
On ZK-Crypt, Book Stack, and Statistical

Tests

S. Doroshenko A. Fionov A. Lubkin V. Monarev
B. Ryabko

Abstract

The algorithms submitted to the ECRYPT Stream Cipher Project
(eSTREAM) were tested using the recently suggested statistical test
named “Book Stack”. All the ciphers except ZK-Crypt have passed
the tests. The paper briefly describes the essence of the test. Com-
puter implementation of the test in C++ language is supplied.

1 Introduction

The distinguishing attack on stream ciphers and pseudo-random bit gen-
erators (PRBGs) aims to find deviations from randomness in the output
sequences produced thereby. It is generally considered that a PRBG (and
a corresponding stream cipher based on it) is cryptographically secure if it
passes all polynomial-time statistical tests, i.e., the bit sequences it produces
are indistinguishable from truly random sequences by those tests (see, e.g.,
[1]). On the contrary, if a test is found which (in polynomial time) detects
deviations from randomness for a certain PRBG then this PRBG occurs to
be unsuitable for cryptographic use. That is why the distinguishing attack
on stream ciphers and PRBGs is so important.

There are two basic approaches to maintaining distinguishing attacks.
The first one is to show non-randomness by theoretical study of a PRBG.
The second approach is to test randomness experimentally, e.g., by applying
mathematical statistics methods. This experimental approach is quite known
and widely used in practice. In particular, the US National Institute of
Standards and Technologies (NIST) recommends in [2] this approach and
suggests 16 statistical tests for cryptographic PRBGs. In [2], one can also
find the main notions of mathematical statistics. We briefly discuss these
notions since they are essential for our test.

1



To distinguish between random and non-random sequences the null hy-
pothesis H0 that the sequence is random must be tested against the alterna-
tive hypothesis H1 that the sequence is not random. A statistical test must
decide on whether to accept or reject the null hypothesis. More specifically
in our test, the null hypothesis H0 is that the sequence was generated by the
source whose outputs are independent and equiprobable (in the binary case,
all zeroes and ones are independent of each other and appear with probability
1/2). The alternative hypothesis H1 = ¬H0 is that the sequence was gener-
ated by a stationary and ergodic source different from the source under H0.
A generated sequence subject to statistical testing is usually called a sample.
Often the whole generated sequence is divided into a number of independent
samples for testing.

Hypothesis testing is probabilistic in its nature. This is just because if H0

is true then any sample of a given length is equally likely. So when we look
at a specific sample we cannot say for sure whether it is random or not. A so
called Type I error occurs if H0 is true but, nevertheless, is rejected by the
test. The probability of Type I error is often called the level of significance
of the test and denoted by α. The values of α stretching form 0.001 to 0.05
are employed in practical cryptography. The opposite situation, when H1 is
true but the test accepts H0, is a Type II error. The probability of Type
II error, denoted by β, is usually difficult to determine. For example, the
sequence generated by a PRGB is definitely non-random since any PRGB is
a deterministic algorithm. Yet, for a good (cryptographically secure) PRBG
any applicable test should accept H0. We can say that within some model of
non-randomness, less values of β correspond to more powerful tests.

In [3] a statistical test called “Book Stack” was suggested. It was de-
scribed using the generally accepted language of mathematical statistics
(see also its description in [4]). In a number of works of the authors, it
was shown that this test is more powerful than all 16 tests recommended
by NIST. Specifically, this test was successfully used to detect deviations
from randomness in RC-4 key-stream generator with 8-bit words [5]. We
have also employed this test in distinguishing attacks against ZK-Crypt [6]
and other candidates to eSTREAM. It is important to note that all can-
didates except ZK-Crypt have passed the Book Stack test under the sam-
ple sizes of 230–235 bits (the upper bound of the sample size depended on
the cipher speed and our computing facilities). We describe the test in
the following sections. Computer implementation of the test is available
at http://web.ict.nsc.ru/∼ldp/files/bookstack.zip.

