
Generating Query Templates for a Personalized Service
Level Agreement in the Cloud

Alekzander Malcom, Jennifer Ortiz

ABSTRACT
Public Clouds today provide a variety of services for data analysis
such as Google BigQuery and Azure. Each service comes with a
pricing model and service level agreement (SLA). Today’s pricing
models and SLAs are described at the level of compute resources
(instance-hours or gigabytes processed). They are also different
from one service to the next. Both conditions make it difficult for
users to select a service, pick a configuration, and predict the ac-
tual analysis cost. To address this challenge, we propose a new
abstraction, called a Personalized Service Level Agreement, where
users are presented with what they can do with their data in terms of
query capabilities, guaranteed query performance and fixed hourly
prices. In this paper, we primarily focus on exploring the search
space of potential query capabilities and time thresholds based on
a Cloud service.

1. INTRODUCTION
Many data management systems today are available as Cloud ser-
vices. For example, Amazon Web Services (AWS) [1] include
the Relational Database Service (RDS) and Elastic MapReduce
(EMR); Google offers BigQuery [4]; and SQL Server is available
on Windows Azure [2]. Each service comes with a pricing model
that indicates the price to pay based on the level of service.

An important challenge with today’s pricing models is that they
force users to translate their data management needs into resource
needs (How many instances should I use? How many gigabytes
will my queries process?). There is thus a disconnect between the
resource-centric approach expressed by Cloud providers and what
the users actually wish to acquire [7]. The knowledge required to
understand the resources needed for data management workloads is
a challenge – particularly when a user does not always have a clear
understanding of their data or even know what they are looking
for [8]. Furthermore, pricing models can be wildly different across
providers [9]. For example, Azure charges for the size of compute
instances acquired, while BigQuery charges per GB processed by a
query. This heterogeneity complicates the decision behind select-
ing a service.

Figure 1: The PSLA system acts as a broker between different
Cloud-provided data management services and the user. For each
service, it generates alternative agreements with different trade-offs
between cost, performance (query runtimes), and query capabili-
ties. In this paper, we focus on the query capabilities and time
axes.

As a second challenge, although Cloud providers offer availabil-
ity through service level agreements (SLAs), they do not provide
any type of performance guarantee. Studies suggest that there ex-
ist variances in the performance of jobs executed in Cloud ser-
vices [10].

In this paper, we focus on providing users a different way to inter-
act with their Cloud Service provider. Instead of asking the user
to specify the resources that she wants or asking the user for the
queries she needs to execute, our proposed system looks at the
user’s data and shows the user what she can do with the data for
a set price. The focus of our proposal is to ensure both high-
performance and simplicity, two core features required by Cloud
users [14]. As shown in Figure 1, the key idea is for a user to sim-
ply upload her data to a Cloud broker system and be presented with
service-level alternatives that correspond to different points in the
space by trading off query runtime performance, monetary cost,
and the query capabilities of the service. We call these agreements,
personalized SLAs or PSLAs, because their detailed specification
depends on the data uploaded by the user. In this paper, we identify
different alternative methods to automate the generation of such
a PSLA. We begin by exploring the query capabilities and time
search space. For now, we predetermine the price by hand-picking
a service level from each Cloud provider.

Figure 2: Example of a potential PSLA for BigQuery. Here the user decides between price, query capabilities and time thresholds

The query capability features are demonstrated in the form of tem-
plates for the types of queries that the user can execute. While
prior work studied techniques that enable users to specify a de-
sired price-performance curve when submitting a query [15], the
approach simply rejects queries whose performance cannot be sat-
isfied. Instead, we focus on informing users about what they can
and cannot do with their data within specified performance bounds.
An example of such a PSLA is shown in Figure 2.

For this paper, we focus on the query performance and query capa-
bility dimensions of the problem. As an initial step, we focus on
PSLAs for structured and relational data only.

2. MOTIVATION
We begin with a motivating scenario to demonstrate the challenges
with today’s Cloud pricing models and SLAs.

