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Panoramic Appearance-Based Recognition of Video
Contents Using Matching Graphs

Chu-Song Chen, Wen-Teng Hsieh, and Jiun-Hung Chen

Abstract—This paper proposes a general scheme for recognizing
the contents of a video using a set of panoramas recorded in a data-
base. In essence, a panorama inherently records the appearances
of an omni-directional scene from its central point to arbitrary
viewing directions and, thus, can serve as a compact representa-
tion of an environment. In particular, this paper emphasizes the
use of a sequence of successive frames in a video taken with a video
camera, instead of a single frame, for visual recognition. The asso-
ciated recognition task is formulated as a shortest-path searching
problem, and a dynamic-programming technique is used to solve
it. Experimental results show that our method can effectively rec-
ognize a video.

Index Terms—Appearance-based recognition, computer vision,
image understanding, panorama, shortest path, video recognition.

I. INTRODUCTION

V
ISUAL recognition is a central issue in researches on com-
puter/robot vision and image understanding. In this paper,

a systematic method is proposed for recognizing scenes cap-
tured with a video camera. More precisely, given a set of suc-
cessive image frames from a video, the recognition task aims
to perceive the scenes contained in these frames by generating
high-level descriptions pertaining to the scenes. Although this
recognition task can be achieved with a single image frame, the
visual ambiguity tends to be more critical with the use of only
a single image frame when more scenes have been recorded in
the database. In this work, we particularly emphasize the use of
a sequence of successive frames, instead of a single frame, for
visual recognition. Such a recognition task is formulated as a
shortest-path searching problem in our work, which can be ef-
fectively solved with standard algorithms in graph theory.

To recognize video contents, a database recording the appear-
ances of the scenes must first be constructed, and in this work,
panoramas were used to construct the database. A panorama is
a type of static image with particularly successful applications
for image-based virtual reality or telepresence [10], [15]. In our
approach, panoramas are further employed as compact viewer-
centered representations for learning the impressions of an envi-
ronment. To recognize a series of image frames from a video can
therefore be formulated as finding a set of continuously moving
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corresponding regions belonging to some panorama in the data-
base, where each frame should match each region to a consid-
erable extent.

A. Related Work

The recent decade of visual-recognition researches saw a
gradual shift away from the three-dimensional reconstruction
approaches [16], [22], [41] pioneered by Marr [25] toward
view-based (or appearance-based) approaches that store snap-
shots of objects or scenes [9], [29], [30], [32], [33], [48]. An
appearance-based representation of objects is constructed from
a set of views of an object in a preprocessing (or learning)
stage. Then, the collection of views is recorded in a compact
way through an eigen-space representation [29], [32], [11] or
neural networks [33], [48] for the purpose of detection and
recognition. Generally, most appearance-based techniques were
designed for recognizing objects [9], [29], [30], [33], [48]. In
particular, most of them perform recognition based on isolated
images [29], [30], [33], [48], whereas not many of them are
based on image sequences or videos [9], [26], [27]. Appear-
ance-based techniques have also shown their effectiveness for
tracking long image sequences across views [3] or recognizing
objects in cluttered environments [32], [33]. By purposefully
controlling the cameras via maximizing an entropy measure,
appearance-based recognition can be achieved dynamically in
active vision as well [6].

Recently, encoding omni-directional appearances with
panoramas has received considerable attention for the purpose
of localization, navigation, or route recognition in robot vision
[1], [17], [20], [26], [27], [47], [49]. Pioneering work using
panoramic representation for route recognition by a mobile
robot was done by Zheng and Tsuji [49]. In their work, two
vertical stripes of each image were used to create mosaics
(or called manifold mosaics latter [34]) of side views along
a robot route by stitching the vertical stripes captured. Then,
the recorded mosaics were used for robot route recognition.
Recently, many approaches used a catadioptric visual sensor
[2], [45] consisting of a video camera and a curved mirror for
acquiring viewer-centered panoramas. The viewer-centered
panoramas were used to memorize the environments at a
number of reference points, and then, a mobile robot found its
current local area by examining similarities between the current
view and those recorded [1], [17], [20], [26], [27].

