
Code Composer Studio™ v4.2 User's Guide for
MSP430™

User's Guide

Literature Number: SLAU157S

May 2005–Revised August 2011

2 SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Contents

Preface ... 7

1 Get Started Now! ... 9

1.1 Software Installation ... 10

1.2 Flashing the LED .. 10

1.3 Important MSP430™ Documents on the CD-ROM and Web ... 11

2 Development Flow ... 13

2.1 Using Code Composer Studio (CCS) ... 14

2.1.1 Creating a Project From Scratch ... 14

2.1.2 Project Settings ... 15

2.1.3 Using an Existing CCE v2, CCE v3, CCE v3.1 and CCS v4.x Project 15

2.1.4 Stack Management ... 15

2.1.5 How to Generate Binary-Format Files (TI-TXT and INTEL-HEX) .. 16

2.1.6 Overview of Example Programs and Projects .. 16

2.2 Using the Integrated Debugger .. 16

2.2.1 Breakpoint Types ... 16

2.2.2 Using Breakpoints .. 18

A Frequently Asked Questions ... 21

A.1 Hardware ... 22

A.2 Program Development (Assembler, C-Compiler, Linker, IDE) .. 22

A.3 Debugging .. 23

B IAR 2.x/3.x/4.x to CCS C-Migration ... 27

B.1 Interrupt Vector Definition .. 28

B.2 Intrinsic Functions ... 28

B.3 Data and Function Placement ... 28

B.3.1 Data Placement at an Absolute Location .. 28

B.3.2 Data Placement Into Named Segments ... 29

B.3.3 Function Placement Into Named Segments .. 29

B.4 C Calling Conventions .. 30

B.5 Other Differences .. 30

B.5.1 Initializing Static and Global Variables ... 30

B.5.2 Custom Boot Routine .. 31

B.5.3 Predefined Memory Segment Names ... 31

B.5.4 Predefined Macro Names ... 32

C IAR 2.x/3.x/4.x to CCS Assembler Migration .. 33

C.1 Sharing C/C++ Header Files With Assembly Source ... 34

C.2 Segment Control ... 34

C.3 Translating A430 Assembler Directives to Asm430 Directives .. 35

C.3.1 Introduction .. 35

C.3.2 Character Strings ... 35

C.3.3 Section Control Directives ... 36

C.3.4 Constant Initialization Directives .. 36

C.3.5 Listing Control Directives .. 37

C.3.6 File Reference Directives .. 37

C.3.7 Conditional Assembly Directives ... 38

3SLAU157S–May 2005–Revised August 2011 Contents
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com

C.3.8 Symbol Control Directives ... 38

C.3.9 Macro Directives .. 39

C.3.10 Miscellaneous Directives ... 39

C.3.11 Alphabetical Listing and Cross Reference of Asm430 Directives .. 40

C.3.12 Unsupported A430 Directives (IAR) .. 41

D FET-Specific Menus ... 43

D.1 Menus ... 44

D.1.1 Debug View: Run → Free Run ... 44

D.1.2 Target → Connect Target ... 44

D.1.3 Target → Advanced → Make Device Secure ... 44

D.1.4 Project → Properties → CCS Debug Settings → Target → MSP430 Properties → Clock Control ... 44

D.1.5 Window → Show View → Breakpoints .. 44

D.1.6 Window → Show View → Trace ... 44

D.1.7 Project → Properties → TI Debug Properties → Target → MSP430 Properties → Target Voltage .. 44

E Device Specific Menus ... 45

E.1 MSP430L092 ... 45

E.1.1 Emulation Modes ... 45

E.1.2 Loader Code .. 47

E.1.3 C092 Password Protection .. 47

E.2 MSP430F5xx/F6xx BSL Support .. 48

E.3 MSP430F5xx/F6xx Password Protection ... 48

E.4 LPMx.5 CCS Debug Support (MSP430FR57xx Only) .. 49

E.4.1 Debugging With LPMx.5 ... 49

E.4.2 LPMx.5 Debug Limitations .. 50

Revision History ... 52

4 Contents SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com

List of Figures

E-1. MSP430L092 Modes.. 46

E-2. MSP430L092 in C092 Emulation Mode .. 47

E-3. MSP430C092 Password Access .. 47

E-4. Allow Access to BSL .. 48

E-5. MSP430 Password Access .. 49

E-6. Enabling LPMx.5 Debug Support ... 50

List of Tables

1-1. System Requirements .. 10

1-2. Code Examples .. 10

2-1. Device Architecture, Breakpoints and Other Emulation Features... 17

5SLAU157S–May 2005–Revised August 2011 List of Figures
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Texas Instruments, Code Composer Studio, MSP430 are trademarks of Texas Instruments.
IAR Embedded Workbench is a registered trademark of IAR Systems AB.
ThinkPad is a registered trademark of Lenovo.
Microsoft, Windows, Windows Vista, Windows 7 are registered trademarks of Microsoft Corporation.
All other trademarks are the property of their respective owners.

6 List of Tables SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Preface
SLAU157S–May 2005–Revised August 2011

Read This First

About This Manual

This manual describes the use of Texas Instruments™ Code Composer Studio™ v4.2 (CCSv4.2) with the
MSP430™ ultra-low-power microcontrollers.

How to Use This Manual

Read and follow the instructions in the Get Started Now! chapter. This chapter provides instructions on
installing the software, and describes how to run the demonstration programs. After you see how quick
and easy it is to use the development tools, TI recommends that you read all of this manual.

This manual describes only the setup and basic operation of the software development environment but
does not fully describe the MSP430 microcontrollers or the complete development software and hardware
systems. For details on these items, see the appropriate TI documents listed in Section 1.3, Important
MSP430 Documents on the CD-ROM and Web.

This manual applies to the use with Texas Instruments' MSP-FET430UIF, MSP-FET430PIF, and eZ430
development tools series.

These tools contain the most up-to-date materials available at the time of packaging. For the latest
materials (data sheets, user's guides, software, application information, and others), visit the TI MSP430
web site at www.ti.com/msp430 or contact your local TI sales office.

Information About Cautions and Warnings

This document may contain cautions and warnings.

CAUTION

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your
software or equipment.

WARNING

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection. Read each caution and warning
carefully.

7SLAU157S–May 2005–Revised August 2011 Read This First
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Related Documentation From Texas Instruments www.ti.com

Related Documentation From Texas Instruments

CCSv4.2 documentation

MSP430™ Assembly Language Tools User's Guide, literature number SLAU131

MSP430™ Optimizing C/C++ Compiler User's Guide, literature number SLAU132

MSP430™ development tools documentation

MSP430™ Hardware Tools User's Guide, literature number SLAU278

eZ430-F2013 Development Tool User's Guide, literature number SLAU176

eZ430-RF2480 User's Guide, literature number SWRA176

eZ430-RF2500 Development Tool User's Guide, literature number SLAU227

eZ430-RF2500-SEH Development Tool User's Guide, literature number SLAU273

eZ430-Chronos™ Development Tool User's Guide, literature number SLAU292

MSP-EXP430G2 LaunchPad Experimenter Board User's Guide, literature number SLAU318

MSP430xxxx device data sheets

MSP430x1xx Family User's Guide, literature number SLAU049

MSP430x2xx Family User's Guide, literature number SLAU144

MSP430x3xx Family User's Guide, literature number SLAU012

MSP430x4xx Family User's Guide, literature number SLAU056

MSP430x5xx/x6xx Family User's Guide, literature number SLAU208

CC430 Family User's Guide, literature number SLAU259

If You Need Assistance

Support for the MSP430 microcontrollers and the FET development tools is provided by the Texas
Instruments Product Information Center (PIC). Contact information for the PIC can be found on the TI web
site at www.ti.com/support. A Code Composer Studio specific Wiki page (FAQ) is available, and the Texas
Instruments E2E Community support forums for the MSP430 and Code Composer Studio v4.2 provide
open interaction with peer engineers, TI engineers, and other experts. Additional device-specific
information can be found on the MSP430 web site.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio-frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case, the user is required to take whatever
measures may be required to correct this interference at his own expense.

8 Read This First SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Chapter 1
SLAU157S–May 2005–Revised August 2011

Get Started Now!

This chapter provides instructions on installing the software, and shows how to run the demonstration
programs.

Topic ... Page

1.1 Software Installation .. 10

1.2 Flashing the LED ... 10

1.3 Important MSP430™ Documents on the CD-ROM and Web 11

9SLAU157S–May 2005–Revised August 2011 Get Started Now!
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Software Installation www.ti.com

1.1 Software Installation

To install Code Composer Studio™ v4.2 (CCS), run setup_CCS_4.2.x.x.x.exe from the DVD. If the CCS
package was downloaded, please ensure to extract the full zip archive before running
setup_CCS_4.2.x.x.x.exe. Follow the instructions shown on the screen. The hardware drivers for the USB
JTAG emulators (MSP-FET430UIF and eZ430 series) are installed automatically when installing CCS. The
driver for the parallel-port FET (MSP-FET430PIF) are not installed by default, but can be selected
manually during the installation process.

NOTE: Support of MSP-FET430PIF (parallel port emulators).

The driver and IDE components supporting the MSP-FET430PIF parallel port interface are
not installed by default. Select them manually during the CCS4 installation process.

Please fully extract the zip archive setup_CCS_x_x_x.zip file before running
setup_CCS_4.2.x.x.x.exe.