The last notice here concerns the discussion provoked by the name of the
test. As a universal source coding method, Book Stack was first suggested
by Ryabko [7]. Several years later the method was re-discovered in [8] where

2



it was called as a “Move-To-Front” (MTF) scheme. The latter name was
accepted by many researchers since they were unfamiliar with the russian
source (though published in english). In view of this state of affairs the
authors of the paper feel it right for themselves to use the original name
given by one of them.

The paper is organised as follows. In Sect. 2 we give some notes on the
statistic criterion which our test is based upon. In Sect. 3 the description
of Book Stack test in a form corresponding to its computer implementation
is given. In Sect. 4 we describe how to use the program and show what
parameters we used in the attacks.

2 Statistical Criterion Used

To derive a decision upon the null hypothesis a statistic on a sample is first
computed. In our test, we use a well-known x2 statistic which is described
as follows. Let n denote the sample size, n0 the number of zeroes and n1

the number of ones in the sample, n0 + n1 = n. Let p and q denote a priori

probabilities of zero and one, respectively. Then pn and qn are the expected
numbers of zeroes and ones in a sample of size n. The x2 statistic is defined
by the equation

x2 =
(n0 − pn)2

pn
+

(n1 − qn)2

qn
. (1)

For testing H0 directly, we have p = q = 1/2 and (1) is reduced to

x2 =
(n0 − n1)

2

n
.

However, direct testing is usually inefficient and, as a rule, some processing of
the sample is performed after which an equivalent to H0 hypothesis (denoted
H∗

0 ) is tested for very skew distribution.
The scheme of statistical test is the following. We set some critical

(threshold) value tα > 0. Then we compute the x2 statistic on a sample
and compare it to the critical value. The null hypothesis H0 (or H∗

0 ) is ac-
cepted if x2 < tα. Otherwise H0 is rejected. So the probability of Type I
error (the level of significance) is the probability of the event x2 ≥ tα when
H0 is true, i.e. α = P (x2 ≥ tα).

It is known that the x2 statistic obeys asymptotically the χ2 (chi-square)
distribution (with one degree of freedom in our case). It is generally accepted
that it is quite correct to employ the χ2 distribution for x2 if both qn and pn
are greater than 5. There are percentile tables for χ2 distribution suggested

3



in the literature (see, e.g., [1]) that show the values of tα for various α. For
our experiments we used:

α = 0.05 tα = 3.8415,
α = 0.001 tα = 10.8376.

For example, if in a series of tests (on many samples of the generated se-
quence), in 95% of cases, we observed the values of statistic greater than
3.8415, we may conclude that the sequence is not random (i.e. reject H0).

3 The Book Stack Test

In the Book Stack test, as it is implemented in the supplied computer pro-
gram, the input sample x1, x2, . . . , xs of size s, where each xi ∈ {0, 1}, is
considered to consist of w-bit words, 1 ≤ w ≤ 32, extracted from the sam-
ple one after another with an optional omission of several bits (a “blank”
between words). The words do not overlap. For example, if w = 3 and
blank is 1, the bit sample 0111010100010100 . . . converts to the word sample
011 010 000 010 . . . or, in decimal notation, 3 2 0 2 . . . .

So we have now a sequence of words y1, y2, . . . , yn obtained from the input
sample, where all yi ∈ {0, 1, . . . , 2w − 1}.

In the Book Stack test, all the words are ordered from 0 to 2w − 1. We
denote the ordinal number of a word a by ν(a). The order is changed after
observing each word yi according to the rule

νi+1(a) =











0 , if yi = a,

νi(a) + 1 , if νi(a) < νi(yi),

νi(a) , if νi(a) > νi(yi)

(2)

where νi is the order after observing y1, y2, . . . , yi, i = 1, . . . , n, the ini-
tial order ν1 being defined arbitrarily. (For example, we can set ν1 =
(0, 1, . . . , 2w − 1).)

Let us explain informally (2). Suppose that the words are arranged in a
stack, like a stack of books, and ν1(a) is a position of word a in the stack.
Let the first word y1 of the sample y1, y2, . . . , yn be a. If it occupies the k-th
position in the stack (ν1(a) = k), then extract a out of the stack and push
it to the top. (It means that the order is changed according to (2).) Repeat
the procedure with the second letter y2 and the stack obtained, etc.

