
Ghost Direction Detection and other Innovations for Ms. Pac-Man

Nathaniel Bell, Xinghong Fang, Rory Hughes, Graham Kendall, Senior Member, IEEE,

Edward O’Reilly, Shenghui Qiu

Abstract— Ms. Pac-Man was developed in the 1980s, becom-
ing one of the most popular arcade games of its time. It still
has a significant following today and has recently attracted the
attention of artificial intelligence researchers, in part, due to the
fact that the agent must react in real time in order to navigate
its way through the maze.

This paper forms an entry to the 2010 IEEE Conference on
Computational Intelligence and Games Ms. Pac-Man competi-
tion, where the objective is to reach the highest score possible
without any human intervention. That is, the Pac-Man is under
the control of a computer algorithm which must make real time
decisions and control the way the Pac-Man moves.

Our Pac-Man algorithm includes detecting the location of
the in game objects in relation to the map and creating a grid
based graph to represent the game state. Our Pac-Man follows
a number of rules, utilising Dijkstra’s algorithm and a tree
search algorithm.

A further contribution of this paper is effective detection of
the ghosts’ direction, which we believe has not been done before
in the way that we propose.

The world record, for the Ms. Pac-Man competition, is cur-
rently help by ICE Pambush 3 with a score of 30,010 (achieved
at the 2009 IEEE Congress on Computational Intelligence and
Games). Our algorithm consistently achieves a score of over
20,000. The highest score we have recorded is 30,930. We hope
that we can replicate these achievements at the 2010 conference
where we will present our entry.

I. INTRODUCTION

Pac-Man is a popular arcade game developed by Toru

Iwatani for the Namco Company in 1981. Since then there

have been many different versions of the game. The version

used in this paper is Ms. Pac-Man which is very similar to

the original.

The original version’s objectives were to guide the Pac-

Man around the maze collecting all of the pills without being

eaten by the ghosts. Once all of the pills in the maze have

been eaten, the game will begin again on a new maze which

may or may not be the same as the previous map. The more

maps the Pac-Man completes, the harder the game becomes.

Each map has four power pills in addition to normal pills.

When the Pac-Man eats a power pill the ghosts become

edible to the Pac-Man for a short period of time. If the Pac-

Man eats a ghost during this time he gains extra points, the

points gained from eating each ghost grows exponentially.

The Pac-Man also gets extra points for eating a fruit which

sometimes appears at random on the map. The game ends

when the Pac-Man loses three lives. A life is lost after

colliding with an inedible ghost.

The Ms. Pac-Man version of the game differs in one

key way. The ghosts’ behaviour in the original Pac-Man

game was deterministic. This meant players could exploit

this behaviour by using set routes. In Ms. Pac-Man the

ghost’s behaviour is non-deterministic which makes the game

much more difficult because each ghost behaves differently,

making it harder to deploy a strategy against them. The red

ghost is the most aggressive, the blue and pink ghosts are

less aggressive and the orange ghost is the least aggressive;

it behaves in a fairly random way. As more maps are

completed, the game becomes harder. Not only do the ghosts

speed up, but they also get “smarter”. For example, in our

experience of playing Ms. Pac-Man, the ghosts seem to

cooperate more in order to surround the player from multiple

directions, which makes it harder for the player to evade

them.

Ms. Pac-Man has attracted significant research interest

from the computer science and artificial intelligence com-

munity. This is due to the fact that although the game has a

relatively simple concept, to eat all of the pills without get-

ting eaten, it is still very difficult as the game is randomised

to some extent which means the proposed controller program

has to react to the current game situation in real-time.

This paper describes a rule-based system, which involves

utilising Dijkstra’s shortest path algorithm and a Benefit-

Influenced Tree Search algorithm. We are also able to

improve performance by a novel method of detecting the

direction of movement for each ghost.

