traverse the entire subtree. Thus it would

20

be useful for the shell to interpret •• as expanding to all files below that point (as is the case in certain

existing shells, such as zsh). For instance, you might want to launch every Haskell source file mentioning

the module System. Tracker in your text editor when its programming interface changes:

[lfind/alice]% vim '0(File:Type contains "haskell")' /8System. Tracker/••

Assume that conditions on directories have been added, as in the previous section. Now, a different

operator is needed to denote the set of directories at which all directory conditions in the filtered path are

satisfied; 0, say. To see why a separate notation is needed, consider again searching for version-controlled

directories within - /source. In some cases, you might want to find aU files under such directories,

perhaps simply to find an approximate total of how many files you have under version control with a

tool count that simply counts its arguments:

[/find/alice]% count source/'0(has-child II_dares")' 1**

In other cases, you might want to pull any new upstream changes into each project directory:

(Jfind/alice]% for repo in source/ ' 0(has-child "_darcs") '/o; do

dares pull --repodir=$repo

done

Given conditions on directories, a slightly richer range of predicates on file names than Tracker currently

allows, and the operators "', "'* and 0, we can rewrite any expression currently written as a shell glob

as a FindFS path expression. So now standard glob expansions (such as foo"'. txt expanding to every

item in the directory whose name starts with foo, and foo. ??? which matches files called foo with any

three-character extension) could be removed from the shell in favour of the richer querying infrastructure

provided by FindFS.

This does not defeat the original goal of exposing the functionality to unmodified applications, as we

would merely be improving functionality that only the shell had in the first place. Of course, it might be

useful to add similar features to the standard file chooser widgets of Gtk+, the VI toolkit used by the

GNOME desktop, which would extend the same functionality to many more applications without requiring

modifications to each one. In fact, that widget already supports performing simple queries with Tracker

from arbitrary applications. If we were willing to only offer the features of FindFS's model to such

applications, we could dispense with the virtual filesystem entirely and simply build the query model

directly into the file chooser widget and the file manager. However, in reality there are many different
graphical toolkits in active use, aud many useful applications which do not even use the standard file

chooser window of the relevant toolkit, so there is real value in exposing the model as a filesystem.

Similar projects

Beagle is an indexing and desktop search system for the Linux desktop similar to Tracker. There is an

existing Fuse-based file system, named BeagleFS, which allows you to mount individual queries and view

the results as a dirE>ctory. While this is ideal if you only ever want to run a handful of queries, having to

mount a new file system whenever you want to run a new query is not a sensible model. The presentation

of all results in a single directory also suffers from problems when multiple results share a basename, as

discussed earlier.

~ 1 a n y modern Unix implementations have a command named locate, intended to replace the typical

use of find to search for files with names matching a given pattern. locate uses a pre-built index of all

file names, which is generally updated daily. This solves the repeated-effort complaiut about find for a

particular class of query, but unlike FindFS does not enable richer queries.

There are a number of virtual filesystem projects sharing the name "TagFS". Some of these projects allow

the user to assign arbitrary textual labels to files, producing a hierarchy of directories named for each

21

label containing links to each file. While this is a nice proof of concept, they do not make use of existing

metadata in the files. Others represent a given class of metadata in a relevant hierarchy; for instance, one

displays your music collection in a virtual artist/album/track number - track title hierarchy, regardless

of the organisation and naming of the real files. The ability to impose such a constructed hierarchy on

the results of FindFS queries would be an interesting extension.

Acknowledgements

First and foremost, thanks go to Bernard Sufrin, for the original idea and for supervising the project.

Thanks also to the authors of the Fuse library and Haskell bindings, the Tracker library, and the authors

of the Haskell tools and libraries used, for releasing their excellent work as free software. Finally, I

would like to thank the denizens of the #haskell IRe channel on Freenode, for hours of assistance and

interesting conversation.

22

Haskell source for modules of the FindFS implementation

module FindFS.Util

Types and utility functions used by FindFS. Tbis module also re-exports several modules and some

functions and types defined other modules that are needed in every module of the application.

{-If LANGUAGE FlexibteContexts If-}

module FindFB.Util

(maybeRead

safeHead

module Control.Concurrent.KVar

catchIOError

toErrno

laz:yStopAtM

FindPath

Node (..)

Component (..)

unparsed

isQuery

Find

FindEnv (,.)