2.1 Motivating Example
Sarah is a data scientist with access to a log which captures all of
the Web pages viewed by a set of users over some period of time.
This scenario corresponds to the PigMix benchmark [13]. Sarah
has access to 100GB of data but decides to explore a 10GB subset.
The schema for the data is as follows:

Users (name, phone, address, city, state, zip)

PageViews(user, action, timespent, query_term, ip_addr,
timestamp, estimated_revenue)

Sarah’s first choice is between using BigQuery or SQL Server on
Azure. In both cases, she will be able to study her data by issuing
SQL declarative queries. The challenge, however, is that the trade-
off between price, performance, and capabilities for each service is
not directly obvious from the online pricing models. For example,
from the pricing scheme, it is unclear how many GB she will need
to process in order to effectively explore her data. Thus, an ac-
curate estimate for the end cost is nearly impossible. She will also
need to keep in mind that there are certain limitations to BigQuery’s
SQL-like language. For example, operators such as DISTINCT are
disallowed. Although BigQuery provides Sarah the ability to inter-
actively query her data, there is no guarantee of how long it will
take a query to return a response.

On the other hand, SQL Server on Azure would charge Sarah
based on the number of virtual machines that are initialized and
the amount of compute time (per hour). If she selects a small ma-
chine with SQL Server, the cost would be $0.08 per hour while a
large machine would cost up to $0.32 per hour. Would selecting a
different instance size help Sarah get faster results? Additionally, if
Sarah does not know the type of workload she wishes to run, which
service should she pick?

This example illustrates that, today, it is difficult for users to se-
lect a Cloud provider and level of service that corresponds to a
desired trade-off between cost, performance, and query capabili-
ties. Users today need to proceed by trial and error when selecting
service levels. Even for experts, finding cost-effective methods to
process large datasets continues to be a nontrivial task [3].

2.2 PSLAs
To address the above challenge, we propose to re-think the inter-
face between users and Cloud services. Instead of forcing users
to translate their price, performance, and capability goals into re-
source requests, we propose to automatically perform this transla-
tion for them. In particular, we want users to simply upload their
data. The system should automatically analyze that data (eg. com-
pute statistics on the data) and describe to users what they can and
cannot do with their data based on price and performance factors.
We call these descriptions Personalized Service Level Agreements
(PSLAs). We first define a PSLA more precisely. We then discuss
the challenges associated with generating such PSLAs automati-
cally.

A PSLA is composed of a set of tiers R1, R2....Rk. Each tier cor-
responds to a unique level of service. That is, each tier offers a spe-
cific trade-off between query capabilities, price, and performance.
No tier strictly subsumes another in the same PSLA. Each tier Ri,
1 ≤ i ≤ k, has an hourly price Pi, a time threshold Ti, and a set of
query templates {Mi1,Mi2, ...,Miv}. Query templates define the
capabilities available in the tier. The time threshold Ti guarantees
that all queries which follow the templates will return within the
specified time. The user selects one tier from the set. Specifically,
a PSLA is a set of the form:

PSLA = {R1 = (P1, T1, {M11,M12, ...,M1v}),

R2 = (P2, T2, {M21,M22, ...,M2v}),

...,

Rk = (Pk, Tk, {Mk1,Mk2, ...,Mkv})}

Figure 3: Four query categories: Extraction, Subset Extraction,
Correlation, Subset Correlation

To generate the query templates for a given dataset, we consider
a few relational operators including selection, projection and join.
We only consider simple queries that use a small number of these
operators at the same time. We assume there are no indexes, and
consider only explicitly specified primary and foreign key con-
straints.

2.3 Research Challenges
The PSLA system should automatically analyze the data (eg. com-
pute statistics on the data) and describe to users what they can and
cannot do with their data based on performance factors. The chal-
lenge here is finding the type of statistics needed from the data.
This process needs to be quick since we do not users to wait too
long before the system displays a PSLA.

Additionally, given an input database comprising a set of relations,
the number of queries that can be posed over the data is unbounded.
The PSLA system, however, must show users a bounded set of
query templates through each service tier. The key question is
how to select good query templates. A small number of templates
would facilitate tier comparisons for the user. Furthermore, based
on prior experience working alongside domain scientists, we find
that providing templates even for simple queries covers a signifi-
cant amount of data processing needs.

3. APPROACH
In this section, we focus on explaining how we generate tiers based
on a given dataset. Once we generate the queries needed, we cluster
the queries based on estimated costs. Lastly, we discuss how to
translate the clustering results into a set of PSLA tiers for the user.