In section II we will review related work on Ms. Pac-

Man. Section III presents an overview of the current SDK,

outlining some of its limitations that we address. In section

IV we present our proposed agent design and Section V

presents our results, with Section VI concluding the paper

and providing ideas for further development.

II. BACKGROUND

A. Pac-Man

Koza [3] carried out some of the earliest research on Pac-

Man, although he used his own implementation of the game.

This differed from the real game in that the ghosts all acted in

the same manner and their behaviour made the game easier

than the real game of Ms. Pac-Man. Koza’s approach relied

on running a predefined set of rules that the Pac-Man should

do, such as “move along the shortest path towards the nearest

pill”.

Wirth and Gallagher [4] used influence mapping in their

approach. An influence map describes how desirable places

on a map are for the Pac-Man to be. For example, if a location

has a lot of pills nearby, then it is a good location. But if

a location has a lot of ghosts then it is not such a good

location. The idea is to keep moving towards the best possible

locations. Using an emulated version of the original Ms. Pac-

Man game, this approach achieved very good results.

978-1-4244-6297-1/10/$26.00 c©2010 IEEE 465



Gallagher and Ryan [5] used a simple set of tactics

to control their Pac-Man. Their decision making depended

on the Pac- Man’s position (e.g. Corridor, T-junction) and

utilised tactics such as “If a ghost is less than p away then

‘Retreat’ else ‘Explore’”. Each rule had a weight determined

by previous game-play and these were evolved using the

Population-Based Incremental learning algorithm [6]. This

approach had a number of issues mainly concerning the

computational time required for the algorithm to learn.

Robles and Lucas [7] described the use of a simple tree

search method, similar to the A* algorithm [8], to control

their Pac-Man. Their search creates a tree of all possible

routes, judging whether each route is safe or unsafe. For

each route a value is calculated by the addition of all the

objects on the route, with each object having an associated

weight. For example, a pill may be worth two units and an

edible ghost five units. The route with the highest value is

taken. This approach received excellent results on a simulated

version of the Ms. Pac-Man game. Despite achieving high

scores, this method is somewhat flawed as the route with the

largest value may not be the safest route.

The most recent, and most successful, Ms. Pac-Man agent

has been developed by Matsumoto and Ashida [9]. They

named their agent ICE Pambush 3. This controller won

the 2009 IEEE Symposium on Computational Intelligence

and Games (CIG) competition with a world record score

of 30,010 points. To achieve this they developed their own

screen capture software which extracted the game informa-

tion more precisely than the original software kit distributed

by Lucas [10]. This more precise software kit enabled them

to set more detailed rules for controlling their Pac-Man. ICE

Pambush 3 [9] combined a set of basic rules with an A*

algorithm to decide on the best path. For example: “IF at

least one pill exists AND the nearest ghost is less than eight

away THEN move to the nearest pill using the A* algorithm”.

Their A* algorithm ignored ghosts if the nearest was over a

certain distance away.

Another recent piece of work was carried out by Kelly,

Dicken and Levine [13] at the University of Strathclyde.

Their work, Strathpac, was another entry to the CIG 2009

competition. The team modified the screen capture compo-

nent provided with Lucas’s SDK to, again, achieve a more

accurate description of the map, splitting the map into a

series of nodes. While running, the program makes use of

two “modes of operation”. The mode chosen depends on

the current state of the game. If there are edible ghosts

present, the controller will hunt the ghost. If not, it will

move towards the nearest pill. Theses modes both make

use of a breadth first search of the nodes, with movement

decisions being made based on predefined priorities of the

in game objects. Judging by the controllers ranking in the

competition, a breadth first search does not appear to be the

optimal approach, in comparison to the A* algorithm. The

mode of operation approach also shows some limitations.

The controller defines two modes of operation. It might be

useful to consider more.

B. Search Methods

We utilise Dijkstra’s shortest path algorithm [11] as a way

to find the shortest path between two nodes of the map.

