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We sometimes need to estimate response rate within
each of several local markets. However, sparse data in
some markets may lead to unstable estimates.  We
derive a simple method for obtaining reasonable local
estimates under conditions of varying stability.  The new
rate estimates are essentially weighted averages of the
local rate and the overall rate.  Weights are chosen to
minimize mean squared error of the estimator.  We
conclude by illustrating the method with an example
involving direct mail response within postal regions.

Let there be I non-overlapping geographic market

regions be indexed by 1,...,i I= , and let 
i

N  and 
i

R

indicate number mailed and responded in each region,

respectively.  Furthermore, let 
i

i

N N• = ∑  and

i

i

R R• = ∑ denote the overall number mailed and

responded.  Let ˆ /
i i i

R Nθ =  and ˆ /R Nθ • • •=  estimate

the regional and overall response rates, respectively.
The problem we intend to solve is how to reliably

estimate local response rates 
i

θ  when the number

mailed, and the number of respondents, vary
considerably among regions.

The usual estimate of response rate 
i

θ  is ˆ /
i i i

R Nθ = ,

with 
2 ˆ ˆˆ (1 ) /
i i i i

Nσ θ θ= −  as it’s estimate of variance.

The main problem we deal with here is that the 
i

N  vary

greatly, leading to the ˆ
i
θ  having wildly different amounts

of precision.  At low levels of precision some markets
will, by chance, have implausibly extreme response

rates.  A secondary problem is that several 
i

R  are zero.

One approach to this problem is to set a threshold in the

form of an upper limit on 
2ˆ
i

σ .  Whenever the variance

exceeds this threshold then use the overall mean θ̂•  to

estimate 
i

θ , instead of the local mean ˆ
i

θ . This

approach fails on two fronts:

1. Since the transition from ˆ
i

θ  to θ̂•  is abrupt,

estimator bias and variance change abruptly as
well;

2. When 
i

R  is zero, ˆ
i

θ  and 
2ˆ
i

σ  are zero as well, and

while these estimates are unbiased, they are not
very useful, and this situation arises frequently,
particularly in small samples.

This approach is obviously a poor one and we do not
explore it any further here.

Instead, we construct the estimator

ˆ ˆ ˆ(1 )
i i i i

r rφ θ θ•= + − , where 0 1
i

r≤ ≤  is a weight

specifying the degree to which ˆ
i
φ  relies on the local

rather than the overall estimate. We want ˆ
i
φ  to have

several properties:

1. ˆ
i
φ  should transition smoothly from ˆ

i
θ  to θ̂• ,

gradually ‘borrowing strength’ from θ̂•  as the

variance of ˆ
i

θ  grows large;

2. ˆ
i
φ  should be more stable (have lower variance)

than ˆ
i

θ .

We choose 
i

r  in a way which minimizes the mean

squared error [MSE] of ˆ
i
φ :

2 2ˆ ˆ ˆ( ) ( ) ( )
i i i i

MSE E Bias Varφ θ φ φ = − = + 

Now we can show that
1
 

2 2 2(1 ) ( )
i i

Bias r θ θ •= − −

and 
2 2 2 2(1 )

i i i
Var r rσ σ •= + −  so that MSE is

minimized when

0
i

MSE
r

∂
=

∂
,

2 2

2 2 2

( )

( )

i

i

i i

r
σ θ θ

σ σ θ θ
• •

• •

+ −
⇒ =

+ + −
.

The weight is estimated by substituting the sample
estimates for the population quantities in this last
equation.

One property of ˆ
i
φ  is that its expectation is

(1 )
i i i

r rθ θ•+ − , so ˆ
i
φ  is a biased estimator of ˆ

i
θ

except when 0
i

r = .  Another property is that as 
2ˆ
i

σ

increases so does the weight, causing ˆ
i
φ  to rely more

and more on θ̂• .  Statistics like ˆ
i
φ  are sometimes

called ‘pullback estimators’ since they draw back toward
                                                     
1 We have assumed that the naïve local and overall estimates are

independent.  This is a reasonable approximation so long as no one

ˆ
i

θ dominates.
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a central estimate as the local estimate becomes
unstable. The philosophy behind the approach is that it
is reasonable to loosen the requirement of
unbiasedness in order to achieve a large reduction in
variance.

Another problem mentioned earlier is that, when 
i

N  is

small, 
i

R  may easily be zero. This gives ˆ 0
i

θ =  and the

usual variance estimate 
2 ˆ ˆˆ (1 ) /
i i i i

Nσ θ θ= −  equals

zero as well.  This results in ˆ ˆ 0
i i
φ θ= = , which we don’t

really believe.  In cases such as this it sometimes helps
to employ a ‘correction’ factor.  Here we use

2 , 0 1
a

i

i

i

R
a

N a
θ

+
= ≤ ≤

+

as the input to ˆ ˆ(1 )
i i i i

r rφ θ θ•= + − .  Working with

correction factors is as much art as science, so we
leave the choice of a  for the reader to explore on her

own.

A national direct marketer commissioned Impiric to build
a response model consisting of response rate by postal
region. US Postal codes are grouped into contiguous
geographic areas called Sectional Center Facilities
(SCF).  A single SCF consists of all the zip codes
starting with the same three digits.  Impiric’s client has
mail history covering 876 SCFs.  Mail history is sparse
in a number of SCFs and response rates in these
locations are unstable.  Overall response rate is
1.3414% on total mail quantity of 2,724,025.

A sample calculation on one SCF using the correction

1a =  should go like this:

The calculations get a bit messy, but a spreadsheet
program can be used to keep things straight.

An idea of how key quantities are distributed can be
seen from their order statistics:

Several features are noteworthy.  First, the pullback
estimates shrink in toward the overall response rate of
1.34%, and are clearly less variable than the naïve
estimates.  More than half the weights are greater than
0.59, so most final estimates are weighted more toward

i
θ  than θ̂• . Finally, the correction is significant only

when the mail quantity is quite small.

One way to view this method is to observe that there
are two sources of information available about a specific
market.  One source is internal to the market, and the
other is external across markets.  The combination
follows the simple rule of weighting roughly inversely
proportional to the variances.   The minimum MSE
criterion replaces minimum variance, and the
requirement of unbiasedness is abandoned.  Astute
readers will recognize empirical Bayes ideas in this
approach.

In closing, we note that this method can be generalized
to other marketing parameters.  For example, one might
wish to estimate price elasticity, or the effects of various
types of promotion by local market.  Regression
parameters can be shrunk as well as simple means,
although the calculations become more difficult.  Have
fun!
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Order Statistics of Key Quantities
Full Data Set

#

Resp-

onse

s

Mail

Qty

Resp

Rate

Correcte

d Resp

Rate

Weight Pullback

Resp Rate

Maximum 265 23,31
5

12.50% 16.67% 0.9816 10.15%

95
th

 %ile 115 8,722 2.42% 2.51% 0.9316 2.30%

3
rd

 Quartile 55 4,141 1.71% 1.76% 0.8074 1.60%

Median 32 2,135 1.36% 1.39% 0.5921 1.34%

1
st

 Quartile 16 1,169 1.08% 1.12% 0.2486 1.21%

5
th

 %ile 5 382 0.73% 0.77% 0.0117 0.85%

Minimum 0 8 0.00% 0.32% 0.0006 0.38%

Sample Calculation

#Resp-

onses

Mail Qty Resp Rate Corrected

Resp Rate

Weight Pullback

Resp Rate

16 2,131 0.75% 0.77% 0.8994 0.83%