FindState (..)

state fully

module Data.List

module Data.Maybe

module Data.Tuple.Utils

module Foreign.C.Error

«$». asks, throvError. guard, runErrorT, runReaderT, vhen, unless

get, gets, put, modify

MonadID, 10

debug

where

import Control.Applicative «<$»)

import Control.Monad
import C O D ~ r o l . " o n a d . E r r o r

import Control.Monad.Reader

import Control.Monad.Trans (MonadID. littIG)

import Control.Monad.State

import Control.Concurrent.MVar

import Foreign.C.Error

import System.IO,Error

import System,IO.Unsafe (unsafelnterleaveIO)

import System. Tracker (Condition, Clause)

import Data. List

import Data.Maybe

import Data.Tuple.Utils

import Data.Set (Set)

import Data. Ord

import Data.Function (on)

Types forming the monadic environment in which FindFS actions are executed. statefully wraps opera-

tions accessing the shared mutable state, serializing them r€'lativE' to one another while allowing stateless

operations to continue unimpeded in other threads.

23

data FindEnv FindEnv { envCorpua :: FilePath

envState :: MVar FindState
}

data FindState - FindState { reifiedPaths :: Set FindPath }

type Find - ReaderT FindEnv (ErrorT Errne 10)

type StatefulFind - StateT FindState Find

statefully :: StatefulFind a _ Find a

atatefully act ~ do

atateVar _ aaka envState -- RetrietJe the state IS boz from the environment

-- Remove the c'Urrent state from the box; further attempts to read the box's

-- contents will block 'UntiL a new val'Ue is p'Ut in.

a _ littlO (takeMVar atateVar)

-- R'Un the supplied action starting from the c'Urrent state, yielding a

-- res'ULt and a possibZy-modified state.

(reault, a') _ runStateT act 8

-- PLace the modified state back into the shared box, allowing threads

-- bLocking on the state to contin'Ue.

liftlO (putMVar atateVar a')

return reaul t

Represents nodes in the virtual directory hierarchy.

data Node - Node { nodeName :: Component

nodeVirtualPath :: FindPatb

nodeUnderlyingPath :: FilePath

node Text Query ,. Maybe String

nodeCondition :: Maybe Condition
}

deriving (Shev)

The representation of parsed FindFS path components. The unparsed path component is held in the

representation, but is ignored for equality and ordering.

type FindPath = [Component]

data Component TextSearch String FilePath FiLePath hoLds 'Unparsed path

Query Clauae FilePath component

I NonQuery FilePath

deriving (Sbov)

instance Eq Component vhere
(=­) ­ (==) 'on' discardUnparaed

instance Ord Component vhere
compare = comparing diacardUnparaed

diacardUnparsed :: Componen't - (lnt, S'tring)
diacardUnparaed (TextSearch s _) (1, shov a)

diacardUnparsed (Query c _) (2. she v c)

discardUnparsed (NonQuery p) (3. p)

unparsed :: Component - Fil.Path

unparsed (TextSearch p) p

unparsed (Query p) p

unparsed (NonQuery p) P

isQuery :: Component Bool

isQuery (NonQuery _) '" Fals.
isQuery _ - Tru.

A safe wrapper around rnd which does not abort. the program when reading a value fails.

maybeRead :: Read a => String _ Maybe a

24

maybe Read s = case reads s of

[(x, "")] Just x

­­­­­+ Nothing

A safe replacement for head which does not throw an exception on an empty list.

safeHead .. [a] -----+ "aybe a

safeHead (x:_) Just x

safeHead = Nothing

Instances and functions used to work within Monad£rror Errno. catchIOError lifts arbritrary 10 actions into

MonadError Erma, catchiug any thrown unchecked exceptions and piping thelll into the error monad.

instance Error Errno vhere

noMsg = eNOMSG

instance Shov Errno vhere

shov e ~ (E r r n o i) =

shov $ errnoToIOError ("(erroo " ++ shov i ++ ")") e Nothing Nothing

toErrno ;: IOError -----+ Errno

toErrno ioe

isAlreadyExistsError ioe eALREADY

isDoesNotExistError ioe eNOENT

isAlreadylnUseError ioe eBUSY

isFullError ioe eAGAIN

isEOFError ioe eIO
isIllegalOperation ioe eNOTTY

isPermissionError ioe ePERM

othervise eFAULT

-- The Fle::cibleContexts language e::ctension is needed for this type signature.

catchIOError :: (MonadError Errno eio, MonadIO eio) => 10 a -----+ eio a

catchIOError act = do

either <----- io $ try act

case either of

(Left e) throvError $ toErrno e

(Right r) return r

io .. (MonadIO m) => 10 a ­­­­­+ m a

io = littIO

lazyStopAtM runs the supplied actions in order as the result list is evaluated, stopping at and including
the first timE' the predicate is True. It is used to represent the full result set of a query as a lazy list.