It can help to understand the main idea of the suggested method if we take
into account that, if hypothesis H1 is true, the frequent words (as frequently
used books) will have relatively small ordinals (will spend more time near

4



the top of the stack). On the other hand, if H0 is true, the probability to
find each word at each position is equal to 1/2w.

Let’s continue the description of the test. The set of all indexes {0, . . . , 2w−
1} is divided into two subsets A0 = {0, 1, . . . , u−1} and A1 = {u, . . . , 2w−1}.
The subset A0 is said to be the upper part of the book stack and its car-
dinality |A0| = u is specified as a parameter of the test. Then, observing
y1, y2, . . . , yn, we calculate how many νi(yi), i = 1, . . . , n, belong to subsets
A0 and A1. We denote these numbers by n0 and n1, respectively. More
formally,

nk = |{i : νi(yi) ∈ Ak, i = 1, . . . , n}|, k = 0, 1 .

Obviously, if the null hypothesis H0 is true then all the words have the
same probability 1/2w and the probability of the event νi(yi) ∈ Ak is equal to
|Ak|/2

w. Using the notation of Sect. 2 and |A0| = u we may write p = u/2w,
q = 1 − p. Now testing H0 is replaced by testing the equivalent hypothesys
H∗

0 that the binary random variable Y obeys the distribution P (Y = 0) = p,
P (Y = 1) = q, given the sample y1, y2, . . . , yn with n0 zeroes and n1 ones.
This can be done using the χ2 distribution as was explained in Sect. 2.

We do not describe the exact rule for selecting the parameters of the test,
namely, the word length w, the blank, and the size of the upper part u, but
recommend to carry out some experiments for finding the parameters which
make the sample size minimal (or, at least, acceptable). The point is that
there are many cryptographic applications where it is possible to implement
some experiments for optimising the parameter values and, then, to test the
hypothesis based on independent data. For example, in case of testing a
PRBG it is possible to seek suitable parameters using a part of generated
sequence and then to test the generator using a new part of the sequence.

Let us consider an example. Let

w = 3 , y1 . . . y8 = 3 6 3 3 6 1 6 1 ,
u = 3 , ν1 = (0, 1, 2, 3, 4, 5, 6, 7) .

Then
ν1 = (0, 1, 2, 3, 4, 5, 6, 7), n0 = 0 , n1 = 0 ;
ν2 = (3, 0, 1, 2, 4, 5, 6, 7), n0 = 1 ;
ν3 = (6, 3, 0, 1, 2, 4, 5, 7), n1 = 1 ;
ν4 = (3, 6, 0, 1, 2, 4, 5, 7), n0 = 2 ;
ν5 = (3, 6, 0, 1, 2, 4, 5, 7), n0 = 3 ;
ν6 = (6, 3, 0, 1, 2, 4, 5, 7), n0 = 4 ;
ν7 = (1, 6, 3, 0, 2, 4, 5, 7), n1 = 2 ;
ν8 = (6, 1, 3, 0, 2, 4, 5, 7), n0 = 5 ;
ν9 = (1, 6, 3, 0, 2, 4, 5, 7), n0 = 6 .

5



We can see that the words 3 and 6 are quite frequent and the book stack test
indicates this non-uniformity quite well. Indeed, the average values of n0 and
n1 are equal to 3 and 5, whereas the real values are 6 and 2, respectively.

Let us make a remark on complexity of the test. The “naive” method of
transformation according to (2) would take the number of operations pro-
portional to 2w. But the simple observation is that only the upper part of
the stack has to stored, which effectively reduces complexity to O(u) oper-
ations. More complicated algorithms based on AVL or other balanced trees
can perform all operations in (2) in O(log u) time. In the supplied program
implementation, we use an even faster algorithm based on hashing whose
expected running time is O(1).

4 Computer Implementation

The Book Stack test implemented in C++ language is supplied as bs.cpp.
This program is to be compiled with the following command lines:

bcc32 -O2 bs.cpp for Borland C
cl /O2 /EHsc bs.cpp for MS Visual C
icl /O3 bs.cpp for Intel C
cc -O2 -o bs bs.cpp -l stdc++ for GCC
The executable file bs.exe or bs (in case of GCC) must then be placed

somewhere to be able to run from. For example, it may be the current
working directory in Windows or /bin in UNIX-type systems. The command
line to run the test has the following format:

bs -f filename -n num -w num -b num -u num -q

Any parameter is optional and may be omitted. The parameter meanings
are explained below.