In order to determine a bounded set of possible queries that can
be generated from a dataset, we begin by assuming a star schema
dataset. A star schema dataset contains a fact table F and a set of
k dimension tables D, where D={d1, d2, ...dk}. In terms of join
relationships between the F and some di, there are no cycles, but
there exists at most one self-join for each di table.

3.1 Query Generation and Data Statistics
We consider four query categories to generate. These queries con-
sist of selection, projection and join operators. As seen in Figure 3,
we identify these four categories as Extraction, Subset Extraction,
Correlation, and Subset Correlation. Queries that are of the form
Extraction consist of a projection. Subset Extraction queries repre-
sent those composed of one table along with a selection and projec-
tion. For Correlation queries, these consist of a projection and join

operator that joins on matching attributes (i.e. either on a primary
key/foreign key between F and some di or on the same key if it is
a self-join). The final is the Subset Correlated query.

In order to understand the reasoning behind the Subset Correlated
query category, we must first discuss the type of selections we wish
to generate. For Subset Extraction queries, we consider queries that
contain predicates that will result in a percentage of tuples based
on orders of magnitude, specifically 100%, 10%, 1%, and .01%.
In order to generate an adequate predicate to fit that criteria, we
computed a histogram that displays each attribute in sorted order.
This histogram helps us rank the attributes and thus, we can select
a predicate that will fit the desired order of magnitude.

In the case for the Subset Correlation category, we want to generate
selections on joins. If we are to select predicates that also result to
a value close to the desired order of magnitude, we must provide
a way to determine the selectivity without actually computing the
join (for efficiency purposes).

According to the work by Chaudhuri, Motwani and Narasayya
in [5], we must be cautious when sampling from joins. They de-
scribe how, for example, the join of random samples from a rela-
tion R1 and relation R2 does not give a random sample of the join
R1 ⊲⊳ R2. In other words, sampling does not commute with joins.
The naive strategy for sampling from a join would be to compute
the full join and then sample therein [5]. Instead, we wish to avoid
computation of joins in order to save time. Therefore, we make
use of the histograms we generate and filter both tables by the at-
tribute we join on. For example, in Figure 3, we filter relation A
and B under Subset Correlation based on the join attribute. In this
case, the predicate would consist of some α based on the selectivity
we wish to acquire. Assuming a star schema and the implications
explained under the approach section, the query generation algo-
rithm is described below. This method was implemented through a
python script by having the generated histogram as an input.

Data: histogram, F and set D
Result: A set of queries Q
Emulate schema and provide text aliases for repeated table
instances;
k = number of tables = |D|;
for each n in {0, 1, . . . , 2k + 1} do

for each J a weak_composition(n, k) do

/* J is a mask determining which

tables to join */

if J0 = 0 then /* F does not appear */

Disregard J if more than one index i has Ji > 0;
end

if any Ji > 2 then
Disregard J

end

T = join of J0 copies of F , J1 copies of d1, etc.;
Sort attributes of T by average size of data in bytes;
G = number of attributes of T ;
for each g ∈ {1, 2, . . . , G} do

yield a query selecting largest g attributes from T ;
yield a query selecting smallest g attributes from T ;

end

end

end

Algorithm 1: Query Generation Algorithm

We should note that the form of the weak composition problem
needed here, i.e. to find integers xi ≥ 0 such that

∑
k

i=1
xi = n

has a very simple recursive solution.

Data: integer n to be partitioned, integer k parts
Result: list of lists of non-negative integers, each of which sums

to n and has length k
if k = 1 then

yield List(n)
else

for each i in {0, 1, . . . , n} do
for each X a weak_composition of n− i into k − 1 parts

do
yield X+List(i)

end

end

end

Algorithm 2: Weak Composition

3.2 Clustering Estimated Query Costs
Before generating tiers for the PSLA, we must gain a sense of the
performance for each query. Once the queries are generated, we
run all the queries on different levels of service through Azure. We
acquired one small virtual instance (1 virtual core, 1.75 GB Ram)
and a large virtual instance (4 virtual cores, 14 GB Ram) where
both instances include SQL Server 2008.

Assuming we wish to utilize the estimated costs of the queries to
determine the PSLA tiers, we need to first determine whether the
estimated costs from the SQL Server optimizer really reflect the
query runtimes. For each machine, we cluster for the query run-
times and for the estimated query costs. We use WEKA [6] to
cluster results based on k-means algorithm.