stopAtM :: "onad m => (a Baal) ­­­­­+ [m a] ­. m [a]

stopAtM = vrappedStopAtM id

lazyStopAtM :: (a -----+ Bool) ----+ [IO a] ­­­­­+ 10 [a]

lazyStopAtM = wrappedStopAtM unsafelnterleaveIO

wrappedStopAtM vrapper p = stopAtM'

where etopAtM' [] return []

stopAtM' (m:ms) = do res <----- m
if pres
then return [res]
else do rese <----- vrapper $ stopAtM' me

return (res:rees)

A wrapper providing a single place to disable debugging output if necessary.

debug .. MonadIO io

=> String
-----+ io 0

debug = io putStrLn

25

module FindFS.Path

This module exports a single function: parsePath, which breaks a FindFS path into a Node specifying its

underlying path and its filter. The query components are parsed using the Parsec parser combinator

library, which allows the query syntax to be expressed directly in a monadic style.

module FindFS.Path

{parsePath)

vhere

import System.FilePatb

import System. Tracker. Query
import qualified System.Tracker.Query.Properties as Pr

import Text.ParserCombinators.Parsec

import FindFS.Util

parsePath' accepts two paths as arguments: the first is a path relative to the root of the FindFS, and the

second is the root of the underlying corpus. In effect j it normalizes the path, then transforms the query

components into the data types required by the Tracker client library.

parsePath is a very thin wrapper around it in Find monad, taking the root of the corpus from the Reader

environment and throwing an appropriate Ermo when the path cannot be parsed.

parsePath :: FilePath _ Find Node

parsePath virtualPath = do
prefix _ asks envCorpus

case paraePath' virtualPath prefix of

Just n return n

Nothing -. throlO'Error eNOENT

paraePath' .. FilePath
_ FilePath

­­­4 Maybe Node

parsePath' virtualPath prefix = do

components _ runP path virtualPath

let (nonQueriea. clauses, text Queries) = splitComponenta components

let underlying = prefix <I> joinPath nonQueries

lot condition = case clauses of

(] ~ Bathing

[c] ~ Just (Condition c)

cs ~ Just (Condition (And cs))

let textQuery = case textQueries of

[] ­­­4 Nothing
_ Just $ unvords textQueries

return $ Node { nodeName = last components

nodeVirtualPath = components

nodeUnderlyingPath = underlying

node Text Query textQuery
nodeCondition = condition

}

This function runs a Parsec parser, discarding the error message on parse fail ure; there is no way the

me"age could be passed back to the FindFS user.

runP :: Parser a _ String Maybe a­­­4

runP p input = case runParser p () input ofnn

Left err Nothing

Right x -. Just x

A combinator to run a parser, then return its result along with the string of input it consumed.

26

consumed :: Paraer a. --> Parser (a., String)

consumed P = do input get Input

start sourceColumn <$> getPosition
result _ p

end +­­­ sourceColumn <$> getPosition

let str m take (end start) input

return (result, str)

A path is parsed into a list of components by applying each component parser in turn after each sla."h;

that list of components can then be divided into lists of each kind of component, effectively normalizing

the path.

splitComponents .. [Component) ([PilePath], [Clause], [String])----t

splitComponents [J • ([]. []. [])

spli tComponents (c:cs) = case c of TextSearch s ­­+ (ps, cIs, s:ss)

Query cl ­­+ (ps, cl:cls, ss)

NonQuery p (p: ps, cIs, as)

where (ps, cIs, as) = splitComponents cs

path :: Parser [Component)

path = end

<I> (char 'I' » (end <I> more»

where end = eof » return []

more = do component _ choice try nonQueryComponent

try clauseComponent

textSearchComponent

components +­­­ path

return (component:components)

nonQueryComponent :: Parser Component

nonQueryComponent = do cs - manyl (noneDt "/")

guard. not $ any ('isPrefixOf l cs) [odot, otimes]

return $ NonQuery cs

We define a parser for a ® path component to match a string starting with that symbol, followed by a

clause which is returned (along with the consumed portion of the input). A clause is either an atomic

predicate, or the conjunction or disjunction of two other clauses 1 in either case wrapped in parentheses.

clauseComponent :: Parser Component
clauseComponent '" do (c, str) _ consumed (string otimes » clause)

return $ Query c str

clause :: Parser Clause
clause = do char ,(,

c _ atom <I> combinedClauses

char ,),

return c

combinedClauses .. ParSer Clause

combinedClauses = do cl _ clause

skipMany space
op _ cboice [string "and" » return And

string "or" » return Or

skipMany space
c2 _ clause

return (op [ei, c2])

Tracker's property names take the form type of file:name of field, such as Image: CameraMake and