Table 1-1. System Requirements

Recommended System Requirements Minimum System Requirements

Processor Dual Core 1.5 GHz

RAM 2 GB 1 GB

300 MB (depends on features selected during
Free Disk Space 2 GB

installation)

Microsoft® Windows® XP with SP2 (32/64 bit) or Microsoft® Windows® XP with SP2 (32/64 bit) or
Operating System Windows Vista® with SP1 (32/64 bit) or Windows Vista® (32 bit) or

Windows 7® (32/64 bit) Windows 7® (32/64 bit)

1.2 Flashing the LED

This section demonstrates on the FET the equivalent of the C-language "Hello world!" introductory
program. CCSv4.2 includes C and ASM code files as well as fully pre-configured projects. The following
describes how an application that flashes the LED is developed, downloaded to the FET, and run.

1. Start Code Composer Studio Start → All Programs → Texas Instruments → Code Composer Studio
v4.2.4 → Code Composer Studio v4.

2. Create a new Project by selecting File → New → CCS Project.

3. Enter a project name and click next

4. Set Project Type to MSP430

5. Click next twice to get to the CCS Project Settings page. Select the Device Variant used in the project.

6. Add the flashing LED code example to the project by clicking Project → Add Files to Active Project.
Code examples are located in <Installation Root>\ccs4\msp430\examples. Use Table 1-2 to select the
appropriate source code file:

Table 1-2. Code Examples

MSP430 Devices Code Example

MSP430x1xx device family <...>\msp430x1xx\C-Source\msp430x1xx.c

MSP430x2xx device family <...>\msp430x2xx\C-Source\msp430x2xx.c

MSP430x4xx device family <...>\msp430x4xx\C-Source\msp430x4xx.c

MSP430x5xx device family <...>\msp430x5xx\C-Source\msp430x5xx.c

MSP430L092 <...>\msp430x5xx\C-Source\msp430l092.c

7. If using a USB Flash Emulation Tool such as the MSP-FET430UIF or the eZ430 Development Tool,
they should be already configured by default. The debug interface may be changed by opening the
*.ccxml file in the project. The pull-down menu contains TI MSP430 USBx and TI MSP430 LPTx (in
case support for the MSP430 Parallel Port Tools was selected during the installation) connections.
Select "save file" from the drop down menu or click the “save” icon to ensure configuration changes

10 Get Started Now! SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Important MSP430™ Documents on the CD-ROM and Web

are correctly saved.

8. To compile the code and download the application to the target device, go to Target → Debug Active
Project.

9. The application may be started by selecting Target → Run (F8) or clicking the Play button on the
toolbar.

See FAQ Debugging #1 if the CCS debugger is unable to communicate with the device.

Congratulations, you have just built and tested an MSP430 application!

Predefined projects, which are located in <Installation Root>\msp430\examples\example projects, can be
imported by selecting Project → Import Existing CCS/CCE Eclipse Project.

1.3 Important MSP430™ Documents on the CD-ROM and Web

The primary sources of MSP430 and CCS4 information are the device-specific data sheets and user's
guides. The most up-to-date versions of these documents available at the time of production have been
provided on the CD-ROM included with this tool. The MSP430 web site (www.ti.com/msp430) contains the
latest version of these documents.

11SLAU157S–May 2005–Revised August 2011 Get Started Now!
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

12 Get Started Now! SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Chapter 2
SLAU157S–May 2005–Revised August 2011

Development Flow

This chapter discusses how to use Code Composer Studio (CCS) to develop application software and
how to debug that software.

Topic ... Page

2.1 Using Code Composer Studio (CCS) ... 14

2.2 Using the Integrated Debugger ... 16

13SLAU157S–May 2005–Revised August 2011 Development Flow
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Using Code Composer Studio (CCS) www.ti.com

2.1 Using Code Composer Studio (CCS)

The following sections are a brief overview of how to use CCS. For a full discussion of software
development flow with CCS in assembly or C, see MSP430 Assembly Language Tools User's Guide
(SLAU131) and MSP430 Optimizing C/C++ Compiler User's Guide (SLAU132).

2.1.1 Creating a Project From Scratch

This section presents step-by-step instructions to create an assembly or C project from scratch and to
download and run the application on the MSP430 (see Section 2.1.2, Project Settings). Also, the MSP430
Code Composer Studio Help presents a more comprehensive overview of the process.

1. Start the CCS (Start → All Programs → Texas Instruments → Code Composer Studio v4.2.4 → Code
Composer Studio v4).

2. Create new project (File → New → CCS Project). Enter the name for the project, click next and set
Project Type to MSP430. Click next twice to get to the CCS Project Settings page. Select the
appropriate device variant and click Finish. For assembly only projects ensure to click "Configure as an
assembly only project.”

3. Create a new source file (File → New → Source File). Enter the file name and remember to add the
suffix .c or .asm. If, instead, you want to use an existing source file for your project, click Project →
Add Files to Active Project and browse to the file of interest. Single click on the file and click Open or
double-click on the file name to complete the addition of it into the project folder. Note that adding a file
to the project creates a copy of the file in the project directory. To use a file in the directory structure
without physically adding it to the project directory, click Project → Link Files to Active Project instead.

4. Enter the program text into the file.

NOTE: Use .h files to simplify code development.

CCS is supplied with files for each device that define the device registers and the bit names.
Using these files is recommended and can greatly simplify the task of developing a program.
To include the .h file corresponding to the target device, add the line #include
<msp430xyyy.h> for C and .cdecls C,LIST,"msp430xyyy" for assembly code, where xyyy
specifies the MSP430 part number.

5. Configure the connection options by opening the *.ccxml file in your project to select debug interface,
or accept the default factory settings.

6. Build the project (Project → Build Active Project).

7. Debug the application (Target → Debug Active Project). This starts the debugger, which gains control
of the target, erases the target memory, programs the target memory with the application, and resets
the target.
See FAQ Debugging #1 if the debugger is unable to communicate with the device.

8. Click Target → Run to start the application.

9. Click Target → Terminate All to stop the application and to exit the debugger. CCS will return to the
C/C++ view (code editor) automatically.

10. Click File → Exit to exit CCS.

14 Development Flow SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Using Code Composer Studio (CCS)

2.1.2 Project Settings

The settings required to configure the CCS are numerous and detailed. Most projects can be compiled
and debugged with default factory settings. The project settings are accessed by clicking Project →
Properties for the active project. The following project settings are recommended/required:

• Specify the target device for debug session (Project → Properties → CCS Build Settings → Device
Variant). The corresponding Linker Command File and Runtime Support Library are selected
automatically.

• To more easily debug a C project, disable optimization (Project → Properties → C/C++ Build → Tool
Settings → MSP430 Compiler → Basic Options).

• Specify the search path for the C preprocessor (Project → Properties → C/C++ Build → Tool Settings
→ MSP430 Compiler → Include Options).

• Specify the search path for any libraries being used (Project → Properties → C/C++ Build → Tool
Settings → MSP430 Linker → File Search Path).

• Specify the debugger interface. Open the *.ccxml file in project. In Connection select TI MSP430 LPTx
for the parallel FET interface or TI MSP430 USBx for the USB interface.

• Enable the erasure of the Main and Information memories before object code download (Project →
Properties → CCS Debug Settings → Target → MSP430 Properties → Download Options → Erase
Main and Information Memory).

• To ensure proper standalone operation, disable Software Breakpoints (Project → Properties → CCS
Debug Settings → Target → MSP430 Properties → Use Software Breakpoints). If Software
Breakpoints are enabled, ensure proper termination of each debug session while the target is
connected; otherwise, the target may not be operational standalone as the application on the device
will still contain the software breakpoint instructions.

2.1.3 Using an Existing CCE v2, CCE v3, CCE v3.1 and CCS v4.x Project

CCS v4.2 supports the conversion of workspaces and projects created in version CCE v2, v3, v3.1 and
CCSv4.x to the CCS4.2 format (File → Import → General → Existing Projects into Workspace → Next).
Browse to legacy CCE workspace containing the project to be imported. The Import Wizard lists all
projects in the given workspace. Specific Projects can then be selected and converted. CCEv2 and
CCEv3 projects may require manual work on the target configuration file (*.ccxml) after import.

The IDE may return a warning that an imported project was built with another version of Code Generation
Tools (CGT) depending on the previous CGT version.

While the support for assembly projects has not changed, the header files for C code have been modified
slightly to improve compatibility with the IAR Embedded Workbench® IDE (interrupt vector definitions). The
definitions used in CCE 2.x are still given, but have been commented out in all header files. To support
CCE 2.x C code, remove the "//" in front of #define statements, which are located at the end of each .h
file, in the section "Interrupt Vectors".

2.1.4 Stack Management

The reserved stack size can be configured through the project options dialog (Project → Properties →
C/C++ Build → Tool Settings → MSP430 Linker → Basic Options → Set C System Stack Size). Stack
size is defined to extend from the last location of RAM for 50 to 80 bytes (that is, the stack extends
downwards through RAM for 50 to 80 bytes, depending on the RAM size of the selected device).

Note that the stack can overflow due to small size or application errors. See Section 2.2.2.1 for a method
of tracking the stack size.

15SLAU157S–May 2005–Revised August 2011 Development Flow
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Using the Integrated Debugger www.ti.com

2.1.5 How to Generate Binary-Format Files (TI-TXT and INTEL-HEX)

The CCS installation includes the hex430.exe conversion tool. It can be configured to generate output
objects in TI-TXT format for use with the MSP-GANG430 and MSP-PRGS430 programmers, as well as
INTEL-HEX format files for TI factory device programming. The tool can be used either standalone in a
command line (located in <Installation Root>\tools\compiler\msp430\bin) or directly within CCS. In the
latter case, a post-build step can be configured to generate the file automatically after every build by
selecting predefined formats such as TI-TXT and INTEL-HEX in the "Apply Predefined Step" menu
(Project → Properties → C/C++ Build → Build Steps → Post-Build Step). The generated file is stored in
the <Workspace>\<Project>\Debug\ directory.