In order to determine whether there exists a similarity between
the real query times and the estimated costs, we utilize a criterion
called Variation of Information (VI) from Meila’s work in [11].
This criterion measures the amount of information lost or gained in
changing from clustering C to clustering C′. The paper refers to a
clustering as a partition of a set of points into sets C1, C2, . . . , Ck.
In our case, we refer the query runtimes as C and the estimated
query times as C′. The VI equation takes into account the entropy
associated with each clustering referred to as H(C) and H(C′) as
well as the reduction in uncertainty based on given knowledge as
expressed through I(C, C′). We display the equation below. For
more details about this criterion, see [11].

V I(C, C′) = H(C) +H(C′)− 2I(C, C′)

VI will always result in a non-negative value (further, VI is a met-
ric on the space of all clusterings). One property of the VI equa-
tion states that if both clusterings are the same, then the result will
be 0. The upper bound (or maximum) between two clusterings is
V I(C, C′) ≤ 2 log K, where K represents the maximum number
of clusters between C and C′, and provided that K2 is less than the
number of data points.

3.3 Cluster to Tier Translation
In this section, we describe a method to translate the clusters from
estimated query compute costs into tiers. Each tier will be com-
posed of a set of query templates. First, we define a query template
more precisely. We use this definition to distinguish between query
templates.

Definition Let a set of query templates M1,M2, ...Mk represent
the queries that are shown to the user. Each query template, Mi,
takes the form of one of the query categories described from Fig-
ure 3. Specifically a query template consists of a category, a set of
tables, and a selectivity level (either 100%, 10%, 1%, or .01%).

3.3.1 Tier Generation Algorithm
In this algorithm, we focus on generating a set of tiers T from a
given clustering C. Each cluster Ci in the clustering consists of a
set of points P1, P2, . . . , Pk. For each cluster we iterate through,
we will generate a new tier and add the query template to the cur-
rent tier. However, if the query template exists in the current tier or
a previous tier, it is not added to the current tier. Below, we describe
the algorithm. We run this algorithm on each estimated query com-
pute cost of each service level (small and large) and provide all the
resulting tiers to the user. In this algorithm, the abstraction of a
point Pi is defined as a function that returns the query template that
the point represents. We iterate through all the points in each clus-
ter and add the abstraction of Pi to a tier. As we iterate, if Pi is
contained in a query in the current tier, we disregard the point and
do not add it to the tier. Currently, this process is done manually.

Data: A Clustering C
Result: A set of Tiers
sort clusters descending by average estimated cost ;
initialize T = ∅;
for each cluster Ci in clustering C do

initialize tier Ri;
for each Pi in Ci do

Q = abstractform(Pi) ;
if Q /∈ Ri ∧Q /∈ T then

if ∃Q′ ∈ Ri where Q ⊑ Q’ then

Discard Q;
else

Ri = Ri ∪ {Q};
end

end

end

if Ri 6= ∅ then

yield Ri;
T = Ri ∪ T ;

end

end

Algorithm 3: Tier Generation Algorithm

4. RESULTS
In this section we describe the results for Azure small instance and
Azure large instance based on the approach described in the previ-
ous section.

By using 10GB Pigmix dataset, the query generation algorithm
generates a total of 460 queries. We cannot expect to both run
all the queries in an adequate amount of time and provide the user
with a PSLA thereafter. In fact, running all the queries generated on
the small Azure instance took 2312180ms while it took 2504045ms
on the large instance. Instead, we look at the estimated query cost
from the optimizer. The SQL Server optimizer provides a type of
metric that can measure a cost based on CPU and I/O cost that a
query may utilize. Estimating the compute cost of all the queries
on the small instance took 7168ms while on the large instance it
took 5668ms.

Figure 4: VI for Increasing K Values
Figure 5: Clusters

4.1 VI Dependence on K
In this section we discuss the best k value we wish to cluster by for
both small Azure and large Azure instances. In theory, we wish for
the value of VI to be as low as possible since a smaller VI represents
more similar clusters. However, the lowest VI value (i.e. zero)
occurs when k = n, where n is the number of points, and according
to our experiment, this can only reliably happen then. It would
be unrealistic to expect a user to interpret n tiers, one for each of
these clusters. Thus, we consider only a small number of tiers, by
restricting k ≤ 10; we arbitrarily assume that the user is interested
in at most 10 tiers. In Figure 4, we can see the value of VI fluctuate
for small values of k, only to slowly decrease to zero thereafter. In
the tables below, we inspect the VI values of Azure Small instance
and Azure Large instance more closely; we have truncated the list
of values as the VI increases greatly after k = 4.