Audio: TrackNo. The property corresponding to the type of a file is named File: Mime, and contains

the file's MIME type, such as audio/mpeg. Unfortunately, all MIME types contain a forward slash,

which cannot appear in path components as it is the directory separator! To work around this, FindFS

27

recognises the additional property File:Type, and treats (File:Type == "foo") as if you had writ-

ten (File:Mime contains "foo"), Other property names are checked against Pr.names, a list of valid

property names supplied by Tracker.

atom :: Parser Clause

atom"" do p ­ property

skipHanyl space

o ­ operator
skipHanyl space
v _ value

it p == prop_type

then

return $ Atom (if 0 Equals then Contains else 0) prop_mime v

e1s8

return $ Atom 0 p v

where prop_type Property "File:Type"

prop_mime'" Property "File:Mime"

property :: Parser Property

property = do name _ manyi (letter <I> char>; ')

let p = Property name
guard (name ='" "File:Type" II p 'e1am' Pr.names)

return $ Property name

Valid operators are matched by an entry in the lookup table, and mapped to the corresponding value of

type Operator. (Matching elements of a set has not been implemented in FindFS, although it is supported

by Tracker.)

operator :: Parser Operator

operator = choice $ map p operators

where operators::: [("=;11, Equals)

,(II >=" , GreaterEqual)

, (" >" , GreaterThan)

, (" <;" , LessEqual)

• (" <" • LessThan)

,(II contains" • Contains)

,("matches" , Regex)

,(II startsvi th" , StartsWith)

--,('lin", InSet)

]

P (symbol, result) ; try (string symbol » return result)

A value in an atomic clause can be an integer (with optional unit specification), a double­quoted string,

or a date. Whether the units match the property is not checked.

value :: Parser Value

value = choice $ map try [dateValue, intValue. stringValue]

intValue :: Parser Value

intValue = do ds ­ many1 digit

1et (Just 1) = maybeRead ds

s _ option 1 scale

return (IntV (i • s»)

where unit skipHany space » (choice $ map (string . fst) units)

units [(IIkb". 1024), (" mb", 1024 ~ 2). (11 gb", 1024 ­ 3), (lib". 1)]

scale do u _ unit

return . fromJust $ lookup u units

stringValue .. Parser Value

stringValue = do char ,,,.
s _ many1 letter

char ,II'

return (StringV s)

Ideally, entering a date as "4 years ago" would be supported, but currently only YYYY­MM­DD

HH:MM:SS is accepted.

dateValue :: Pareer Value

dateValue = do year _ count 4 digit

28

char '-'

month - count 2 digit
char '_I

day <----- count 2 digi t

char
hour _ count 2 digit

char ':'

min _ count 2 digit

char ':
sec _ count 2 digi t

return. DateV . intercalate" " $ [intercalate "-" (year, month, day]

,intercalate ":" [hour, min, sec]

1

Parsing 8 path components is straightforward: match 8 plus a string of at least one character, and

return that string (along with the string of input consumed).

textSearchComponent :: Parser Component

textSearchComponent '" do (terms, str) _ consumed (string odot » manyl (noneof tt/tt»

return $ TextSearch terms str

There are currently some encoding issues when embedding Unicode entities in literal strings. To work

around this, we define variables corresponding to the three bytes making up the UTF-8 encodings of ®

and 0.

otimes "\226\138\151"

odot "\226\138\153"

module FindFS.Node

This module contains functions to inspect nodes of the virtual directory hierarchy, querying Tracker if

necessary. (The type Node is defined in FindFS.Util to avoid a circular dependency between this module

and FindFS.Path.)

{-I LANGUAGE FlexibleContexts ,RecordPuns #-}

module FindFS.Node

(evaluateDir

evaluateAtPath

evaluateAtUnfilteredPath

isFiltered

failOnFiltered

failOnQueryLeaf

where

import qualified System.Directory as D

import System.FilePath

import System. Tracker

import FindFS.Util

import FindFS.Path (parsePath)

A convenience function determining whether a node is filtered.

isFiltered :: Node Baal­­­­­t

isFiltered n = is Just (nodeTextQuery n) If isJust (nodeCondition n)

Actions to throw an "access denied" exception on filtered nodes, and on nodes whose last component is

a query, rpspectively.

failOnFiltered .. Node - Find ()

failOnFiltered node = when (isFiltered node) (throwError eACCES)

29

failOnQueryLeaf ;: Node ---. Find ()

failOnQueryLeaf n o d e ~ (N o d e {nodeName })

vhen (isQuery nodeName) $

throwError eACCES

Gets the contents of the directory at the supplied node. If it is filtered, then the results are fetched from

Tracker, and restricted to children of the supplied node; otherwise, getDirectoryContents is called on the

underlying path.