2.1.6 Overview of Example Programs and Projects

Example programs for MSP430 devices are provided in <Installation Root>\ccsv4\msp430\examples.
Assembly and C sources are available in the appropriate subdirectory.

To use the examples, create a new project and add the example source file to the project by clicking
Project → Add Files to Active Project. In addition, example projects corresponding to the code examples
are provided in <Installation Root>\ccsv4\msp430\examples\example projects. The projects can be
imported by Project → Import Existing CCS/CCE Eclipse Project (see Section 1.2 for more information).

2.2 Using the Integrated Debugger

See Appendix D for a description of FET-specific menus within CCS.

2.2.1 Breakpoint Types

The debugger breakpoint mechanism uses a limited number of on-chip debugging resources (specifically,
N breakpoint registers, see Table 2-1). When N or fewer breakpoints are set, the application runs at full
device speed (or "realtime"). When greater than N breakpoints are set and Use Software Breakpoints is
enabled (Project → Properties → CCS Debug Settings → Target → MSP430 Properties → Use Software
Breakpoints), an unlimited number of software breakpoints can be set while still meeting realtime
constraints.

NOTE: A software breakpoint replaces the instruction at the breakpoint address with a call to
interrupt the code execution. Therefore, there is a small delay when setting a software
breakpoint. In addition, the use of software breakpoints always requires proper termination of
each debug session; otherwise, the application may not be operational standalone, because
the application on the device would still contain the software breakpoint instructions.

Both address (code) and data (value) breakpoints are supported. Data breakpoints and range breakpoints
each require two MSP430 hardware breakpoints.

16 Development Flow SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Using the Integrated Debugger

Table 2-1. Device Architecture, Breakpoints and Other Emulation Features

Break- Range
MSP430 4-Wire 2-Wire Clock State Trace

Device points Break-
Architecture JTAG JTAG (1) Control Sequencer Buffer

(N) points

CC430F513x MSP430Xv2 X X 3 X X

CC430F612x MSP430Xv2 X X 3 X X

CC430F613x MSP430Xv2 X X 3 X X

MSP430AFE2xx MSP430 X X 2 X

MSP430BT5190 MSP430Xv2 X X 8 X X X X

MSP430F11x1 MSP430 X 2

MSP430F11x2 MSP430 X 2

MSP430F12x MSP430 X 2

MSP430F12x2 MSP430 X 2

MSP430F13x MSP430 X 3 X

MSP430F14x MSP430 X 3 X

MSP430F15x MSP430 X 8 X X X X

MSP430F16x MSP430 X 8 X X X X

MSP430F161x MSP430 X 8 X X X X

MSP430F20xx MSP430 X X 2 X

MSP430F21x1 MSP430 X 2 X

MSP430F21x2 MSP430 X X 2 X

MSP430F22x2 MSP430 X X 2 X

MSP430F22x4 MSP430 X X 2 X

MSP430F23x MSP430 X 3 X X

MSP430F23x0 MSP430 X 2 X

MSP430F24x MSP430 X 3 X X

MSP430F241x MSP430X X 8 X X X X

MSP430F2410 MSP430 X 3 X X

MSP430F261x MSP430X X 8 X X X X

MSP430G2xxx MSP430 X X 2 X

MSP430F41x MSP430 X 2 X

MSP430F41x2 MSP430 X X 2 X

MSP430F42x MSP430 X 2 X

MSP430FE42x MSP430 X 2 X

MSP430FE42x2 MSP430 X 2 X

MSP430FW42x MSP430 X 2 X

MSP430F42x0 MSP430 X 2 X

MSP430FG42x0 MSP430 X 2 X

MSP430F43x MSP430 X 8 X X X X

MSP430FG43x MSP430 X 2 X

MSP430F43x1 MSP430 X 2 X

MSP430F44x MSP430 X 8 X X X X

MSP430F44x1 MSP430 X 8 X X X X

MSP430F461x MSP430X X 8 X X X X

MSP430FG461x MSP430X X 8 X X X X

MSP430F461x1 MSP430X X 8 X X X X

MSP430F47x MSP430 X 2 X

MSP430FG47x MSP430 X 2 X

(1) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. Note that this interface is supported only by
the USB emulators (eZ430-xxxx and MSP-FET430UIF USB JTAG emulator) and the MSP-GANG430 production programming
tool. The MSP-FET430PIF parallel port JTAG emulator does not support communication in 2-wire JTAG mode.

17SLAU157S–May 2005–Revised August 2011 Development Flow
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Using the Integrated Debugger www.ti.com

Table 2-1. Device Architecture, Breakpoints and Other Emulation Features (continued)

Break- Range
MSP430 4-Wire 2-Wire Clock State Trace

Device points Break-
Architecture JTAG JTAG (1) Control Sequencer Buffer

(N) points

MSP430F47x3 MSP430 X 2 X

MSP430F47x4 MSP430 X 2 X

MSP430F471xx MSP430X X 8 X X X X

MSP430F51x1 MSP430Xv2 X X 3 X X

MSP430F51x2 MSP430Xv2 X X 3 X X

MSP430F52xx MSP430Xv2 X X 8 X X X X

MSP430F530x MSP430Xv2 X X 3 X X

MSP430F5310 MSP430Xv2 X X 3 X X

MSP430F532x MSP430Xv2 X X 8 X X X X

MSP430F533x MSP430Xv2 X X 8 X X X X

MSP430F534x MSP430Xv2 X X 8 X X X X

MSP430F54xx MSP430Xv2 X X 8 X X X X

MSP430F54xxA MSP430Xv2 X X 8 X X X X

MSP430F550x MSP430Xv2 X X 3 X X

MSP430F5510 MSP430Xv2 X X 3 X X

MSP430F552x MSP430Xv2 X X 8 X X X X

MSP430F563x MSP430Xv2 X X 8 X X X X

MSP430FR57xx MSP430Xv2 X X 3 X X

MSP430F643x MSP430Xv2 X X 8 X X X X

MSP430F663x MSP430Xv2 X X 8 X X X X

MSP430F67xx MSP430Xv2 X X 3 X X

MSP430L092 MSP430Xv2 X 2 X

2.2.2 Using Breakpoints

If the debugger is started with greater than N breakpoints set and software breakpoints are disabled, a
message is shown that informs the user that not all breakpoints can be enabled. Note that CCS permits
any number of breakpoints to be set, regardless of the Use Software Breakpoints setting of CCS. If
software breakpoints are disabled, a maximum of N breakpoints can be set within the debugger.

Resetting a program requires a breakpoint, which is set on the address defined in Project → Properties →
CCS Debug Settings → Target → Generic Debugger Options→ Run To.

The Run To Cursor operation temporarily requires a breakpoint.

Console I/O (CIO) functions, such as printf, require the use of a breakpoint. If these functions are compiled
in, but you do not wish to use a breakpoint, disable CIO functionality by changing the option in Project →
Properties → CCS Debug Settings → Target → Generic Debug Options → Enable CIO function use.

18 Development Flow SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Using the Integrated Debugger

2.2.2.1 Breakpoints in CCSv4.2

CCS supports a number of predefined breakpoint types that can be selected by opening a menu found
next to the Breakpoints icon in the Breakpoint window (Window → Show View → Breakpoints). In addition
to traditional breakpoints, CCS allows setting watchpoints to break on a data address access instead of an
address access. The properties of breakpoints/watchpoints can be changed in the debugger by right
clicking on the breakpoint and selecting Properties.

• Break after program address

Stops code execution when the program attempts to execute code after a specific address.

• Break before program address

Stops code execution when the program attempts to execute code before a specific address.

• Break in program range

Stops code execution when the program attempts to execute code in a specific range.

• Break on DMA transfer

• Break on DMA transfer in range

Breaks when a DMA access within a specified address range occurs.

• Break on stack overflow

It is possible to debug the applications that caused the stack overflow. Set Break on Stack Overflow
(right click in debug window and then select "Break on Stack Overflow" in the context menu). The
program execution stops on the instruction that caused the stack overflow. The size of the stack can
be adjusted in Project → Properties → C/C++ Build → MSP430 Linker → Basic Options.

• Breakpoint

Sets a breakpoint.

• Hardware breakpoint

Forces a hardware breakpoint if software breakpoints are not disabled.

• Watch on data address range

Stops code execution when data access to an address in a specific range occurs.

• Watch

Stops code execution if a specific data access to a specific address is made.

• Watchpoint with data

Stops code execution if a specific data access to a specific address is made with a specific value.

Restriction 1: Watchpoints are applicable to global variables and non-register local variables. In the
latter case, set a breakpoint (BP) to halt execution in the function where observation of the variable is
desired (set code BP there). Then set the watchpoint and delete (or disable) the code breakpoint in the
function and run/restart the application.

Restriction 2: Watchpoints are applicable to variables 8 bits and 16 bits wide.

NOTE: Not all options are available on every MSP430 derivative (see Table 2-1). Therefore, the
number of predefined breakpoint types in the breakpoint menu varies depending on the
selected device.

For more information on advanced debugging with CCS, see the application report Advanced Debugging
Using the Enhanced Emulation Module (EEM) With CCS Version 4 (SLAA393).

19SLAU157S–May 2005–Revised August 2011 Development Flow
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

20 Development Flow SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Appendix A
SLAU157S–May 2005–Revised August 2011

Frequently Asked Questions

This appendix presents solutions to frequently asked questions regarding hardware, program development
and debugging tools.

Topic ... Page

A.1 Hardware .. 22

A.2 Program Development (Assembler, C-Compiler, Linker, IDE) 22

A.3 Debugging .. 23

21SLAU157S–May 2005–Revised August 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Hardware www.ti.com

A.1 Hardware

For a complete list of hardware related FAQs, see the MSP430 Hardware Tools User's Guide SLAU278.