Azure Small

k=2 VI =.099

k=3 VI =.29

k=4 VI =.39

Azure Large

k=2 VI =.245

k=3 VI =.25

k=4 VI =.43

From these charts, we select the lowest K value. For small Azure,
we will focus on the clustering given by k = 2. While for large
Azure, we will look at the clustering given by k = 3. Refer to
Figure 5.

4.2 Generated Tiers
For small Azure and large Azure, we manually generated the tiers
based on the algorithm described in the previous section. Below,
we display the tiers generated for each instance. The times are
given by running one representative query (the upper bound) of
the belonging cluster. At times when the representative query took
too long to return all the answer tuples, we only selected the TOP
(1000000) results. We reflected this change in the templates. The
resulting templates are shown in Figures 6 and 7.

4.3 Total Generation and Cluster Time
In this section, we describe all the steps and time taken in order to
generate query templates. We wish to keep track of the time since
our goal is to provide quick PSLA tier results to the user. Below
we list each step and the resulting time.

• Creating Histogram: .013s (Small) and .014s (Large)

• Reading Histogram: 225s

• Generating Queries: .1225s

• Reading Estimated Costs for All Queries: 7.168s (Small) and
5.668s (Large)

• Clustering Estimated Costs and Exploring VI Values: 2.21s

• Finding Representative Queries: .47s (Small) and .61s
(Large)

• Running Representative Queries: 80s (Small) and 56s
(Large)

The total time to generate these steps for the small Azure instance
takes ~314.98 seconds. While it takes ~289.62 seconds for the large
Azure instance. As we can see, the current main bottleneck is read-
ing the histogram to generate the queries. In the future, this will be
optimized. In the next section, we evaluate the generated tiers by
running it through some random sample queries.

5. DISCUSSION
In this paper, we have demonstrated a method to automatically
generate a set of queries from a given data set. Upon clustering
the queries, we can develop a set of tiers that display the types of
queries that can be run under a certain specified time threshold.

5.1 Tier Evaluation
We randomly created 20 queries that follow the form of the tem-
plates shown in Figures 6 and 7. We ran these queries for the large
and small Azure instances. All the queries were able to run under
the required threshold.

However, there is much work that needs to be done to improve upon
these PSLA tiers. For instance, the tiers shown for the large Azure
instance in Figure 7, have really close and similar time constraints.
Technically, we could potentially merge all these three tiers into
one. An alternative approach would be to generate more expensive
queries in order to see a wider selection of unique tiers.

What is interesting about these templates is that it provides an easy
way to compare between two types of machines. For instance, if a
user were to come upon these tiers, they could quickly notice how
they should pick Tier II over Tier V. Both of these tiers provide
the same query capabilities and time threshold, but one is much

Figure 6: Tiers for Azure Small Instance

Figure 7: Tiers for Azure Large Instance

cheaper than the other. On the other hand, if the user wants to run
queries over a self-join on the PageViews table (P), the best option
would be to select Tier III. Although this option is slightly more
costly, we will acquire our results faster.

Additionally, running these queries on a local instance of SQL
Server is at times twice as fast as running them through Azure.
Although this may seem obvious (i.e. we are not running queries
through a Cloud service), it is still interesting to know about the
query latency of a service ahead of time before actually paying for
the service.

5.2 The Provider and the User
Overall, we show that one can easily derive meaningful service tiers
that can help a user select a desired trade-off between price, perfor-
mance, and capabilities. Most importantly, these service tiers en-
able high predictability: once a user pays a fixed price, she can run
a pre-defined set of queries. This predictability benefits the user in
that they know the performance capabilities ahead of time. For typ-
ical non-expert users, it is difficult to distinguish the performance
capabilities between a small or large virtual machine. Addition-
ally, the user will know how much the service will cost upfront.
This results in more satisfied users who will not run into any cost
surprises.

As for the Cloud provider, this service could provide more respon-
sibility and yet, more flexibility. The Cloud provider must meet
the PSLA given to the user which is a challenge. However, if the
PSLA cannot be met, this could allow the provider to obtain more
resources in order to meet the agreement. From an alternative per-

spective, if the provider knows ahead of time the type of queries
the user wishes to run based on the PSLA selected, the provider
can give more or less resources to the user while still meeting the
agreement and not letting the user actually know the resources that
were used.