evaluateDir Node

­­+ Find [FilePath]
evaluateDir n ~ (N o d e { nodeUnderlyingPath })

isFiltered n = do

exists t- io $ D.doesDirectoryExist nodeUnderlyingPath

vhen (not exists) $ throwError eNOENT

results t- searchNode n

let relevant = takeRelevant results nodeUnderlyingPath

let contents = ".":" .. ":firstLevelObjects relevant
return contents

othervise "" do

catchIOError $ D.getDirectoryContents nodeUnderlyingPath

firstLevelObjects :: [FilePath] ---. [FilePath]
firstLevelObjects paths =

nub $ map (head. splitDirectories) paths

takeRelevant :: [FilePath] - FilePath .-. (FilePath]
takeRelevant fullpaths target = catl1aybes $ map (stripPrefix target ,) fullpaths

vhere target' = addSlash target

addSlash p = if last p == '/' then p else p ++ "/"

If given a query-free path, the supplied action is run on it; if the path is filtered, an "access denied"

exception is thrown.

evaluateAtUnfilteredPath " (FilePath _ 10 a)

PilePath

Find a

evaluateAtUnfilteredPath act path = do

node +­ parsePath path

failOnFiltered node
catchIOError $ act (nodeUnderlyingPatb node)

Given an 10 action and a virtual path, the pat.h is parsed and the adion run on t.he und('rlying path of

the resulting node.

evaluateAtPath .. (FilePath - 10 a)

PilePath
Find a

evaluateAtPath act path = do
node ..- parsePath path
(act 'evaluateAt' node)

Given an unfiltered node, the supplied action is simply run on the underlying path.

If the supplied node is filtered, the set of paths matching its filter is found, and we check that the node's

underlying path is in that list before applying the action. If not, a "file not found" exception is thrown.

evaluateAt .. (PilePath ­­+ 10 a)

.-. Node

- Find a

evaluateAt act n o d e ~ (N o d e {nodeUnderlyingPath}) = do

when (isFil tered node) $ do
let pathElts = splitDirectories nodeUnderlyingPath

matches searchNode nodet-

­­ break the matches into a list of path components

30

let matchEltss = map splitDirectories matches

unless (any (pathElts 'isPrefixOf') matchEltss) $

throwError eNOENT

catchIOError $ act nodeUnderlyingPath

searchAll retrieves all results matching the supplied query terms and conditions from thE> Tracker daemon.

The results are retrieved lazily, in batches of chunkSize.

Since the list of matches may change in between calls to searchQuery (if the Tracker daemon indexes new

files in another thread, for instance), we must use nub to remove duplicat.es from the list of results. This

is made slightly more likely by the use of UDsafelnterleaveIO in lazyStopAtM, but would be possible anyway.

searchNode is a wrapper pulling the queries out of the node and passing them to searchAll. It does not

restrict the results to those reJevant to the node; this is done by the actions using searchNode.

searchAII .. MonadIO io

=> Maybe String

Maybe Condition

io [PilePath]

searchAll terms cond = io . withTrackerErr $ \client

let chunkSize = 100 -- If this is too ~ a r g e , the D-Bus method times otd

-- because Tracker takes too ~ o n 9

fetchChunk i = do

debug $ "Retrieving» ++ show (i*chunkSize) ++

searchQuery Files [] terms Nothing cond (i * chunkSize) chunkSize FillIee client

fetchers '= map fetchChunk [0 ..]

noMoreResults xs = length xs < chunkSize

in do results lazyStopAtM noMoreResults fetchers0­-

return is (nub. map fst3 . concat) results

searchNode :: Node _ Find [PilePath]

searchNode n o d e ~ (N o d e { nodeTextQuery, nodeCondition}) do

searchAII nodeTextQuery nodeCondition

module FindFS

This is the main module of FindFS. which implements the Fuse callbacks.

{-# LANGUAGE RecordPuns # ~ }

module Main where

import Control .Exception hiding (catch)
import SysteM. Directory (getHomeDirectory, doesDirectoryExist, getDirectoryContents)

import SYBtem.PilePath (takeFild'ame, «/», splitDirectories)

import SyBtem. 10
import System.IO.Error

import System.Posix.Directory

import System.Posix.Files

import SyBtem.Posix.IO

import System.Poslx.Types

import Data.Bits «.t.»
import Data.Function (on)

import System. Environment

import System. Exit Ce%itPailure)

import qualified Data.ByteString as B

import qualified Data.Set as Set

import System. Fuse

import qualified System. Tracker as T

31

import FindFS.Util

import FindFS.Node

import FindFS.Path

Virtual file descriptors are represented by the open file descriptor for the underlying file.