A.2 Program Development (Assembler, C-Compiler, Linker, IDE)

NOTE: Consider the CCS Release Notes

For the case of unexpected behavior, see the CCS Release Notes document for known bugs
and limitations of the current CCS version. This information can be accessed through the
menu item Start → All Programs → Texas Instruments → Code Composer Studio v4.2.4 →
Release Notes.

1. A common MSP430 "mistake" is to fail to disable the watchdog mechanism; the watchdog is
enabled by default, and it resets the device if not disabled or properly managed by the application. Use
WDTCL = WDTPW + WDTHOLD; to explicitly disable the Watchdog. This statement is best placed in the
_system_pre_init() function that is executed prior to main(). If the Watchdog timer is not disabled, and
the Watchdog triggers and resets the device during CSTARTUP, the source screen goes blank, as
the debugger is not able to locate the source code for CSTARTUP. Be aware that CSTARTUP can
take a significant amount of time to execute if a large number of initialized global variables are used.

int _system_pre_init(void)
{
/* Insert your low-level initializations here */
WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog timer
/*==================================*/
/* Choose if segment initialization */
/* should be done or not. */
/* Return: 0 to omit initialization */
/* 1 to run initialization */
/*==================================*/
return (1);
}

2. Within the C libraries, GIE (Global Interrupt Enable) is disabled before (and restored after) the
hardware multiplier is used.

3. It is possible to mix assembly and C programs within CCS. See the "Interfacing C/C++ With
Assembly Language" chapter of the MSP430 Optimizing C/C++ Compiler User's Guide (literature
number SLAU132).

4. Constant definitions (#define) used within the .h files are effectively reserved and include, for
example, C, Z, N, and V. Do not create program variables with these names.

5. Compiler optimization can remove unused variables and/or statements that have no effect and
can affect debugging. To prevent this, these variables can be declared volatile; for example,
volatile int i;.

22 Frequently Asked Questions SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Debugging

A.3 Debugging

The debugger is part of CCS and can be used as a standalone application. This section is applicable
when using the debugger both standalone and from the CCS IDE.

NOTE: Consider the CCS release notes

In case of unexpected behavior, see the CCS Release Notes document for known bugs and
limitations of the current CCS version. To access this information, click Start → All Programs
→ Texas Instruments → Code Composer Studio v4.2.4 → Release Notes.

1. The debugger reports that it cannot communicate with the device. Possible solutions to this
problem include:

• Ensure that the correct debug interface and corresponding port number have been selected in the
*.ccxml file within the project and that the file was saved after a change.

• Ensure that the jumper settings are configured correctly on the target hardware.

• Ensure that no other software application (for example, printer drivers) has reserved or taken
control of the COM/parallel port, which would prevent the debug server from communicating with
the device.

• Open the Device Manager and determine if the driver for the FET tool has been correctly installed
and if the COM/parallel port is successfully recognized by the Windows OS. Check the PC BIOS
for the parallel port settings (see FAQ Debugging #5). For users of IBM or Lenovo ThinkPad®

computers, try port setting LPT2 and LPT3, even if operating system reports that the parallel port is
located at LPT1.

• Restart the computer.

Ensure that the MSP430 device is securely seated in the socket (so that the "fingers" of the socket
completely engage the pins of the device), and that its pin 1 (indicated with a circular indentation on
the top surface) aligns with the "1" mark on the PCB.

CAUTION

Possible Damage To Device

Always handle MSP430 devices with a vacuum pick-up tool only; do not use
your fingers, as you can easily bend the device pins and render the device
useless. Also, always observe and follow proper ESD precautions.

2. The debugger can debug applications that utilize interrupts and low-power modes. See FAQ
Debugging #17).

3. The debugger cannot access the device registers and memory while the device is running. The
user must stop the device to access device registers and memory.

4. The debugger reports that the device JTAG security fuse is blown. With current MSP-FET430PIF
and MSP430-FET430UIF JTAG interface tools, there is a weakness when adapting target boards that
are powered externally. This leads to an accidental fuse check in the MSP430 and results in the JTAG
security fuse being recognized as blown although it is not. This occurs for MSP-FET430PIF and
MSP-FET430UIF but is mainly seen on MSP-FET430UIF.

Workarounds:

• Connect the device RST/NMI pin to JTAG header (pin 11), MSP-FET430PIF/MSP-FET430UIF
interface tools are able to pull the RST line, this also resets the device internal fuse logic.

• Do not connect both VCC Tool (pin 2) and VCC Target (pin 4) of the JTAG header. Specify a value for
VCC in the debugger that is equal to the external supply voltage.

5. The parallel port designators (LPTx) have the following physical addresses: LPT1 = 378h,
LPT2 = 278h, LPT3 = 3BCh. The configuration of the parallel port (ECP, Compatible, Bidirectional,
Normal) is not significant; ECP seems to work well. See FAQ Debugging #1 for additional hints on
solving communication problems between the debugger and the device.

23SLAU157S–May 2005–Revised August 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Debugging www.ti.com

6. The debugger asserts RST/NMI to reset the device when the debugger is started and when the
device is programmed. The device is also reset by the debugger Reset button, and when the device is
manually reprogrammed (using Reload), and when the JTAG is resynchronized (using Resynchronize
JTAG). When RST/NMI is not asserted (low), the debugger sets the logic driving RST/NMI to high
impedance, and RST/NMI is pulled high via a resistor on the PCB.

RST/NMI is asserted and negated after power is applied when the debugger is started. RST/NMI is
then asserted and negated a second time after device initialization is complete.

7. The debugger can debug a device whose program reconfigures the function of the RST/NMI pin
to NMI.

8. The level of the XOUT/TCLK pin is undefined when the debugger resets the device. The logic
driving XOUT/TCLK is set to high impedance at all other times.

9. When making current measurements of the device, ensure that the JTAG control signals are
released, otherwise the device is powered by the signals on the JTAG pins and the measurements are
erroneous. See FAQ Debugging #10.

10. When the debugger has control of the device, the CPU is on (that is, it is not in low-power mode)
regardless of the settings of the low-power mode bits in the status register. Any low-power mode
condition is restored prior to STEP or GO. Consequently, do not measure the power consumed by the
device while the debugger has control of the device. Instead, run the application using Release JTAG
on run.

11. The MEMORY window correctly displays the contents of memory where it is present. However, the
MEMORY window incorrectly displays the contents of memory where there is none present.
Memory should be used only in the address ranges as specified by the device data sheet.

12. The debugger utilizes the system clock to control the device during debugging. Therefore, device
counters and other components that are clocked by the Main System Clock (MCLK) are affected
when the debugger has control of the device. Special precautions are taken to minimize the effect
upon the watchdog timer. The CPU core registers are preserved. All other clock sources (SMCLK and
ACLK) and peripherals continue to operate normally during emulation. In other words, the Flash
Emulation Tool is a partially intrusive tool.

Devices that support clock control can further minimize these effects by stopping the clock(s) during
debugging (Project → Properties → CCS Debug Settings → Target → Clock Control).

13. When programming the flash, do not set a breakpoint on the instruction immediately following
the write to flash operation. A simple work-around to this limitation is to follow the write to flash
operation with a NOP and to set a breakpoint on the instruction following the NOP.

14. Multiple internal machine cycles are required to clear and program the flash memory. When single
stepping over instructions that manipulate the flash, control is given back to the debugger before
these operations are complete. Consequently, the debugger updates its memory window with
erroneous information. A workaround for this behavior is to follow the flash access instruction with a
NOP and then step past the NOP before reviewing the effects of the flash access instruction.

15. Bits that are cleared when read during normal program execution (that is, interrupt flags) are
cleared when read while being debugged (that is, memory dump, peripheral registers).

Using certain MSP430 devices with enhanced emulation logic such as MSP430F43x/44x devices, bits
do not behave this way (that is, the bits are not cleared by the debugger read operations).

16. The debugger cannot be used to debug programs that execute in the RAM of F12x and F41x
devices. A workaround for this limitation is to debug programs in flash.

17. While single stepping with active and enabled interrupts, it can appear that only the interrupt
service routine (ISR) is active (that is, the non-ISR code never appears to execute, and the single
step operation stops on the first line of the ISR). However, this behavior is correct because the device
processes an active and enabled interrupt before processing non-ISR (that is, mainline) code. A
workaround for this behavior is, while within the ISR, to disable the GIE bit on the stack, so that
interrupts are disabled after exiting the ISR. This permits the non-ISR code to be debugged (but
without interrupts). Interrupts can later be re-enabled by setting GIE in the status register in the
Register window.

On devices with Clock Control, it may be possible to suspend a clock between single steps and delay
an interrupt request (Project → Properties → CCS Debug Settings → Target → Clock Control).

24 Frequently Asked Questions SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Debugging

18. On devices equipped with a Data Transfer Controller (DTC), the completion of a data transfer cycle
preempts a single step of a low-power mode instruction. The device advances beyond the
low-power mode instruction only after an interrupt is processed. Until an interrupt is processed, it
appears that the single step has no effect. A workaround to this situation is to set a breakpoint on the
instruction following the low-power mode instruction, and then execute (Run) to this breakpoint.

19. The transfer of data by the Data Transfer Controller (DTC) may not stop precisely when the
DTC is stopped in response to a single step or a breakpoint. When the DTC is enabled and a
single step is performed, one or more bytes of data can be transferred. When the DTC is enabled and
configured for two-block transfer mode, the DTC may not stop precisely on a block boundary when
stopped in response to a single step or a breakpoint.