We also considered using the A* algorithm [8]. The cost

of a specific path is determined by the cost of each object

along the path. In our case a ghost will have a relatively high

positive cost and a pill will have a negative cost. Thus the

path with the lowest cost should always be the path with least

ghosts and most pills. This meets our goal of evading ghosts

and clearing the level. The downside of using A* is that

we have to apply the algorithm at every iteration (i.e. after

each screen capture) and we have to calculate too far ahead

when, in fact, we only need to ascertain the correct direction

for the Pac-Man. Moreover, calculating the path using the

full map may be neither necessary nor efficient, because in

each short time period only a small area around the Pac-

Man is actually of interest. Thus the A* algorithm seems

to waste a large amount of computational time calculating

path information which is not relevant to the short term

decisions that need to be made. This could be solved by

calculating to a shallower depth. However there is another

inherent problem with the A* algorithm. If we were to use

a basic implementation of A* we would be combining the

cost of pills and ghosts into a single accumulated value. This

would potentially lead to situations where the program would

choose a more dangerous route because of a higher pill count

when we would prefer it to concentrate on evasion. No doubt

an effective A* algorithm can be devised, but in this work,

we decided not to use it.

III. SOFTWARE DEVELOPMENT KIT (SDK)

In this section, we briefly overview the SDK, highlighting

the areas where we have made improvements.

A. Algorithm Overview

After the program has been initialised, a main loop will

be started and in each iteration the following actions are

performed:

• Get a screen shot of the current game map using the

screen capture component.

• Analyse the image and update the game board.

• Determine the best rule to apply according to the current

game state.

• Use an appropriate path searching algorithm to deter-

mine the best direction to move.

• Output the direction by sending a keyboard action.

• Update the display.

The above series of actions will be performed approx-

imately every 65ms, that is about 15 frames per second.

Considering the frame rate of the game, 15 frames per second

should be able to keep track of the real-time aspects of the

game.

B. Enhanced Screen Capture

It is an essential requirement of the software that the game

screen be captured. This is because there is no access to

466 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)



the internal state of the game. As a result, a screen capture

component must be used to convert the real time video into

a usable data structure that the system can read. The screen

capture component that we use is an extended version of

the one provided in Lucas’s SDK [10]. The original screen

capture takes objects from a screen shot of the game window

and updates the information to the game state. The game

state will then determine the type of the incoming object

and store it in a 2-Dimensional character array. The time to

complete image extraction is about 5ms, which is negligible.

However, the original screen capture SDK has several aspects

which limited the performance of the proposed agent design.

Therefore, we made the following enhancements.

1) Ghost Direction: One limitation of the original screen

capture SDK provided by Lucas [10] is that it cannot detect

the direction of the ghost. As far as we know, no researchers

has ever considered the direction of the ghost. In our view

it is crucial that the agent’s decision making is aware of

the direction in which the ghosts are travelling in critical

situations such as when multiple ghosts are around the Pac-

Man.

Fig. 1. Simple Tree Search Method

In the research of Robles and Lucas [7], a screen shot of

the game map has been used to illustrate how their algorithm

will choose a safe path (figure 1). In this method, the

direction of the ghost is not considered.

Fig. 2. Simulation of the safe path search result of the Simple Tree Search
Method [7]

The image in figure 2 illustrates a safe path search result

from the Simple Tree Search Method [7]. No safe path will

be found since ghost direction is not considered and Pac-

Man cannot reach any safe nodes before the ghost. A human

player will obviously choose to go downward because the

blue ghost is currently moving away from the Pac-Man. If a

ghost is moving in the same direction as the Pac-Man, then

the agent should decide to follow that ghost if there is no

other way to go. This dramatically increases the chances of

survival.

In our implementation, a method called “Ghost Iris Detec-

tion” has been used. As shown in figure 3, the ghosts always

look in the direction in which they are moving. The direction

of a ghost can therefore be easily determined by examining

the position of their eyes. We chose to implement this

method, as there is minimal computational cost compared to

the more intuitive method of comparing consecutive frames

to determine the direction of each ghost. With this method,

we do not have to store consecutive frames in order to carry

out the comparison as the direction can be calculated from

a single static frame.