B. Overview of Our Approach

In this paper, we use viewer-centered panoramas to assist the
recognition of videos captured with a common video camera.
Unlike the approaches mentioned above that match an “entire”
panorama to other panoramas, the problem faced in this paper is
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Fig. 1. Example of the panorama that is augmented with some high-level descriptions.

to match each video frame to “part” of a panorama. Such a par-
tial matching problem is more complex than a fully matching
one and is closer to the situation of environment recognition in
human vision. It therefore simulates the case of route recog-
nition with a hand-held camera, a head-mounted camera [19],
or a wearable camera [24]. In addition, almost all the previous
approaches exploited the assumption that the imaging devices
are placed vertical to the ground. Hence, the recognition perfor-
mances will be seriously affected if the camera is vibrant (e.g.,
it may happen when robots move along a bumpy road). On the
contrary, to tolerate possible shooting vibrations with hand-held
cameras in our work, we use rotationally invariant features to
deal with the matching problems, and thus, the camera has not
necessarily to be exactly vertical. By using a coarse-to-fine ap-
proach for candidate selection of matching blocks, our method
can tolerate about image rotations, which is sufficient for
most applications when hand-held cameras are used (an exper-
imental result is given in Section IV-B-3).

Based on the above scenario, our approach is divided into
two phases: panorama acquisition and authoring (PA) and
panorama-guided visual recognition and tracking (PGVRT).

• PA phase: Panoramas of the environments or scenes
that are significant for a particular application are taken
and stored in a database in this phase. Furthermore, if
necessary, the recorded panoramas can be augmented
by adding high-level descriptions associated with partic-
ular regions in the panoramas. More specifically, in the
PA phase, all the panoramas were augmented with an
environment name, and some particular regions of the
panoramas were further augmented with other high-level
descriptions such as the names and historical reviews of
the observed buildings, landscapes, or roads, and so on.
An example is shown in Fig. 1.

• PGVRT phase: Assume that the database contains a set of
panoramas. When a video segment is taken within an ac-
ceptable range to the center of one panorama, it is desired
to recognize the video content by correctly finding this
panorama in the database and matching each frame in the
video segment with an appropriate region in the panorama.

By using the high-level descriptions provided by the PA
phase, the framework of this paper can be applied for automatic
tour guidance, robot localization, and navigation, and it has

potential to be extended for content-based panorama retrieval.
Although a global positioning system may be used to achieve
some of the same purposes, it requires four or more satellites
to determine the position and time [44], [50] and may lose
efficacy when insufficient satellite signals can be received
(for example, the signals may be blocked by high buildings,
mountains, or forests).

The PGVRT phase is very important to this approach and
will be introduced in detail later. In our method, a matching
graph is constructed for appearance-based recognition, and the
recognition task is transformed into that of searching a shortest
path in this graph, which can be solved with dynamic program-
ming (DP). The remainder of this paper is organized as follows:
Section II presents the PGVRT phase of our approach. Then,
the method for dealing with partially recognizable cases is dis-
cussed in Section III. Section IV introduces some implementa-
tion details and shows several experimental results and discus-
sions. Finally, Section V gives our conclusions.

II. PGVRT

Consider an environment database containing a set of
panoramas . Let a series of image frames
contained in a video segment be . Our
purpose is to recognize the captured scene of these frames by
matching them with a set of corresponding regions contained in
some panorama belonging to . There are two common types
of panoramas (cylindrical [10], [15] and spherical [10], [43]),
both of which can be used in our framework for recognition of
videos. The spherical type is actually better because its viewing
range is larger than that of the cylindrical type. However,
without lost of generality, panoramas of the cylindrical type
will be used for discussions and experiments in this paper.

We formulate the problem of recognizing the series of frames
as the problem of searching the optimal path in a specially de-
signed matching graph. Our method for the PGVRT phase can
be divided into three stages:

1) candidate-selection stage;
2) graph-construction stage;
3) path-searching stage;

which are introduced below.
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A. Finding Matching Candidates

In the candidate-selection stage, to provide suitable lowpass
filtering effects for increasing matching correctness, each image
frame is smoothed and normalized to be
(in our implementation, the size of each frame is 240 240 and

). The CIE space [18] is adopted in our work
to represent an image block because it closely matches human
perception of the discrimination between a pair of colors. As-
sume that a image block is represented as ,
where , , are -dimensional vectors formed by
concatenating all corresponding , , and values in the raster
scanning order, respectively. To compensate for the problem
caused by illumination changes, the vector is normalized as

, where is a -dimensional vector
with all of its values being , which is the average
of the values contained in . Note that normalization tech-
niques, e.g., normalized cross-correlation [31], histogram equal-
ization [36], [42], and normalized luminance component [22],
[37], have been widely adopted in the past to accommodate the
variations in illumination conditions. In our work, the latter ap-
proach was adopted. Such a normalization will cause the Eu-
clidean distance between two normalized blocks to
be invariant to linear lighting variations. One can easily verify
that remains the same if and become
and , respectively, for all , , and with the
requirement , , , and . Al-
though the cross-correlation of and is also invariant to
linear lighting variations, the Euclidean distance between two
normalized blocks is adopted in our work because it satisfies
the triangle inequality, which is a necessary property for a range
search method [7] that is discussed in Section IV-C.