20. Breakpoints. CCS supports a number of predefined breakpoint and watchpoint types. See
Section 2.2.2 for a detailed overview.

25SLAU157S–May 2005–Revised August 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

26 Frequently Asked Questions SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Appendix B
SLAU157S–May 2005–Revised August 2011

IAR 2.x/3.x/4.x to CCS C-Migration

Source code for the TI CCS C compiler and source code for the IAR Embedded Workbench compiler are
not fully compatible. While the standard ANSI/ISO C code is portable between these tools,
implementation-specific extensions differ and need to be ported. This appendix documents the major
differences between the two compilers.

Topic ... Page

B.1 Interrupt Vector Definition .. 28

B.2 Intrinsic Functions .. 28

B.3 Data and Function Placement ... 28

B.4 C Calling Conventions ... 30

B.5 Other Differences .. 30

27SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS C-Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Interrupt Vector Definition www.ti.com

B.1 Interrupt Vector Definition

IAR ISR declarations (using the #pragma vector =) are now fully supported in CCS. However, this is not
the case for all other IAR pragma directives.

B.2 Intrinsic Functions

CCS and IAR tools use the same instructions for MSP430 processor-specific intrinsic functions.

B.3 Data and Function Placement

B.3.1 Data Placement at an Absolute Location

The scheme implemented in the IAR compiler using either the @ operator or the #pragma location
directive is not supported with the CCS compiler:

/* IAR C Code */
__no_init char alpha @ 0x0200; /* Place ‘alpha' at address 0x200 */
#pragma location = 0x0202
const int beta;

If absolute data placement is needed, this can be achieved with entries into the linker command file, and
then declaring the variables as extern in the C code:

/* CCS Linker Command File Entry */
alpha = 0x200;
beta = 0x202;
/* CCS C Code */
extern char alpha;
extern int beta;

The absolute RAM locations must be excluded from the RAM segment; otherwise, their content may be
overwritten as the linker dynamically allocates addresses. The start address and length of the RAM block
must be modified within the linker command file. For the previous example, the RAM start address must
be shifted 4 bytes from 0x0200 to 0x0204, which reduces the length from 0x0080 to 0x007C (for an
MSP430 device with 128 bytes of RAM):

/* CCS Linker Command File Entry */
/**/
/* SPECIFY THE SYSTEM MEMORY MAP */
/**/
MEMORY /* assuming a device with 128 bytes of RAM */
{
...
RAM :origin = 0x0204, length = 0x007C /* was: origin = 0x200, length = 0x0080 */
...
}

The definitions of the peripheral register map in the linker command files (lnk_msp430xxxx.cmd) and the
device-specific header files (msp430xxxx.h) that are supplied with CCS are an example of placing data at
absolute locations.

NOTE: When a project is created, CCS copies the linker command file corresponding to the
selected MSP430 derivative from the include directory (<Installation
Root>\tools\compiler\MSP430\include) into the project directory. Therefore, ensure that all
linker command file changes are done in the project directory. This allows the use of
project-specific linker command files for different projects using the same device.

28 IAR 2.x/3.x/4.x to CCS C-Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Data and Function Placement

B.3.2 Data Placement Into Named Segments

In IAR, it is possible to place variables into named segments using either the @ operator or a #pragma
directive:

/* IAR C Code */
__no_init int alpha @ "MYSEGMENT"; /* Place ‘alpha' into ‘MYSEGMENT' */
#pragma location="MYSEGMENT" /* Place ‘beta' into ‘MYSEGMENT' */
const int beta;

With the CCS compiler, the #pragma DATA_SECTION() directive must be used:

/* CCS C Code */
#pragma DATA_SECTION(alpha, "MYSEGMENT")
int alpha;
#pragma DATA_SECTION(beta, "MYSEGMENT")
const int beta;

See Section B.5.3 for information on how to translate memory segment names between IAR and CCS.

B.3.3 Function Placement Into Named Segments

With the IAR compiler, functions can be placed into a named segment using the @ operator or the
#pragma location directive:

/* IAR C Code */
void g(void) @ "MYSEGMENT"
{
}
#pragma location="MYSEGMENT"
void h(void)
{
}

With the CCS compiler, the following scheme with the #pragma CODE_SECTION() directive must be
used:

/* CCS C Code */
#pragma CODE_SECTION(g, "MYSEGMENT")
void g(void)
{
}

See Section B.5.3 for information on how to translate memory segment names between IAR and CCS.

29SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS C-Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

C Calling Conventions www.ti.com

B.4 C Calling Conventions

The CCS and IAR C-compilers use different calling conventions for passing parameters to functions.
When porting a mixed C and assembly project to the TI CCS code generation tools, the assembly
functions need to be modified to reflect these changes. For detailed information about the calling
conventions, see the TI MSP430 Optimizing C/C++ Compiler User's Guide (SLAU132) and the IAR
MSP430 C/C++ Compiler Reference Guide.

The following example is a function that writes the 32-bit word 'Data' to a given memory location in
big-endian byte order. It can be seen that the parameter ‘Data' is passed using different CPU registers.

IAR Version:

;--
; void WriteDWBE(unsigned char *Add, unsigned long Data)
;
; Writes a DWORD to the given memory location in big-endian format. The
; memory address MUST be word-aligned.
;
; IN: R12 Address (Add)
; R14 Lower Word (Data)
; R15 Upper Word (Data)
;--
WriteDWBE

swpb R14 ; Swap bytes in lower word
swpb R15 ; Swap bytes in upper word
mov.w R15,0(R12) ; Write 1st word to memory
mov.w R14,2(R12) ; Write 2nd word to memory
ret

CCS Version:

;--
; void WriteDWBE(unsigned char *Add, unsigned long Data)
;
; Writes a DWORD to the given memory location in big-endian format. The
; memory address MUST be word-aligned.
;
; IN: R12 Address (Add)
; R13 Lower Word (Data)
; R14 Upper Word (Data)
;--
WriteDWBE

swpb R13 ; Swap bytes in lower word
swpb R14 ; Swap bytes in upper word
mov.w R14,0(R12) ; Write 1st word to memory
mov.w R13,2(R12) ; Write 2nd word to memory
ret

B.5 Other Differences

B.5.1 Initializing Static and Global Variables

The ANSI/ISO C standard specifies that static and global (extern) variables without explicit initializations
must be pre-initialized to 0 (before the program begins running). This task is typically performed when the
program is loaded and is implemented in the IAR compiler:

/* IAR, global variable, initialized to 0 upon program start */
int Counter;

However, the TI CCS compiler does not pre-initialize these variables; therefore, it is up to the application
to fulfill this requirement:

/* CCS, global variable, manually zero-initialized */
int Counter = 0;

30 IAR 2.x/3.x/4.x to CCS C-Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Other Differences

B.5.2 Custom Boot Routine

With the IAR compiler, the C startup function can be customized, giving the application a chance to
perform early initializations such as configuring peripherals, or omit data segment initialization. This is
achieved by providing a customized __low_level_init() function:

/* IAR C Code */
int __low_level_init(void)
{ =
/* Insert your low-level initializations here */
/*================================== */
/* Choose if segment initialization */
/* should be done or not. */
/* Return: 0 to omit initialization */
/* 1 to run initialization */
/*================================== */
return (1);
}

The return value controls whether or not data segments are initialized by the C startup code. With the
CCS C compiler, the custom boot routine name is _system_pre_init(). It is used the same way as in the
IAR compiler.

/* CCS C Code */
int _system_pre_init(void)
{
/* Insert your low-level initializations here */
/*================================== */
/* Choose if segment initialization */
/* should be done or not. */
/* Return: 0 to omit initialization */
/* 1 to run initialization */
/*================================== */
return (1);
}

Note that omitting segment initialization with both compilers omits both explicit and non-explicit
initialization. The user must ensure that important variables are initialized at run time before they are used.

B.5.3 Predefined Memory Segment Names

Memory segment names for data and function placement are controlled by device-specific linker
command files in both CCS and IAR tools. However, different segment names are used. See the linker
command files for more detailed information. The following table shows how to convert the most
commonly used segment names.

Description CCS Segment Name IAR Segment Name

DATA16_N
RAM .bss DATA16_I

DATA16_Z

Stack (RAM) .stack CSTACK

Main memory (flash or ROM) .text CODE

INFOA
.infoA

Information memory (flash or ROM) INFOB
.infoB

INFO

.int00

.int01
Interrupt vectors (flash or ROM) INTVEC…

.int14

Reset vector (flash or ROM) .reset RESET

31SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS C-Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Other Differences www.ti.com

B.5.4 Predefined Macro Names

Both IAR and CCS compilers support a few non ANSI/ISO standard predefined macro names, which help
creating code that can be compiled and used on different compiler platforms. Check if a macro name is
defined using the #ifdef directive.

Description CCS Macro Name IAR Macro Name

Is MSP430 the target and is a particular compiler
__MSP430__ __ICC430__

platform used?

Is a particular compiler platform used? __TI_COMPILER_VERSION__ __IAR_SYSTEMS_ICC__

Is a C header file included from within assembly
__ASM_HEADER__ __ IAR_SYSTEMS_ASM__

source code?

32 IAR 2.x/3.x/4.x to CCS C-Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Appendix C
SLAU157S–May 2005–Revised August 2011

IAR 2.x/3.x/4.x to CCS Assembler Migration

Source for the TI CCS assembler and source code for the IAR assembler are not 100% compatible. The
instruction mnemonics are identical, while the assembler directives are somewhat different. This appendix
documents the differences between the CCS assembler directives and the IAR 2.x/3.x assembler
directives.