type FindFileHandle = Fd

The main action of the application determines the user's home directory. From this, it determines the

correct mountpoint. constructs the environment and then hands a set of callbacks to Fuse. It also passes

an exception handler which is used as a last resort when a callback throws an unchecked exception.

main :: 10 0

main '" do

corpus getHomeDirectory

state _ ne ... MVar $ FindState {reifiedPaths Set.empty}

let env '" FindEnv {envState state

• envCorpus = corpus
}

let mountpoint = "/find" <I> (takeFileName corpus)
args _ getArgs

... ithArgs (args ++ [mountpoint)) $ do

fuseMain (findFSOps env) findExceptionHandler

findExceptionHandler :: Exception - 10 Errno

findExceptionHandler e = do

debug $ "exception reached findExceptionHandler: " ++ sho ... e

case e of (IOException ioe) return $ toErrno ioe

- return eFAULT

All of the implementations of Fuse operations here are in the Find monad. They are supplied to Fuse as

10 actions by wrapping them in a function run which reconstitutes the necessary monad from env. void is

used to allow actions which would otherwise have to return eOK on success to return (): as is normal for

successful actions.

findFSOps :: FindEnv - FuseOperations FindFileHandle

findFSOps env =

defaultFuseOps

{ fuseGetFileStat run . findGetFileStat

fuseReadSymbolicLink run. findReadSymbolicLink
fuseCreateDevice \p t m i _ runVoid $ findCreateDevice p t m i

fuseCreateDirectory \p m - runVoid $ findCreateDirectory p m

fuseRemoveLink run Void findRemoveLink
fuseRemoveDirectory runVoid findRemoveDirectory

fuseCreateSymbolicLink '" \src dst runVoid $ findCreateSymbolicLink src dst

fuseRename \src dst runVoid $ findRename src dst

fuseCreateLink '" \arc dst runVoid $ findCreateLink src dst

fuseSetFileMode \p m runVoid $ findSetFileMode p m

fuseSetO ... nerAndGroup \path u g - runVoid $ findSetOvnerAndGroup path u g

fuseSetFileSize \path s _ runVoid $ findSetFileSize path s

fuseSetFileTimes \path a m _ runVoid $ findSetFileTimes path a m

fuseSynchronizeFile \path sync _ runVoid $ findSyncbronizeFile path sync

fuseOpen \path mode flags - run $ findOpen path mode flags

fuseRead \path h count off _ run $ findRead path h count off

fuseWrite \path h but off _ run $ findWrite path h buf off

tuseFlush \path h runVoid $ findFlush path b

fuseRelease "" \path h _ run (findRelease path h) » return 0

fuseGetFileSystemStats run findGetFileSystemStats

fuseOpenDirectory run Void . findOpenDirectory

fuseReadDirectory run . findReadDirectory

fuselnit return ()

}

where run:: Find a 10 (Either Errno a)­­­t

32

run action = runErrorT $ runReaderT action env

void :: Either Errno () _ Errno

void = either id (const eOK)

runVoid :: Find () _ 10 Errno

runVoid act z void <$> run act

Symbolic links are permitted to have relative paths as their targets. This poses a problem if the relative

path uses the .. directory entry to refer to its parent directory, as the parent of a filtered directory is

not necessarily the parent of the underlying directory. Suppose you have a script /src/utils/foo, and

a symbolic link /bin/foo pointing to .. /src/utils/foo. An application evaluating the link relative

to /find/user/bin will reach the correct target, but following the link from /find/user/bin/0python

would incorrectly lead to /find/user/bin/src/utils/foo.

We could attempt to introduce extra .. / elements to compensate for any such inconsistency, but for

simplicity we simply forbid reading such links at a filtered path.

findReadSymbolicLink :: FilePath - Find FilePath

findReadSymbolicLink path = do

n ~ N o d e { nodeUnderlyingPath = p' } _ parsePath path

target _ io $ readSymbolicLink P'

let components = splitDirectories target

when (isFiltered n && 'elem' components) $ throwError eACCES

return target

The intention was to attach the reification of query paths to mkdir and rmdir. However, this proved to

be impossible: the Fuse library calls f indGetFileStat on any path passed to mkdir to check if it already

exists before calling findCreateDirectory, which of course they do since query paths exist when examineci

directly. This could probably be fixed by modifying the Fuse library, although it might be a limitation of

the kernel. Instead, reification is performed and reversed by setting or clearing the "sticky" permission

bit on a query directory (from the shell, this is done with the chmod +t command).