Fig. 3. These images show how the ghosts look in direction of travel so
that we are able to determine the direction of a ghost by examining the
pixels of the iris.

2) Teleporter: When a ghost enters the teleporter it cannot

be detected because it is off the screen (this has also been

raised by Robles and Lucas [7]). This leads to two issues.

Firstly, a large number of times the Pac-Man is eaten is when

ghosts are inside the teleporter, and Pac-Man inadvertently

enters the teleporter as it is unaware of the ghost. Secondly,

when edible ghosts enter the teleporter the Pac-Man stops

following them because it can no longer see them.

This problem is partially solved in our enhanced screen

capture by memorising the ghosts’ positions for a short

period of time when a ghost enters the teleporter and vanishes

from the map. Once the ghost comes out the other side of

the teleporter, its position is updated again. However, if for

some reason it vanishes within the teleporter e.g. it changes

state from a normal ghost to an edible ghost whilst in the

teleporter, the ghost will be removed after a set period of

time. Otherwise Pac-Man will always believe that there is

still a ghost in the teleporter when, in fact there is not. This

can obviously lead to later problems.

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 467



This enhancement ensures that the Pac-Man can always

effectively detect the ghosts even if they are in the teleporter

while avoiding the problem of having fake ghost appearing

in the screen capture. However, our current implementation

is not able to detect edible ghosts in the teleporter since it

is not possible to distinguish the four edible ghost which

are the same colour. As a consequence, the Pac-Man may

stop chasing edible ghosts when they enter the teleporter.

We would like to add this functionality to a future release of

our algorithm.

Fig. 4. Distance representation: Straight Line and Manhattan

3) Distance Representation: Initially we used the straight

line distance (see white line in figure 4) to measure the

distance between the Pac-Man and each ghost. However, this

is not realistic as the Pac-Man and ghosts can only move

either horizontally or vertically. In a later implementation

we used the Manhattan Distance. (the difference in the x-

axis plus the difference in the y-axis, shown as the blue line

in figure 4). This more accurately reflects the distance of

the two objects (Pac-Man and ghost) as it mimics the way in

which they move. However, in a game map, there are walls

which restrict the movement of the game objects (see figure

4). The Manhattan Distance from the ghost to the Pac-Man

is shown as a blue line but the ghost cannot reach the Pac-

Man in the distance returned by the Manhattan distance due

to the wall.

Our final solution, in order to represent the distance more

precisely, uses Dijkstra’s algorithm (see the yellow line in

figure 4), which guarantees to return the shortest path

between two objects. Using this algorithm, we also take

the teleporter into account so that we are able to utilise

the teleporter when appropriate. Calculating the Dijkstra

distance is relatively complex, when compared with both

the straight line distance and the Manhattan Distance. To

reduce the amount of computation that we have to carry out

in real-time, we pre-compute the Dijkstra distances of all

possible routes that the Pac-Man can take on the map (we

note that a similar technique was also used in [14]). The

generation of the distances takes about seven seconds (on a

Dell Latitude Laptop with Core 2 Duo, P8600 2.4Ghz CPU)

and, once computed, the algorithm can access the distances

very quickly (i.e it is just a look up operation of O(1)).

4) Game Board: The game board is an object holding the

current game state. In our algorithm, an extended version of

the game board is used to represent the current game state

in a more realistic and effective way. The map is divided

into a 28 × 31 grid. Each cell is occupied by one or more

objects. However, due to the limitation of the screen capture

component, only one object is visible in the same cell. That

is, each cell has a type representing its contents, these being

a pill, a power pill, one of the four ghosts (which we identify

separately), an edible ghost (we don’t differentiate between

the ghosts once they are edible), or the cell is empty.

Fig. 5. Graph representation representing connections between node
(including the teleporter)

If multiple objects are present in the same cell, the cell type

is set to the type which is fully visible on the screen. The

grid will be updated regularly by the screen capture software.