Topic ... Page

C.1 Sharing C/C++ Header Files With Assembly Source .. 34

C.2 Segment Control ... 34

C.3 Translating A430 Assembler Directives to Asm430 Directives 35

33SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS Assembler Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Sharing C/C++ Header Files With Assembly Source www.ti.com

C.1 Sharing C/C++ Header Files With Assembly Source

The IAR A430 assembler supports certain C/C++ preprocessor directives directly and, thereby, allows
direct including of C/C++ header files such as the MSP430 device-specific header files (msp430xxxx.h)
into the assembly code:

#include "msp430x14x.h" // Include device header file

With the CCS Asm430 assembler, a different scheme that uses the .cdecls directive must be used. This
directive allows programmers in mixed assembly and C/C++ environments to share C/C++ headers
containing declarations and prototypes between the C/C++ and assembly code:

.cdecls C,LIST,"msp430x14x.h" ; Include device header file

More information on the .cdecls directive can be found in the MSP430 Assembly Language Tools User's
Guide (literature number SLAU131).

C.2 Segment Control

The CCS Asm430 assembler does not support any of the IAR A430 segment control directives such as
ORG, ASEG, RSEG, and COMMON.

Description Asm430 Directive (CCS)

Reserve space in the .bss uninitialized section .bss

Reserve space in a named uninitialized section .usect

Allocate program into the default program section (initialized) .text

Allocate data into a named initialized section .sect

To allocate code and data sections to specific addresses with the CCS assembler, it is necessary to
create/use memory sections defined in the linker command files. The following example demonstrates
interrupt vector assignment in both IAR and CCS assembly to highlight the differences.

;--
; Interrupt Vectors Used MSP430x11x1/12x(2) - IAR Assembler
;--

ORG 0FFFEh ; MSP430 RESET Vector
DW RESET ;
ORG 0FFF2h ; Timer_A0 Vector
DW TA0_ISR ;

;-- ;
Interrupt Vectors Used MSP430x11x1/12x(2) - CCS Assembler
;--

.sect ".reset" ; MSP430 RESET Vector

.short RESET ;

.sect ".int09" ; Timer_A0 Vector

.short TA0_ISR ;

Both examples assume that the standard device support files (header files, linker command files) are
used. Note that the linker command files are different between IAR and CCS and cannot be reused. See
Section B.5.3 for information on how to translate memory segment names between IAR and CCS.

34 IAR 2.x/3.x/4.x to CCS Assembler Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Translating A430 Assembler Directives to Asm430 Directives

C.3 Translating A430 Assembler Directives to Asm430 Directives

C.3.1 Introduction

The following sections describe, in general, how to convert assembler directives for the IAR A430
assembler (A430) to Texas Instruments CCS Asm430 assembler (Asm430) directives. These sections are
intended only as a guide for translation. For detailed descriptions of each directive, see either the MSP430
Assembly Language Tools User's Guide (SLAU131), from Texas Instruments, or the MSP430 IAR
Assembler Reference Guide from IAR.

NOTE: Only the assembler directives require conversion

Only the assembler directives require conversion, not the assembler instructions. Both
assemblers use the same instruction mnemonics, operands, operators, and special symbols
such as the section program counter ($) and the comment delimiter (;).

The A430 assembler is not case sensitive by default. These sections show the A430 directives written in
uppercase to distinguish them from the Asm430 directives, which are shown in lower case.

C.3.2 Character Strings

In addition to using different directives, each assembler uses different syntax for character strings. A430
uses C syntax for character strings: A quote is represented using the backslash character as an escape
character together with quote (\") and the backslash itself is represented by two consecutive backslashes
(\\). In Asm430 syntax, a quote is represented by two consecutive quotes (""); see examples:

Character String Asm430 Syntax (CCS) A430 Syntax (IAR)

PLAN "C" "PLAN ""C""" "PLAN \"C\""
\dos\command.com "\dos\command.com" "\\dos\\command.com"
Concatenated string (for example, Error 41) - "Error " "41"

35SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS Assembler Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Translating A430 Assembler Directives to Asm430 Directives www.ti.com

C.3.3 Section Control Directives

Asm430 has three predefined sections into which various parts of a program are assembled. Uninitialized
data is assembled into the .bss section, initialized data into the .data section, and executable code into the
.text section.

A430 also uses sections or segments, but there are no predefined segment names. Often, it is convenient
to adhere to the names used by the C compiler: DATA16_Z for uninitialized data, CONST for constant
(initialized) data, and CODE for executable code. The following table uses these names.

A pair of segments can be used to make initialized, modifiable data PROM-able. The ROM segment would
contain the initializers and would be copied to RAM segment by a start-up routine. In this case, the
segments must be exactly the same size and layout.

Description Asm430 Directive (CCS) A430 Directive (IAR)

Reserve size bytes in the .bss (uninitialized data)
.bss (1) (2)

section

Assemble into the .data (initialized data) section .data RSEG const

Assemble into a named (initialized) section .sect RSEG

Assemble into the .text (executable code) section .text RSEG code

Reserve space in a named (uninitialized) section .usect (1) (2)

Alignment on byte boundary .align 1 (3)

Alignment on word boundary .align 2 EVEN

(1) .bss and .usect do not require switching back and forth between the original and the uninitialized section. For example:
; IAR Assembler Example

RSEG DATA16_N ; Switch to DATA segment
EVEN ; Ensure proper alignment

ADCResult: DS 2 ; Allocate 1 word in RAM
Flags: DS 1 ; Allocate 1 byte in RAM

RSEG CODE ; Switch back to CODE segment
; CCS Assembler Example #1
ADCResult .usect ".bss",2,2 ; Allocate 1 word in RAM
Flags .usect ".bss",1 ; Allocate 1 byte in RAM
; CCS Assembler Example #2

.bss ADCResult,2,2 ; Allocate 1 word in RAM

.bss Flags,1 ; Allocate 1 byte in RAM
(2) Space is reserved in an uninitialized segment by first switching to that segment, then defining the appropriate memory block, and

then switching back to the original segment. For example:
RSEG DATA16_Z

LABEL: DS 16 ; Reserve 16 byte
RSEG CODE

(3) Initialization of bit-field constants (.field) is not supported, therefore, the section counter is always byte-aligned.

C.3.4 Constant Initialization Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)

Initialize one or more successive bytes or text strings .byte or .string DB

Initialize a 32-bit IEEE floating-point constant .double or .float DF

Initialize a variable-length field .field (1)

Reserve size bytes in the current section .space DS

Initialize one or more text strings Initialize one or more text strings DB

Initialize one or more 16-bit integers .word DW

Initialize one or more 32-bit integers .long DL

(1) Initialization of bit-field constants (.field) is not supported. Constants must be combined into complete words using DW.
; Asm430 code ; A430 code
.field 5,3 \
.field 12,4 | -> DW (30<<(4+3))|(12<<3)|5 ; equals 3941
.field 30,8 /

36 IAR 2.x/3.x/4.x to CCS Assembler Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Translating A430 Assembler Directives to Asm430 Directives

C.3.5 Listing Control Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)

Allow false conditional code block listing .fclist LSTCND-

Inhibit false conditional code block listing .fcnolist LSTCND+

Set the page length of the source listing .length PAGSIZ

Set the page width of the source listing .width COL

Restart the source listing .list LSTOUT+

Stop the source listing .nolist LSTOUT-

LSTEXP+ (macro)
Allow macro listings and loop blocks .mlist

LSTREP+ (loop blocks)

LSTEXP- (macro)
Inhibit macro listings and loop blocks .mnolist

LSTREP- (loop blocks)

Select output listing options .option (1)

Eject a page in the source listing .page PAGE

Allow expanded substitution symbol listing .sslist (2)

Inhibit expanded substitution symbol listing .ssnolist (2)

Print a title in the listing page header .title (3)

(1) No A430 directive directly corresponds to .option. The individual listing control directives (above) or the command-line option -c
(with suboptions) should be used to replace the .option directive.

(2) There is no directive that directly corresponds to .sslist/.ssnolist.
(3) The title in the listing page header is the source file name.

C.3.6 File Reference Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)

Include source statements from another file .copy or .include #include or $

Identify one or more symbols that are defined in the
.def PUBLIC or EXPORT

current module and used in other modules

Identify one or more global (external) symbols .global (1)

Define a macro library .mlib (2)

Identify one or more symbols that are used in the
.ref EXTERN or IMPORT

current module but defined in another module

(1) The directive .global functions as either .def if the symbol is defined in the current module, or .ref otherwise. PUBLIC or EXTERN
must be used as applicable with the A430 assembler to replace the .global directive.

(2) The concept of macro libraries is not supported. Include files with macro definitions must be used for this functionality.

Modules may be used with the Asm430 assembler to create individually linkable routines. A file may
contain multiple modules or routines. All symbols except those created by DEFINE, #define (IAR
preprocessor directive) or MACRO are "undefined" at module end. Library modules are, furthermore,
linked conditionally. This means that a library module is included in the linked executable only if a public
symbol in the module is referenced externally. The following directives are used to mark the beginning and
end of modules in the A430 assembler.