f indSetFileMode :: FilePath --+ File"ode _ Find ()

findSetFileMode path mode = do

n o d e ~ (N o d e { nodeName, nodeUnderlyingPath}) parsePath path

if isQuery nodeName

then setReified node (hasStickyBit mode)

else do failOnFiltered node

io $ setFileMode nodaUnderlyingPath mode

hasStickyBit :: FileKode _ Bool

hasStickyBit mode = mode .&. stickyBit /= a
yher. 9tickyBit = 1romlu~e6ral 001000

setReified :: Node - Bool - Find ()
setReified n ~ (N o d e { nodeVirtualPath }) reity = statefully $ do

paths _ gets reif iedPaths

let update ~ if reity then Set.insert else Set.delete

let newPaths = update nodeVirtualPath paths
modify (\st _ st { reifiedPaths = newPaths })

Then, when reading the contents of a directory we add any reified query components which should
appear. They are given the same FileStat as the directory being read, as they are filtered views of it.

When listing a filtered directory, Tra.cker may return matches for files that have been deleted since it

last indexed that directory. So, while statting each real entry in the directory, we discard any entries

that turn out not to actually exist.

tindReadDirectory :: FilePath - Find [(FilePath, FileStat)]

findReadDirectory path = do

node(ll (Node { nodeUnderlyingPath }) <----- parsePath path

contents <----- e aluateDir node
withStats _ io $ catMaybes <$> map" (getDetails nodeUnderlyingPath) contents

reif iedContents _ getReif iedFor node

self Stat <----- fileStatusToFileStat <$> io (getSymbolicLinkStatus nodeUnderlyingPath)

33

let reifiedWithStat '" zip reifiedContents (repeat selfStat)

return $ withStats ++ reifiedWithStat

getDetalls :: FilePath FilePath ­­> IO (Maybe (FilePath, FileStat))

gat Details root name =
do etatus <---- getSymbolieLinkStatus (root <I> name)

return $ Just (name, fileStatusToFileStat status)

'catch' \e ­­> if isDoe6R'otExistError e

then return Nothing

else ioError e

The list of reified directories that need to be added is found by looking through the list of all reified

directories for those starting with the current directory, followed by a query component. For example, if

both recipes/0cake and recipes/hypothetical/0cake have both been reified, and we are listing the

contents of recipes, we need only add 8cake to the results; hypothetical is an ordinary directory, so

will already be present.

getReifiedFor :: Node ­­> Find [FilePath]

getReifiedFor (Node { nodeVirtualPath }) '" do

allReified <---- statefully $ Set .elems <$> gets reifiedPath5

let relevant '" [c

J Just e <---- map (eomponentAfter nodeVirtualPath) allReified

isQuery c

return $ map unparsed relevant

eomponentAfter :: FindPath ­+ FindPath ­+ Maybe Component

eomponentAfter p q '" do

suffix .;- stripPrefix p q

eafeHead suffix

Before moving an nnderlying file, we check that the destination is unfiltered, and that if the source is

filtered its last component is a non-qnery. (This disallows mv /find/alice/bar/0foo /find/alice,

which wonld otherwise try to move a qnery, bnt permits mv /find/alice/';;foo/bar /find/alice.)

findRename :: FilePath ­+ FilePath ­+ Find ()

findRename sre dest = do

sreNode <---- parsePath sre

destNode <---- parsePath dest

failOnFiltered destNode

failOnQueryLeaf sreNode

io $ (rename 'on' nodeUnderlyingPatb) srcNode dest-Node

Removing files is permitted, even if the path to them is filtered. as previously discussed.

findRemoveLink :: FilePath - ... Find ()

find Remove Link = evaluateAtPath removeLink

\Vhen removing a filtered directory not ending in a query component, we check if the underlying direc-

tory is empty; if so, it is removed as well. Unfiltered directories are removed as normal. Removing a

filtered directory ending in a query component was intended to unreify it, but as mentioned reification

is performed using the sticky bit instead.

findRemoveDireetory :: FilePath ­­> Find ()

findRemoveDireetory path = do
nodem(Node {nodeUnderlyingPath}) parsePath path

if isFil tered node

then do failOnQueryLeaf node
underlyingContents <­­­­ io $ getDirectoryContente nodeUnderlyingPath

when (sort underlyingContents == [".", N.. N])
(io $ removeDireetory nodeUnderlyingPath)

else io $ removeDiraetory nodeUnderlyingPath

34

When a proxy file is opened, we open a handle on the underlying file. This handle is passed to subsequent

operations on the virtual filehandle by Fuse, and operations are delegated to it. When the proxy is closed,

so is the underlying handle.