In addition, information about the position and distance to

the nearest pill, power pill, ghost and edible ghost will be

stored to facilitate analysis of the current game state.

The game board contains a graph of the map, stored

in an adjacent node graph representation. This consists of

three types of node, corner node (red), cross node (green)

and teleporter node (yellow) (see figure 5). The corner

node represents an L-turn on the map while the cross node

represents intersections. The teleporter node is a special type

of node which represents the wrap point located on the

two sides of the map. This type of node is used to allow

specific operations to be performed when a teleporter node

is reached, such as calculating distance through the teleporter

or detecting ghosts on the other side of the teleporter.

Each node maintains references to its adjacent node, which

are represented by green lines in figure 5. These references

will be used in the path searching algorithms. The program

should be able to utilise the teleporter for evading or hunting

the edible ghost and pills. ICE Pambush 3 [9], which won

the 2009 IEEE Symposium on Computational Intelligence

and Games, used a concatenated map. This consisted of a

complete map in the centre with the right hand side concate-

nated with the left, and vice versa. In our implementation, a

simpler solution is applied by only using a single map. The

key point is to make a Teleporter Node (a yellow node) on

468 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)



each teleporter and modify the adjacent node references to

connect a pair of teleporter nodes together (blue line).

IV. AGENT DESIGN

The Pac-Man agent is one of the core components of the

program, which determines the action of the Pac-Man. We

use a rule-based method for determining the actions taken

by the Pac-Man. Currently there are six hand crafted rules.

In each iteration, the updated game board will be passed

to the agent object and a pre-defined rule will be triggered

according to the distance between different objects. The

rules are as follows.

RULE 1: wait for the ghost

IF

distance(nearest_power_pill) <= 5 AND

distance(nearest_ghost) > 2 AND

distance(nearest_ghost_power_pill)

- distance(nearest_power_pill) > 1

THEN

Wait for the ghost

This rule is designed to ambush a ghost when the Pac-Man

is near a power pill. If the Pac-Man is with a certain distance

of a power pill, a ghost is not about to eat the Pac-Man and

a ghost is not approaching the power pill from the other side

then wait for a ghost to approach.

Note that

distance(nearest_ghost_power_pill)

represents the distance between the Pac-Man and the

ghost which is closest to the power pill, which is nearest

to the Pac-Man. This value is introduced to prevent the

ghost from approaching from the other side of the power pill.

RULE 2: eat the power pill

IF

at least one power pill exists AND

no edible ghost exists AND

Pac-Man is waiting for ghost (R#1) AND

distance(nearest_ghost) <= 2 AND

distance(nearest_ghost_power_pill)

- distance(nearest_power_pill) <= 1

THEN

Move to the nearest power pill using

Dijkstra’s algorithm

This rule is used when the Pac-Man is already in an

ambush state, set by rule one. If a ghost is coming close to

the Pac-Man then eat the power pill.

RULE 3: eat the power pill (without waiting)

IF

at least one power pill exists AND

no edible ghost exists AND

distance(nearest_ghost) <= 8 AND

distance(nearest_power_pill) <= 6 AND

distance(nearest_ghost_power_pill)

>= distance(nearest_power_pill)

THEN

Move to the nearest power pill using

Dijkstra’s algorithm

This rule is used when the Pac-Man is not in an ambush

state and is being chased by a ghost. If there is a power pill

nearby the Pac-Man will eat the power pill without waiting.

RULE 4: chase the edible ghost

IF

at least one edible ghost exists AND

distance(nearest_ghost) >= 9 AND

distance(nearest_edible) <= 13

THEN

Move to the edible ghost using the

Dijkstra’s algorithm

If there is an edible ghost nearby and there are no

non-edible ghosts nearby, move towards it and try to eat it.