-f filename Specifies the name of a file containing the sample to test. The
sample is considered as a stream of bits without any internal structure.
The sample size is determined by the size of file (unless -n is specified).
If the parameter is omitted, stdin is assumed. This allows to bind the
generator’s output with the test’s input via a pipe.

-n num Sets the maximum number of bits to read from a file or stdin. If
not specified, the sample is read till the end of file.

-w num Specifies the word length w for the test. The values from 1 to 32 are
supported. The default is w = 32.

-b num Specifies the blank between words. The values from 0 to 32 are
currently supported. The default value is 0, i.e. no blanks. If the

6



parameter is given after -w then the first w bits of the input stream
are used to form a word, then the blank is applied (i.e. the specified
number of bits are discarded), then the next word is formed an so on.
If the parameter -b num is given before -w then the blank is applied
before each word formation.

-u num Specifies the size of the upper part of book stack. The default value
is u = 2w/2. It makes no sense to set u ≥ 2w.

-q Supresses the explanatory information for the test results. The test writes
to the standatd output only the value of statistic obtained. This mode
is useful when embedding the Book Stack test into user-defined shells
for performing, e.g., a series of tests and computing the net result.

Together with the test we also supply our implementation of RC4 (with
8-bit words) and ZK-Crypt generators in files rc4.cpp and zk.cpp, respec-
tively. These may be compiled similarly as bs.cpp. The programs write
generated sequences to stdout. The parameters are as follows.

rc4 | zk [-k key] -n num [-q]

-k key The secret key (seed) for generator. A 128-bit key is specified as
a hexadecimal number (with optional 0x prefix). If the parameter -k

is omitted then an internally generated random (not cryptographically
secure) key is used. The key actually used is written (in hexadecimal)
to stderr.

-n num Specifies the number of bits to produce.

-q Suppresses the output of the key.

The examples of usage:
rc4 -k 0x5123b5678d01234f678ec123b56a8972 -n 1000 > rc4.bin

zk -n 10000000 -q > zk.bin

bs -f rc4.bin -w 16 -u 5

bs -f zk.bin -w 16 -b 16 -u 20000 -q

And a more efficient connection between programs via a pipe:
rc4 -n 10000000 | bs -w 16 -u 5

The following parameters were used in experiments described in [5, 6]:
rc4 -n 4294967296 | bs -w 16 -u 16

zk -n 16777216 | bs -w 32 -u 65536

7



References

[1] Menezes, A., van Oorschot, P. and Vanstone, S. (1996) Handbook of

Applied Cryptography, CRC Press.

[2] Rukhin, A. et al. (2001). A Statistical Test Suite for Random and Pseu-

dorandom Number Generators for Cryptographic Applications, NIST
Special Publication 800-22 (rev. May 15, 2001).

[3] Ryabko, B. and Pestunov, A. (2004). “Book stack” as a new statistical
test for random numbers, Probl. Inform. Transmission, 40, 1, pp. 66–71.

[4] Ryabko, B. and Fionov, A. (2006). Basics of Contemporary Cryptogra-

phy for IT Practitioners, World Scientific Publishing.

[5] Doroshenko, S. and Ryabko, B. (2006). The experimental distin-
guishing attack on RC4, Cryptology ePrint Archive, Report 2006/070
(http://eprint.iacr.org/).

[6] Lubkin, A. and Ryabko, B. (2005). The distinguishing attack on ZK-
Crypt cipher, eSTREAM, ECRYPT Stream Cipher Project, Report
2005/076 (http://www.ecrypt.eu.org/stream).

[7] Ryabko, B. Ya. (1980). Information compression by a book stack, Probl.

Inform. Transmission, 16, 4, pp. 16–21.

[8] Bently, J. L., Sleator, D. D., Tarjan, R. E. and Wei, V. K. (1986). A
locally adaptive data compression scheme, Comm. ACM, 29, pp. 320–
330.

8