6. RELATED WORK
With the rise of cloud computing, there has been an interest among
large enterprises to adopt this type service to fulfill their data an-
alytic needs. There are recent projects that have hinted towards
the idea of re-evaluating what an SLA should consist of and how
it should be presented to the user. For example, ActiveSLA [15]
provides an admission control framework based on SLAs that try
to maximize profit given the SLA rules and rejects queries that
cannot meet SLA objectives. In contrast, our PSLAs tell users
what they can and cannot do within different price-performance
choices. Hence we never reject queries. Similarly, the DBSeer
[12] work-inprogress project reaffirms how today’s Cloud services
do not properly address how to understand prices and resource uti-
lization. They propose to create a model that can predict resource
utilization based on a workload. This might work well for a OLTP
type of workload, but in our project, we claim that the user does
not always know what type of queries they want to run upfront,
hence we automatically suggest workloads based on the data. Other
work, as seen in the Bazaar framework [7] argue for a ’job-centric’
cloud where tenants describe high-level goals regarding their jobs
and the framework then can predict the resources needed to achieve
the goal. Although this help users determine the cost and resource
needs of their jobs, the users are required to describe their job by
submitting a map-reduce job, a completion time and a price. This

would still require some type of expertise; instead we focus on
users who only know basic SQL (such as domain scientists) and
wish to use the Cloud to analyze the data.

7. CONCLUSION AND OUTLOOK
We present a the research challenges behind generating a selec-
tion of Cloud service tiers to a user. Our core idea is to examine
a given dataset that a user wants to process and automatically gen-
erate a personalized service level agreement(PSLA), which shows
templates for the types of queries the user can execute on her data
for a given price and within a given runtime threshold. PSLAs
thus enable users to focus on their main concerns of query per-
formance, cost, and capabilities, freeing them from the current
resource-centric approaches. The next step in this project is to ex-
plore other methods of clustering to determine whether we can ob-
tain a higher selection of interesting tiers. Additionally, we will
focus on adapting our algorithms to fit a wider selection of more
complex data models.

8. REFERENCES
[1] Amazon AWS. http://aws.amazon.com/.

[2] Azure. http://www.windowsazure.com/en-us/.

[3] S. Babu. Towards automatic optimization of MapReduce programs. In Proc. of

the First SoCC Conf., pages 137–142, 2010.

[4] Google BigQuery. https://developers.google.com/bigquery/.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over joins.
In Proceedings of the 1999 ACM SIGMOD international conference on

Management of data, Proc. of the SIGMOD Conf., pages 263–274, New York,
NY, USA, 1999. ACM.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[7] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Bridging the
tenant-provider gap in cloud services. In Proc. of the 3rd ACM Symp. on Cloud

Computing, pages 10:1–10:14, 2012.

[8] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou. The researcher’s guide to
the data deludge: Querying a scientific database in a just a few seconds. In
Proc. of the 37th VLDB Conf., volume 4, 2011.

[9] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing public cloud
providers. In Proc. of the ACM SIGCOMM Conf., pages 1–14, 2010.

[10] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, and N. Araujo. Performing large
science experiments on Azure: Pitfalls and solutions. In IEEE CloudCom,
CloudCom’10, pages 209–217, 2010.

[11] M. Meila. Comparing clustering. 2002.

[12] B. Mozafari, C. Curino, and S. Madden. Dbseerl resource and performance
prediction for building a next generation database cloud. In Proceedings of the

6th Biennial Conference on Innovative Data Systems Research CIDR 2013,
Proc. of the Sixth CIDR Conf., 2013.

[13] PigMix. Pigmix benchmark. https://cwiki.apache.org/PIG/pigmix.html, 2012.

[14] E. Wu, S. Madden, Y. Zhang, E. Jones, and C. Curino. Relational cloud: The
case for a database service. Technical Report MIT-CSAIL-TR-2010-014,
CSAIL MIT, 2010.

[15] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. HacigümüŞ. ActiveSLA: a
profit-oriented admission control framework for database-as-a-service
providers. In Proc. of the Second SoCC Conf., pages 15:1–15:14, 2011.