RULE 5: eat pills

IF

at least one pills exists AND

distance(nearest_ghost) >= 10

THEN

Move to the nearest pill using the

Dijkstra’s algorithm

If there are no ghosts nearby, eat the nearest pill.

RULE 6: evade the ghost

IF (no rules above match)

THEN

Evade the ghost using the

benefit-influenced tree

searching algorithm

If none of the above rules apply, there must be a ghost

nearby, so evade the ghost.

The parameters that we use were all set by experimentation

and the final values that we used were the best values that

we found. These may not (almost certainly will not) be the

optimal values and we are aware of some work where these

values have been set using an evolutionary approach [4]. We

recognise that this is an area that could be fruitful to address

in our future research plans.

A. Path Searching Algorithms

Two path searching algorithms have been implemented to

deal with specific situations. Dijkstra’s algorithm is used for

hunting pills and edible ghosts, while Benefit-Influenced Tree

Searching is used for more critical situations such as evading

ghosts.

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 469



1) Dijkstra’s Path Searching Algorithm: This is a simple

path searching algorithm, which leads the Pac-Man to the

goal position via the shortest path possible. The algorithm

takes two parameters, the starting position (the Pac-Man’s

current location) and a goal position where the Pac-Man is

trying to move to. As the algorithm is called at each iteration

the output does not need to be the entire path to the goal,

only the initial move towards that goal. As stated above,

the Dijkstra distances have all been pre-computed so that

returning the distances is very fast in real-time play. The

Pac-Man will then move in the direction that returned the

lowest distance to the goal position. If multiple adjacent cells

have the same distance to the goal position, the Pac-Man will

move to the node in the direction it is already facing.
2) Benefit-Influenced Tree Search Algorithm: When the

Pac-Man is searching for a safe path to evade the ghosts

we use the benefit-influenced tree search algorithm. Initially

a search tree is constructed. The root node is the current

position of the Pac-Man. Then we search for the ghosts

along the tree path. The costs are calculated according to

the following rules:

1) If the ghost is very near to the Pac-Man (for example

less than two steps away) then that direction will have

a very high cost associated with it in order to prevent

the Pac-Man moving in that direction (regardless of

which direction the ghost is facing).

2) If the ghost is further than two steps away we check

to see whether it is moving toward or away from the

Pac-Man. If it is moving away we ignore the ghost.

3) If the ghost is moving towards the Pac-Man we check

to see if there are any junctions between the Pac-Man

and the ghost that the Pac-Man can reach first. If there

are any safe junctions we ignore the cost of the ghost.

If the ghost can get there first we add a large cost to

that node.

Fig. 6. The different levels while extending routes from the Pac-Man.

To apply these rules to the nodes we start by expanding

the child nodes of the current position. These nodes accu-

mulate the costs of all their child nodes by calling the cost

calculation method on each child (which in turn do the same

on their child nodes). The node expansion will stop when the

maximum search level has been reached (this is currently set

to 3). Figure 6 shows the search levels which the Pac-Man

searches. The image represents the search levels 1, 2 and 3

as red, blue and green lines respectively.

Fig. 7. Safe path search result

When we have searched to the desired depth we move

the Pac-Man to the adjacent node with the lowest cost and

recalculate. If multiple child nodes have the same low cost

then we take into account benefits. Instead of maintaining

the current direction we take into account the benefit of

pills and edible ghosts and pick the route which provides

the highest benefit. This means that when evading we are

still able to accumulate points. Once this algorithm has been

implemented, the problem shown in figure 2 is solved. In our

implementation, the ghost direction will be detected. Thus

the Pac-Man will ignore the blue ghost (as it is moving away

from the Pac-Man) and the path to go downward, which is

marked by the green line in figure 7, will be considered

safe.

B. Eating the last pills

One issue we observed with the agent is that despite having

an opportunity to clear the last pills on the map it would

continue to evade the ghosts and avoid eating the remaining

pills when an opportunity presented itself. In order to remedy

this we implemented a new rule:

• When the pill count for the whole map is less than a

predetermined amount we check to see if the benefit

value of a route is the same as the remaining pill count.

