Name: \qquad Date: \qquad

1. Let
$f(x)=\left\{\begin{array}{cc}4-x, & x \neq 2 \\ 0 & x=2\end{array}\right.$.
Determine the following limit. (Hint: Use the graph of the function.)

$$
\lim _{x \rightarrow 2} f(x)
$$

2. Let

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+2, & x \neq 1 \\
1, & x=1
\end{array} .\right.
$$

Determine the following limit. (Hint: Use the graph of the function.)
$\lim _{x \rightarrow 1} f(x)$

3. Let $f(x)=4 x+3$ and $g(x)=x^{3}$. Find the limits:
(a) $\lim _{x \rightarrow 3} f(x)$
(b) $\lim _{x \rightarrow 5} g(x)$
(c) $\lim _{x \rightarrow 5} g(f(x))$
4. Let $f(x)=x^{2}-3$ and $g(x)=2 x$. Find the limits:
(a) $\lim _{x \rightarrow-1} f(x)$
(b) $\lim _{x \rightarrow-3} g(x)$
(c) $\lim _{x \rightarrow-4} g(f(x))$
5. Let $f(x)=3+x^{2}$ and $g(x)=\sqrt{x+2}$. Find the limits:
(a) $\lim _{x \rightarrow 3} f(x)$
(b) $\lim _{x \rightarrow 3} g(x)$
(c) $\lim _{x \rightarrow 3} g(f(x))$
6. Let $f(x)=4 x^{2}-5 x-4$ and $g(x)=\sqrt[3]{x-5}$. Find the limits:
(a) $\lim _{x \rightarrow 5} f(x)$
(b) $\lim _{x \rightarrow 1} g(x)$
(c) $\lim _{x \rightarrow 2} g(f(x))$
7. Find the limit:
$\lim _{x \rightarrow \frac{5 \pi}{6}} \sin x$
8. Find the limit:

$$
\lim _{x \rightarrow 2} \cos \left(\frac{\pi x}{3}\right)
$$

9. Find the limit:

$$
\lim _{x \rightarrow \pi} \tan \left(\frac{x}{6}\right)
$$

10. Suppose that $\lim _{x \rightarrow c} f(x)=7$ and $\lim _{x \rightarrow c} g(x)=6$. Find the following limit: $\lim _{x \rightarrow c}\left[f(x)^{g(x)}\right]$
11. Suppose that $\lim _{x \rightarrow c} f(x)=15$ and $\lim _{x \rightarrow c} g(x)=-7$. Find the following limit: $\lim _{x \rightarrow c}[f(x)+g(x)]$
12. Suppose that $\lim _{x \rightarrow c} f(x)=-12$ and $\lim _{x \rightarrow c} g(x)=-8$. Find the following limit: $\lim _{x \rightarrow c}[f(x)-g(x)]$
13. Suppose that $\lim _{x \rightarrow c} f(x)=-8$ and $\lim _{x \rightarrow c} g(x)=4$. Find the following limit: $\lim _{x \rightarrow c}[-9 \mathrm{~g}(x)]$
14. Suppose that $\lim _{x \rightarrow c} f(x)=6$ and $\lim _{x \rightarrow c} g(x)=-2$. Find the following limit: $\lim _{x \rightarrow c}[f(x) g(x)]$
15. Suppose that $\lim _{x \rightarrow c} f(x)=11$ and $\lim _{x \rightarrow c} g(x)=-9$. Find the following limit: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
16. Find the following limit (if it exists). Write a simpler function that agrees with the given function at all but one point.
$\lim _{x \rightarrow-6} \frac{x^{3}+216}{x+6}$
17. Find the following limit (if it exists). Write a simpler function that agrees with the given function at all but one point.
$\lim _{x \rightarrow 1} \frac{-3 x^{2}+14 x-11}{x-1}$
18. Find the limit (if it exists):
$\lim _{x \rightarrow-4} \frac{x+4}{x^{2}-16}$
19. Find the limit (if it exists):
$\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}+(x+\Delta x)+1-\left(x^{2}+x+1\right)}{\Delta x}$
20. Determine the limit (if it exists):
$\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{3 x^{6}}$
21. Determine the limit (if it exists):
$\lim _{x \rightarrow 0} \frac{-2(1-\cos x)}{x^{2}}$
22. Determine the limit (if it exists):
$\lim _{x \rightarrow 0} \frac{\sin ^{6} x}{x^{6}}$
23. Use the graph as shown to determine the following limits, and discuss the continuity of the function at $x=3$.
(i) $\lim _{x \rightarrow 3^{+}} f(x)$
(ii) $\lim _{x \rightarrow 3^{-}} f(x)$
(iii) $\lim _{x \rightarrow 3} f(x)$

24. Use the graph as shown to determine the following limits, and discuss the continuity of the function at $x=-3$.
(i) $\lim _{x \rightarrow-3^{+}} f(x)$
(ii) $\lim _{x \rightarrow-3^{-}} f(x)$
(iii) $\lim _{x \rightarrow-3} f(x)$

25. Use the graph to determine the following limits, and discuss the continuity of the function at $x=-3$.
(i) $\lim _{x \rightarrow-3^{+}} f(x)$
(ii) $\lim _{x \rightarrow-3^{-}} f(x)$
(iii) $\lim _{x \rightarrow-3} f(x)$

26. Find the x-values (if any) at which the function $f(x)=-14 x^{2}-14 x-9$ is not continuous. Which of the discontinuitites are removable?
27. Find the x-values (if any) at which the function $f(x)=\frac{x}{x^{2}-49}$ is not continuous.

Which of the discontinuitites are removable?
28. Find the x-values (if any) at which the function $f(x)=\frac{x-3}{x^{2}-9 x+18}$ is not continuous. Which of the discontinuitites are removable?
29. Find constants a and b such that the function
$f(x)= \begin{cases}8, & x \leq-7 \\ a x+b, & -7<x<9 \\ -8, & x \geq 9\end{cases}$
is continuous on the entire real line.
30. Find the constant a such that the function

$$
f(x)=\left\{\begin{aligned}
-7 \cdot \frac{\sin x}{x}, & x<0 \\
a+9 x, & x \geq 0
\end{aligned}\right.
$$

is continuous on the entire real line.
31. Find the vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}-100}{x^{2}+4 x-60}$.
32. Find the vertical asymptotes (if any) of the function $f(x)=\frac{x^{2}+4 x+3}{x^{3}-7 x^{2}+7 x+15}$.
33. Find the vertical asymptotes (if any) of the function $f(x)=\tan (-15 x)$.
34. Find the limit:
$\lim _{x \rightarrow 7^{+}} \frac{x+10}{x-7}$
35. Find the limit:
$\lim _{x \rightarrow 12} \frac{x^{2}-12 x}{\left(x^{2}+144\right)(x-12)}$
36. Find the limit:

$$
\lim _{x \rightarrow 0^{-}}\left(x^{9}+\frac{1}{x}\right)
$$