findOpen :: FilePath -.. OpenMode _ OpenFileFlags

- Find FindFileHandle
findOpen path mode flags = do

let open p = openFd p mode Nothing flags
fd +-- (open I evaluateAtPath' path)

return fd

f 1ndRead :: FilePath _ FindFi leHandle _ ByteCount _ PileOffset

- Find 8. ByteString

findRead path fd count off = do

nevOff ..- 10 $ fdSeek fd AbsOluteSeek off

if off /==- newOff

then throwError eINVAL
e188 10 $ do handle ..- fdToHandle fd

B.hGetNonBlocking handle (fromlntegral count)

findWrite .. FilePath _ F1ndFileHandle - B.ByteString -.. Fil.Offset
_ Find ByteCount

findWrite path fd buf off = do

new-Off ..- 10 $ fdSeek fd AbsoluteS••k off

if off /= newaf!

then throwError eINVAL
else io $ do handle +-- fdToHandle fd

B.hPut handle buf
return (tromlntegral $ B.length buf)

findRelease .. FilePatb - FindFileHandle _ Find ()

findRelease _ fd = 10 $ closeFd fd

All other operations are simply delegated to the underlying file, in some cases failing if the snpplied path

is filtered.

fileStatusToEntryType ;: FileStatus _ EntryType

fileStatusToEntryType status
I isSymbolicLink status SymbolicLink

I isNamedPipe status NamedPipe
I isCbaracterDevice status CharacterSpecial

I isDirectory status Directory

I isBlockDevice status BlockSpecial

I isRegularFile status RegularFile

I isSocket status Socket
I othervise - Unknovn

fileStatusToFileStat .. FileStatus FileStat

fileStatusToFileStat status =

FileStat { statEntryType = fileStatusToEntryType status

statFileHode fileHode status

statLinkCount linkCount status

statFileO.... ner = fileOwner status

statFileGroup fileGroup status

statSpecialDeviceID specialDeviceID status

statFileSize fileSize status

-- fi:r;me: 1024 \5 not a ~ w a Y 5 the. size of a b~ock

stat Blocks fromIntegral (fileSize status 'div' 1024)

statAccessTime accessTime status

statModificationTime mod1f1cationTime status

statStatusChangeTime statusChangeTime status

}

findGetFileStat ;; FilePatb _ Find FileStat

findGetFileStat path = do
status __ getSymbolicLinkStatus 'evaluateAtPath' path

return $ fileStatusToFileStat status

findOpenDirectory :; FilePath _ Find ()

findOpenDirectory path = do

35

Elxists +­ dOElsDireetoryExist • ElvaluateAtPath' path

unless exists $ throwError ElNOENT

findCreateDevicEl .. FilePath ­­­­­> EntryType FileMode ­­­­­> DElvicElID _ Find ()

findCreateDevicEl path entryType mode dey = do

let combinedMode = entryTypeToFileModEl ElntryType 'unionFilElModEls' mode

creatEl p = createDeviee p combinedMode deY

(create 'evaluateAtUnfilteredPath' path)

findCreateDireetory :: FilePath ­­­­­> FHeMode Find ()

findCreateDireetory path mode = do

let create p = creatElDirectory p mode

(crElate 'evaluateAtUnfilteredPath' path)

findCrElatElSymbolicLink :: FilePath ­­­­­> FilePath _ Find ()

findCreateSymbolicLink src deat = do

let mkLink p = ereateSymbolieLink p dest

mkLink 'evaluateAtUnfilteredPath' src

findCreateLink :: FilePath _ FilePath _ Find ()

findCreateLink sre dest = do

sreNode +­ parsePath sre

destNode +­ parsePath deat

mapM_ failOnFiltered [sreNode, destNode]

io $ (ereateLink 'on' nodeUnderlyingPath) srcNode destNode

findSetOwnerAndGroup :: FilePath ­­­­­> UserID GroupID _ Find ()

findSetOwnerAndGroup path uid gid = do

let set p = sEltOwnerAndGroup p uid gid

(set 'evaluateAtUnfilteredPath' path)

findSetFileSize :: FilePath ­­­­­> FHeOffset ­­­­­> Find ()

findSetFileSize path off = do

let set p = setFileSize p off

(SElt 'evaluateAtUnfilteredPath' path)

f indSetFileTimes :: FilePath ­­­­­> EpochTime ­­­> EpochTime ­­­­­> Find ()

findSetFileTimes path accessTime modificationTime = do

let set p = setFileTimes p aecessTimEl modificationTime

(set 'evaluateAtUnfilteredPath' path)

findGetFileSystemStats :: FilePath ­­­­­> Find FileSystemStats

findGetFileSystemStats _ = throwError eOK

findFluBh :: FilePath ­­­­­> FindFileHandle _ Find ()

findFlush _ fd : return ()

findSynchronizeFile :: FilePath _ SyncType _ Find ()

findSynehronizeFile __ = return ()

36