• If this is the case, then we know that a particular route

contains the remaining pills.

• When this happens we add a very large benefit to that

route in order to force the agent, when possible, to take

it in order to complete the level.

• In these circumstances we ignore the ghosts which could

lead to the Pac-Man being eaten.

Our future work will add additional functionality to check

whether or not the last pill(s) can safely be eaten as the

strategy described above can sometimes lead to problems.

V. RESULTS

The algorithm we use for the controller has been con-

tinuously changing since we introduced the general concept

of creating a grid of the Ms. Pac-Man map. Although the

essential idea of the algorithm has not been changed, there

have been key additions and changes which have significantly

improved the algorithm.

470 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)



When we received Lucas’s SDK we tested it by running it

ten times. In this test session it scored a maximum of 5,410

points and averaged 2,743 points.

After implementing our proposed grid algorithm (noded

graph) we carried out another test. Over ten runs it scored a

maximum of 17,140 points and averaged 10,766 points. This

demonstrates the effectiveness of the grid algorithm.

Our final version, containing all the innovations described

in this paper, averages around 18,000. It occasionally (but

rarely) scores around 6,000. When this happens it struggles

to clear the first level. For most of the runs, though, it scores

over 15,000 and gets to at least the third level. The highest

score it has recorded is 30,930 points. In doing so it reached

the fifth level. This score, if achieved in the competition,

would be a new world record, beating the score of Pambush

3 of 30,010 points, in the 2009 CIG competition. Of course,

other competitors in the 2010 competition, might perform

even better.

In the 2009 competition, Pambush 3 recorded an average

of 17,102 points over 10 rounds. We ran a controlled test over

ten runs (rather than the empirical evidence we presented

above). The maximum score from those ten runs was 24,640,

averaging 17,994. Although the highest score was not as high

as Pambush 3’s at CIG 2009, the average was slightly higher.

We believe that this demonstrates that our Ms. Pac-Man

controller is operating at a competitive level. Figure 8 shows

two different versions of our algorithm, and the original

SDK version (i.e. the one downloaded from the competition

web site). We show each algorithm’s lowest, average and

highest scores. This confirms that our most recent algorithm

is superior to the previous two versions.

Our current version still has some shortcomings, the main

one being that the Pac-Man tends to die in similar ways each

time, these being:

• When the ghosts turn from edible to inedible and the

Pac-Man is just about to eat it, sometimes the Pac-Man

is too close to the ghost so does not have time to escape.

• The Pac-Man sometimes gets trapped in an area of the

map where there are little (or no) opportunities to escape

so it gets surrounded by ghosts. This tends to happen

when the Pac-Man is eating the last remaining pills,

after it has eaten all four power pills.

Fig. 8. How our algorithms have improved at each version.

VI. CONCLUSIONS

We have described a rule-based system which selects an

appropriate strategy for Pac-Man to use. Two path searching

algorithms, Dijkstra’s Shortest Path and Benefit-Influenced

Tree Search algorithms have been used in order to help

the Pac-Man decide both the shortest path to a target and

the safest path to evade ghosts. A method to detect which

direction a ghost is moving has also been introduced. Iris

Detection uses the ghost’s iris to determine which direction

the ghost is moving as the ghosts always look in the direction

in which they are moving. We do not believe that this method

has been implemented before. This has led to more accurate

information that leads to a significant improvement to the

score.

Several problems in screen capture and game state mod-

elling have also been addressed. The ghost becoming invis-

ible while crossing the teleporter problem has been solved

by remembering the ghost’s last position for a short term. In

addition, using Dijkstra’s algorithm has shown benefits.