The purpose of this stage is to find, in each scaled
panorama, all the blocks whose matching costs are
smaller than a given threshold. Hence, several scaled
versions of each panorama were kept for multiscale tem-
plate matching. Let a set of ascending scaling factors be

. Assume
that a panorama with the width and height and is
contained in the database. Its th scaled panorama is an

image generated by linearly scaling . Each
frame in is treated as a template for block matching to every

scale of the panoramas in , and let
,

where is a image block with its upper-left point

being in the scaled panorama . To handle image
rotations, we first use rotational moment invariants proposed
in [14] to coarsely select candidate regions in , as introduced
in Section II-A1. Then, among them, some candidates regions
are finely selected via template matching taking into account
image rotations ranging from 30 to 30 , as introduced in
Section II-A2.

1) Coarse Selection of Matching Candidates: The complex

moment of order of the image is defined as
[14]

(1)

where denotes the imaginary unit, and is an image
function (or image). A discrete version for computing the com-

plex moment is used in practice because images taken with a
frame grabber are defined in a discrete domain:

(2)

In this work, we use the moment invariant that is
invariant to both convolution and rotation as defined below [14]:

(3)

where , , and are recursively defined by

if is even.

otherwise

(4)

An example of the moment-invariant values computed via (3) is
shown in Fig.2 (a). Based on the above moment invariant, we
define the three rotationally invariant measures RIM ,
RIM , and RIM to evaluate the similarity be-
tween two image blocks and for L, U, and V color chan-
nels, respectively:

RIM (5)

RIM (6)

RIM (7)

Then, the purpose of coarsely finding matching candidates in
our work can be formulated as finding defined below.

(8)

where RIM RIM
RIM is the set of coarsely selected candi-

date blocks of the th image frame, , and , , and are
threshold values. The coarsely selected blocks are then sent to
the next step for fine selection.

2) Fine Selection of Matching Candidates: Although mo-
ment invariants can be used for finding some candidate regions,
unrelated regions might also be included because two dissimilar
blocks may have approximate moment-invariant values. Hence,
a fine-selection step is further performed for choosing the can-
didate regions obtained from the previous step. For each image
frame , we rotate it according to a set of predefined degrees
(in our example, )
to form a set of templates , where is obtained
by rotating by a degree . Then, the purpose of finely se-
lecting matching candidates in our work can be formulated as
finding as

(9)

where is the set of finely
selected candidate blocks in association with the th image
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Fig. 2. (a) Moment-invariant values computed for theL components of all the blocks contained in the panorama shown in Fig. 1. This gray-level image is obtained
by linearly scaling the moment-invariant value to [0, 255]. (b) Rotated templates and the inscribed circle. The pixels inside the inscribed circle of a template are
used for matching.

frame, and the matching score between two blocks and ,
is defined to be

Min

(10)

where and are the images in as-
sociation with the , , and components of and , re-
spectively, and , are the weights for lighting and
chromatic parts, respectively.

To find the set of matching candidates , template matching
is used in this work. Note that the template obtained via image
rotation is a square block whose row is not horizontal. To
simplify the implementation of matching, we only use the
pixels inside the inscribed circle for matching, as illustrated
in Fig.2(b). Nevertheless, we would like to emphasize that
template matching is not the only way that can be used in
this step. It is also possible to use other techniques, such as
eigen-based approaches [29], [30], for finding the matching
candidates—while note that our framework can still be used for
sequence-based recognition employing interframe relationships
that will be introduced below. Template matching is used in
this work simply because it is easy to implement and requires
less storage in our case since only the panoramas have to
be recorded for it, whereas in an eigen-based approach, the
coefficient vector used for linearly combining the eigenvectors
has to be further stored for each image block for the recognition
purpose.