Additional A430 Directives (IAR) A430 Directive (IAR)

Start a program module NAME or PROGRAM

Start a library module MODULE or LIBRARY

Terminate the current program or library module ENDMOD

37SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS Assembler Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Translating A430 Assembler Directives to Asm430 Directives www.ti.com

C.3.7 Conditional Assembly Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)

Optional repeatable block assembly .break (1)

Begin conditional assembly .if IF

Optional conditional assembly .else ELSE

Optional conditional assembly .elseif ELSEIF

End conditional assembly .endif ENDIF

End repeatable block assembly .endloop ENDR

Begin repeatable block assembly .loop REPT

(1) There is no directive that directly corresponds to .break. However, the EXITM directive can be used with other conditionals if
repeatable block assembly is used in a macro, as shown:
SEQ MACRO FROM,TO ; Initialize a sequence of byte constants

LOCAL X
X SET FROM

REPT TO-FROM+1 ; Repeat from FROM to TO
IF X>255 ; Break if X exceeds 255
EXITM
ENDIF
DB X ; Initialize bytes to FROM...TO

X SET X+1 ; Increment counter
ENDR
ENDM

C.3.8 Symbol Control Directives

The scope of assembly-time symbols differs in the two assemblers. In Asm430, definitions can be global
to a file or local to a module or macro. Local symbols can be undefined with the .newblock directive. In
A430, symbols are either local to a macro (LOCAL), local to a module (EQU), or global to a file (DEFINE).
In addition, the preprocessor directive #define also can be used to define local symbols.

Description Asm430 Directive (CCS) A430 Directive (IAR)

Assign a character string to a substitution symbol .asg SET or VAR or ASSIGN

Undefine local symbols .newblock (1)

Equate a value with a symbol .equ or .set EQU or =

Perform arithmetic on numeric substitution symbols .eval SET or VAR or ASSIGN

End structure definition .endstruct (2)

Begin a structure definition .struct (2)

Assign structure attributes to a label .tag (2)

(1) No A430 directive directly corresponds to .newblock. However, #undef may be used to reset a symbol that was defined with the
#define directive. Also, macros or modules may be used to achieve the .newblock functionality because local symbols are
implicitly undefined at the end of a macro or module.

(2) Definition of structure types is not supported. Similar functionality is achieved by using macros to allocate aggregate data and
base address plus symbolic offset, as shown:
MYSTRUCT: MACRO

DS 4
ENDM

LO DEFINE 0
HI DEFINE 2

RSEG DATA16_Z
X MYSTRUCT

RSEG CODE
MOV X+LO,R4
...

38 IAR 2.x/3.x/4.x to CCS Assembler Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Translating A430 Assembler Directives to Asm430 Directives

C.3.9 Macro Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)

Define a macro .macro MACRO

Exit prematurely from a macro .mexit EXITM

End macro definition .endm ENDM

C.3.10 Miscellaneous Directives

Description Asm430 Directive (CCS) A430 Directive (IAR)

Send user-defined error messages to the output
.emsg #error

device

Send user-defined messages to the output device .mmsg #message (1)

Send user-defined warning messages to the
.wmsg (2)

output device

Define a load address label .label (3)

Directive produced by absolute lister .setsect ASEG (4)

Directive produced by absolute lister .setsym EQU or = (4)

Program end .end END

(1) The syntax of the #message directive is: #message "<string>"
This causes '#message <string>' to be output to the project build window during assemble/compile time.

(2) Warning messages cannot be user-defined. #message may be used, but the warning counter is not incremented.
(3) The concept of load-time addresses is not supported. Run-time and load-time addresses are assumed to be the same. To

achieve the same effect, labels can be given absolute (run-time) addresses by the EQU directives.
; Asm430 code ; A430 code
.label load_start load_start:
Run_start: <code>

<code> load_end:
Run_end: run_start: EQU 240H
.label load_end run_end: EQU run_start+load_end-load_start

(4) Although not produced by the absolute lister ASEG defines absolute segments and EQU can be used to define absolute
symbols.
MYFLAG EQU 23EH ; MYFLAG is located at 23E

ASEG 240H ; Absolute segment at 240
MAIN: MOV #23CH, SP ; MAIN is located at 240
...

39SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS Assembler Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Translating A430 Assembler Directives to Asm430 Directives www.ti.com

C.3.11 Alphabetical Listing and Cross Reference of Asm430 Directives

Asm430 Directive Asm430 Directive
A430 Directive (IAR) A430 Directive (IAR)

(CCS) (CCS)

.align ALIGN .loop REPT

.asg SET or VAR or ASSIGN .macro MACRO

.break See Conditional Assembly Directives .mexit EXITM

.bss See Symbol Control Directives .mlib See File Referencing Directives

.byte or .string DB .mlist LSTEXP+ (macro)

C pre-processor declarations are
.cdecls LSTREP+ (loop blocks)

inherently supported.

.copy or .include #include or $.mmsg #message (XXXXXX)

.data RSEG .mnolist LSTEXP- (macro)

.def PUBLIC or EXPORT LSTREP- (loop blocks)

.double Not supported .newblock See Symbol Control Directives

.else ELSE .nolist LSTOUT-

.elseif ELSEIF .option See Listing Control Directives

.emsg #error .page PAGE

.end END .ref EXTERN or IMPORT

.endif ENDIF .sect RSEG

.endloop ENDR .setsect See Miscellaneous Directives

.endm ENDM .setsym See Miscellaneous Directives

.endstruct See Symbol Control Directives .space DS

.equ or .set EQU or = .sslist Not supported

.eval SET or VAR or ASSIGN .ssnolist Not supported

.even EVEN .string DB

.fclist LSTCND- .struct See Symbol Control Directives

.fcnolist LSTCND+ .tag See Symbol Control Directives

.field See Constant Initialization Directives .text RSEG

.float See Constant Initialization Directives .title See Listing Control Directives

.global See File Referencing Directives .usect See Symbol Control Directives

.if IF .width COL

.label See Miscellaneous Directives .wmsg See Miscellaneous Directives

.length PAGSIZ .word DW

.list LSTOUT+

40 IAR 2.x/3.x/4.x to CCS Assembler Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com Translating A430 Assembler Directives to Asm430 Directives

C.3.12 Unsupported A430 Directives (IAR)

The following IAR assembler directives are not supported in the CCS Asm430 assembler:

Conditional Assembly Directives Macro Directives

REPTC (1) LOCAL (2)

REPTI

File Referencing Directives Miscellaneous Directives Symbol Control Directives

NAME or PROGRAM RADIX DEFINE

MODULE or LIBRARY CASEON SFRB

ENDMOD CASEOFF SFRW

Listing Control Directives C-Style Preprocessor Directives (3) Symbol Control Directives

LSTMAC (+/-) #define ASEG

LSTCOD (+/-) #undef RSEG

LSTPAG (+/-) #if, #else, #elif COMMON

LSTXREF (+/-) #ifdef, #ifndef STACK

#endif ORG

#include

#error

(1) There is no direct support for IAR REPTC/REPTI directives in CCS. However, equivalent functionality can be achieved using the
CCS .macro directive:
; IAR Assembler Example

REPTI zero,"R4","R5","R6"
MOV #0,zero
ENDR

; CCS Assembler Example
zero_regs .macro list

.var item

.loop

.break ($ismember(item, list) = 0)
MOV #0,item
.endloop
.endm

Code that is generated by calling "zero_regs R4,R5,R6":
MOV #0,R4
MOV #0,R5
MOV #0,R6

(2) In CCS, local labels are defined by using $n (with n=0…9) or with NAME?. Examples are $4, $7, or Test?.
(3) The use of C-style preprocessor directives is supported indirectly through the use of .cdecls. More information on the .cdecls

directive can be found in the MSP430 Assembly Language Tools User's Guide (literature number SLAU131).

41SLAU157S–May 2005–Revised August 2011 IAR 2.x/3.x/4.x to CCS Assembler Migration
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

42 IAR 2.x/3.x/4.x to CCS Assembler Migration SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Appendix D
SLAU157S–May 2005–Revised August 2011

FET-Specific Menus

This appendix describes the CCS menus that are specific to the FET.

Topic ... Page

D.1 Menus .. 44

43SLAU157S–May 2005–Revised August 2011 FET-Specific Menus
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Menus www.ti.com

D.1 Menus

D.1.1 Debug View: Run → Free Run

The debugger uses the device JTAG signals to debug the device. On some MSP430 devices, these JTAG
signals are shared with the device port pins. Normally, the debugger maintains the pins in JTAG mode so
that the device can be debugged. During this time, the port functionality of the shared pins is not available.

However, when Free Run (by opening a pulldown menu next to the Run icon on top of the Debug View) is
selected, the JTAG drivers are set to 3-state, and the device is released from JTAG control (TEST pin is
set to GND) when GO is activated. Any active on-chip breakpoints are retained, and the shared JTAG port
pins revert to their port functions.

At this time, the debugger has no access to the device and cannot determine if an active breakpoint (if
any) has been reached. The debugger must be manually commanded to stop the device, at which time
the state of the device is determined (that is, was a breakpoint reached?).

See FAQ Debugging #9.

D.1.2 Target → Connect Target

Regains control of the device when ticked.

D.1.3 Target → Advanced → Make Device Secure

Blows the JTAG fuse on the target device. After the fuse is blown, no further communication via JTAG
with the device is possible.

D.1.4 Project → Properties → CCS Debug Settings → Target → MSP430 Properties →
Clock Control

Disables the specified system clock while the debugger has control of the device (following a STOP or
breakpoint). All system clocks are enabled following a GO or a single step (STEP/STEP INTO). Can only
be changed when the debugger is inactive. See FAQ Debugging #12.

D.1.5 Window → Show View → Breakpoints

Opens the MSP430 Breakpoints View window. This window can be used to set basic and advanced
breakpoints. Advanced settings such as Conditional Triggers and Register Triggers can be selected
individually for each breakpoint by accessing the properties (right click on corresponding breakpoint).
Pre-defined breakpoints such as Break on Stack Overflow can be selected by opening the Breakpoint
pulldown menu, which is located next to the Breakpoint icon at the top of the window. Breakpoints may be
combined by dragging and dropping within the Breakpoint View window. A combined breakpoint is
triggered when all breakpoint conditions are met.