However, there are still some areas that we would like to

address in future work. One issue is the strategy for eating the

edible ghost(s). Consuming as many edible ghosts as possible

greatly affects the score as consuming a ghost doubles the

reward with every successive ghost. Currently our strategy

only chases the nearest edible ghost, after eating a power

pill, which may not always be the best strategy. A more

intelligent plan is likely to be possible, which could lead to

a higher chance of consuming all four ghosts. Another issue

is the choice of the parameter values in the rule-based system.

Currently the parameters used were determined by manual

experimentation. We recognise that even better results might

be achieved by optimising the parameter, perhaps using an

evolutionary approach.

We know that the ghosts have different levels of aggres-

sion. It might be beneficial to prioritise the most aggressive

ghosts, which might mean a longer life for the Pac-Man.

We would like to analyse why we have only ever got to the

fifth level. Perhaps the ghosts are getting smarter? Perhaps

we need to change strategies at higher levels? If we are able

to develop custom strategies for each level it could lead to

more effective agents.

Finally, since eating pills slows down the Pac-Man, it

might be a better approach to make the Pac-Man prefer an

evasion strategy, when being chased, and consume less pills

so that it can move faster.

VII. ACKNOWLEDGEMENTS

We would like to thank Simon Lucas for supplying the

original SDK. Without this development kit it would not have

been possible to enter this competition.

We would also like to acknowledge the support of the

School of Computer Science at the University of Nottingham,

UK. The development of the software reported in this paper

was the result of an undergraduate group project. Due to the

promising results the School financially supported one of the

students to attend the conference and enter the competition.

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 471



REFERENCES

[1] Simon Lucas’s Ms. Pac-Man webpage,
http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html,
30/03/2010.

[2] Ms. Pac-Man online emulator, http://www.webpacman.com,
(22/03/2010).

[3] J. R. Koza, “Genetic Programming: on the Programming of Computers
by Means of Natural Selection,” MIT Press, 1992

[4] N Wirth and M Gallagher, “An Influence Map Model for Playing Ms.
Pac-Man,” in 2008 IEEE Symposium on Computational Intelligence
and Games, pp. 228-233.

[5] M. Gallagher and A. Ryan, “Learning to play Pac-Man: An evolution-
ary, rule-based approach,” in Congress on Evolutionary Computation
(CEC), R. S. et. al., Ed., 2003, pp. 2462-2469.

[6] S. Baluja, “Population-Based Incremental Learning: A method for
integrating genetic search based function optimization and competitive
learning,” School of Computer Science, Carnegie Mellon University,
Tech. Rep. CMU-CS-94-163, 1994.

[7] D. Robles and S. Lucas, “A Simple Tree Search Method for Playing
Ms. Pac-Man,” in IEEE Symposium on Computational Intelligence
and Games, 2009, pp. 249-255.

[8] P. Hart, N. Nilsson and B. Raphael, “Correction to A Formal Basis for
the Heuristic Determination of Minimal Cost Paths,” ACM SIGART
Bulletin, issue 37 (December 1972), pp. 28-29.

[9] R. T. Hiroshi Matsumoto, Takashi Ashida, “Ice pambush 3,” a 2009
IEEE Symposium on Computational Intelligence and Games compe-
tition entry.

[10] S. Lucas, distributed a screen-capture software kit. Retrieved from
http://cswww.essex.ac.uk/staff/sml/pacman/pac.zip, (13/11/2009).

[11] Dijkstra, E. W. “A note on two problems in connexion with graphs.”
Numerische Mathematik, 1959, 1: pp 269-271.

[12] Tickle arcade emulator, created by Alessandro Scotti. Retrieved from
http://www.ascotti.org/programming/tickle/tickle.htm, (23/03/2010).

[13] L.Kelly, L.Dicken, J.Levine, “StrathPac - An Automated Player for Ms.
Pac-Man”, a 2009 IEEE Symposium on Computational Intelligence
and Games competition entree.

[14] S.M. Lucas, “Evolving a Neural Network Location Evaluator to Play
Ms. Pac-Man“, IEEE Symposium on Computational Intelligence and
Games, 2005, pp 203-210

472 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)