D.1.6 Window → Show View → Trace

The Trace View enables the use of the state storage module. The state storage module is present only in
devices that contain the full version of the Enhanced Emulation Module (EEM) (see Table 2-1). After a
breakpoint is defined, the State Storage View displays the trace information as configured. Various trace
modes can be selected when clicking the Configuration Properties icon at the top right corner of the
window. Details on the EEM are available in the application report Advanced Debugging Using the
Enhanced Emulation Module (EEM) With CCS Version 4 (SLAA393).

D.1.7 Project → Properties → TI Debug Properties → Target → MSP430 Properties →
Target Voltage

The target voltage of the MSP-FET430UIF can be adjusted between 1.8 V and 3.6 V. This voltage is
available on pin 2 of the 14-pin target connector to supply the target from the USB FET. If the target is
supplied externally, the external supply voltage should be connected to pin 4 of the target connector, so
the USB FET can set the level of the output signals accordingly. Can only be changed when the debugger
is inactive.

44 FET-Specific Menus SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Appendix E
SLAU157S–May 2005–Revised August 2011

Device Specific Menus

E.1 MSP430L092

E.1.1 Emulation Modes

The MSP430L092 can operate in two different modes: the L092 mode and C092 emulation mode. The
purpose of the C092 emulation mode is to mimic a C092 with up to 1920 bytes of code at its final
destination for mask generation by using an L092. The operation mode must be set in CCS before
launching the debugger. The selection happens in the target configuration: Open the
MSP430L092.CCXML file in your project, click Target Configuration in the Advanced Setup section,
Advanced Target Configuration. The CPU Properties become visible after MSP430 is selected. Figure E-1
shows how to select the L092 mode and how to use the Loader Code (See Loader Code). Figure E-2
shows how to select the C092 mode.

45SLAU157S–May 2005–Revised August 2011 Device Specific Menus
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

MSP430L092 www.ti.com

Figure E-1. MSP430L092 Modes

46 Device Specific Menus SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com MSP430L092

E.1.2 Loader Code

The Loader Code in the MSP430L092 is a ROM-code from TI that provides a series of services. It enables
customers to build autonomous applications without needing to develop a ROM mask. Such an application
consists of an MSP430 device containing the loader (for example, MSP430L092) and an SPI memory
device (for example, '95512 or ‘25640). Those and similar devices are available from various
manufacturers. The majority of use cases for an application with a loader device and external SPI memory
for native 0.9-V supply voltage are late development, prototyping, and small series production. The
external code download may be set in the CCS Project Properties → CCS Debug → Target → MSP430
Properties → Download Options → Copy application to external SPI memory after program load (see
Figure E-1).

Figure E-2. MSP430L092 in C092 Emulation Mode

E.1.3 C092 Password Protection

The MSP430C092 is a customer-specific ROM device, which is protected by a password. To start a debug
session, the password must be provided to CCS. Open the MSP430C092.CCXML file in your project, click
Target Configurations in the Advanced Setup section, Advanced Target Configuration. The CPU
Properties become visible after MSP430 is selected. Figure E-3 shows how to provide a HEX password in
CCSv4 target configuration.

Figure E-3. MSP430C092 Password Access

47SLAU157S–May 2005–Revised August 2011 Device Specific Menus
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

MSP430F5xx/F6xx BSL Support www.ti.com

E.2 MSP430F5xx/F6xx BSL Support

Most of the MSP430F5xx and 'F6xx devices support a custom BSL that is protected by default. To
program the custom BSL, this protection must be disabled in CCS Project Properties → CCS Debug →
Target → MSP430 Properties → Download Options → Allow Read/Write/Erase access to BSL memory
(see Figure E-4).

Figure E-4. Allow Access to BSL

E.3 MSP430F5xx/F6xx Password Protection

Selected MSP430F5xx and 'F6xx devices provide JTAG protection by a user password. When debugging
such an MSP430 derivatives, the hexadecimal JTAG password must be provided to start a debug session.
Open the MSP430Fxxxx.CCXML file in your project, click Target Configurations in the Advanced Setup
section, Advanced Target Configuration. The CPU Properties become visible after MSP430 is selected
(see Figure E-5).

48 Device Specific Menus SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com LPMx.5 CCS Debug Support (MSP430FR57xx Only)

Figure E-5. MSP430 Password Access

E.4 LPMx.5 CCS Debug Support (MSP430FR57xx Only)

LPMx.5 is a new low-power mode in which the entry and exit is handled differently compared to other
low-power modes. When used properly, LPMx.5 provides the lowest power consumption available on a
device. To achieve this, entry to LPMx.5 disables the LDO of the PMM module, removing the supply
voltage from the core and the JTAG module of the device. Because the supply voltage is removed from
the core, all register contents and SRAM contents are lost. Exit from LPMx.5 causes a BOR event, which
forces a complete reset of the system.

E.4.1 Debugging With LPMx.5

To enable the LPMx.5 debug feature, the Halt on device wake up (required for debugging LPMx.5 mode)
checkbox must be enabled (see Figure E-6). To enable LPMx.5 debug, click Project Properties → CCS
Debug → Target → MSP430 Properties → Halt on device wakeup (required for debugging LPMx.5 mode).

49SLAU157S–May 2005–Revised August 2011 Device Specific Menus
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

LPMx.5 CCS Debug Support (MSP430FR57xx Only) www.ti.com

Figure E-6. Enabling LPMx.5 Debug Support

If the LPMx.5 debug mode is enabled, a notification is displayed in the debugger console log every time
the target device enters and leaves LPMx.5 mode. Pressing the Halt or Reset button in CCS wakes the
target device from LPMx.5 and stops it at code start. All breakpoints that were active before LPMx.5 are
restored and reactivated automatically.

E.4.2 LPMx.5 Debug Limitations

When a target device is in LPMx.5 mode, it is not possible to set or remove advanced conditional or
software breakpoints. It is possible to set hardware breakpoints. In addition, only hardware breakpoints
that were set during LPMx.5 can be removed in the LPMx.5 mode. Attach to running target is not possible
in combination with LPMx.5 mode debugging, as this results in device reset.

50 Device Specific Menus SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

www.ti.com LPMx.5 CCS Debug Support (MSP430FR57xx Only)

51SLAU157S–May 2005–Revised August 2011 Device Specific Menus
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

Revision History www.ti.com

Revision History

Version Changes/Comments

SLAU157S Added emulation features for MSP430F52xx, F533x, F643x, F67xx.

Added emulation features for MSP430FR57xx, LPMx.5, and general MSP430 Password Protection instructions in
SLAU157R

Appendix E.

SLAU157Q Added emulation features for MSP430F5310.

SLAU157P Added emulation features for MSP430AFE253, MSP430F532x, and MSP430F534x.

Added emulation features for MSP430BT5190, MSP430F530x, and MSP430F563x.
SLAU157O

Added BSL support for MSP430F5xx/F6xx in Appendix E and enhanced System Pre Init section in Appendix A.

SLAU157N Added emulation features for MSP430L092/C092 and memory information in Appendix E.

Added emulation features for MSP430G2xxx, MSP430F51x1, MSP430F51x2, MSP430F550x, MSP430F5510,
SLAU157M

MSP430F551x, MSP430F552x, MSP430F663x.

Updated information throughout for Code Composer Studio v4.1.
SLAU157L

Added emulation features for MSP430F44x1, MSP430F461x, MSP430F461x1.

Added emulation features for MSP430F54xxA, MSP430F55xx.
SLAU157K

Updated and extended Table 2-1 with architecture information.

Updated information throughout for Code Composer Studio v4.
SLAU157J

Removed information on hardware. It was moved into the MSP430 Hardware Tools User's Guide (SLAU278)

Added MSP-FET430U100A kit in Section 1.7 and MSP-TS430PZ100A target socket module schematic (Figure
B-19) and PCB (Figure B-20).
Added emulation features for CC430F513x, CC430F612x, CC430F613x, MSP430F41x2, MSP430F47x,

SLAU157I MSP430FG479, and MSP430F471xx in Table 2-1.
Updated MSP-TS430PN80 target socket module schematic (Figure B-15) with information on MSP430F47x and
MSP430FG47x.
Removed information throughout on MSP-FET430Pxx0 and MSP-FET430X110 kits.

SLAU157H Updated information throughout for Code Composer Essentials v3.1.

SLAU157G Added MSP-FET430U5x100 kit and MSP-TS430PZ5x100 target socket module schematic.

Added crystal information to Section 1.7.
Added overview of debug interfaces as Table 1-1.

SLAU157F
Added eZ430-F2013, T2012, and eZ430-RF2500.
Updated information throughout for Code Composer Essentials v3.

Added MSP-TS430PW28 target socket module, schematic (Figure B-5) and PCB (Figure B-6).

Updated MSP-FET430U28 kit content information (DW or PW package support) in Section 1.7.

SLAU157E Added emulation features for MSP430F21x2 to Table 2-1.

Updated MSP-TS430PW14 target socket module schematic (Figure B-1).

Updated MSP-TS430DA38 target socket module schematic (Figure B-7).

Added Section 1.12.

SLAU157D Updated Table 2-1.

Updated Appendix F.

Updated Appendix F.
SLAU157C Added emulation features for MSP430F22x2, MSP430F241x, MSP430F261x, MSP430FG42x0 and MSP430F43x

in Table 2-1.

Renamed MSP-FET430U40 to MSP-FET430U23x0.

Replaced MSP-FET430U40 schematic and PCB figures with renamed MSP-FET430U23x0 figures.
SLAU157B

Added FAQ Hardware #2 in Section A.1.

Added FAQ Debugging #4 in Section A.3.

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

52 Revision History SLAU157S–May 2005–Revised August 2011
Submit Documentation Feedback

Copyright © 2005–2011, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