B. Constructing Matching Graph

For each image frame contained in the video segment to be
recognized, a set of candidate matches can be found from the
panoramas in the environment database with the method intro-
duced in Section II. It is hoped to further determine, for each
image frame in the video segment, a unique candidate match
that is supposed to be a correct (or approximately correct) recog-
nition of this frame. This is difficult to achieve by treating the
image frames as independent because no further visual clues can
be used for identifying which candidate match is more suitable

than the others. Therefore, an important issue is how to use the
isolated visual recognition information provided by each image
frame in an integrated manner, such that the whole video can be
recognized more correctly. In this paper, we propose a method
that can integrate inter-frame consistency of a video segment by
constructing an associated matching graph.

Since, in this work, the video segment to be recognized is
taken using a continuously moving and scaling camera with a
zoom lens, it is reasonable to assume that the video segment
is continuous in both motion and scaling. In the graph-con-
struction stage, interframe relationships are used to increase the
matching reliabilities. To construct a matching graph, the can-
didate blocks selected in the candidate-selection stage represent
the nodes of this graph. The edges are constructed by linking
those nodes associated with adjacent frames. There are directed
edges coming from nodes associated with for those asso-
ciated with for . However, there are no edges
among nodes belonging to different panoramas. In addition, if
the distance between the centers of a pair of blocks associated
with an edge is too long, then this edge will either not be con-
structed. Two additional nodes, the source node and the sink
node, are built. Edges connecting the source node with layer 1
and the sink node with layer are also constructed, respec-
tively. Therefore, there are layers in the matching graph,
where layer 0 contains only a single source node, and layer

contains only a single sink node, respectively. Fig. 3
gives an illustration of a matching graph.

In a matching graph, each node is assigned with a cost,
and so is each edge. The nodes in the th layer are denoted
as , where is the number of
elements contained in or, equivalently, the number of the
finely selected candidate blocks in association with the th
image frame. Hence, the source and sink nodes are denoted
as and , respectively. Note that each node
denotes a candidate match between and a candidate block
in a panorama, and let denote this candidate block. In
addition, an edge connecting and is denoted
as for , , and
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Fig. 3. Example of the matching graph where two panoramas are contained in
the database, and two scales are used for each panorama. This graph containsN
layers (in addition to the source and the sink node). Without loss of generality,
we show a typical construction of nodes and edges for frames f and f in the
middle part. There are no edges among nodes belonging to different panoramas.
In addition, if the distance between the centers of a pair of blocks associated with
an edge is too long, then this edge will also not be constructed. The edges across
different scales of a panorama are drawn with gray color.

. The node and edge costs are defined
as follows.

• Node Cost: The cost of the source node Cost is set
to zero. The cost of each of the other nodes is recursively
defined as

Cost

if there is no edge between

and for all

Min Cost

otherwise

for (11)

where Sim is the matching score de-
fined in (10) of the two associated blocks of , and

is the edge cost that will be defined later. Note
that cost of the sink node is also set to zero.
The above definition inherits the spirit of dynamic pro-
gramming.

• Edge Cost: The costs of the edges connecting with the
source and the sink nodes are set to zero, i.e,

for all , and

. The cost of each of the other edges
is defined as a weighted sum of two components: the mo-

tion-continuity component, and the scale-continuity com-
ponent. That is

(12)

where and are two positive weights. Each compo-
nent is introduced as follows:

• Motion-Continuity Component : In our
work, the camera is assumed to move in a continuous
manner, and thus, the distance between consecutive

matched blocks in a panorama must be small. The
cost of this component is defined by

motion cost (13)

where and are the cen-
tered positions of the blocks and , which
are the consecutive matched blocks of and
contained in a panorama.

• Scale-Continuity Component : In ad-
dition, suppose the input video contains no shot
changes, i.e., the effect of zooming in and out is
smooth. Hence, if the consecutively matched blocks

and are associated with panoramas of
different scales and , , , the edge
is assigned with a higher cost than those connecting
the blocks of the same scales. The cost of this
component is defined by

scale cost (14)

Each path starting from the source node and ending at the sink
node represents a sequence of matches between the input video
and the panoramas. The cost of the sink node cost is
then referred to as the minimal cost. The path associated with the
minimal cost, or, equivalently, the shortest path from the source
to the sink nodes, is then referred to as the matching (or optimal)
path in this work. The candidate blocks associated with nodes
in the matching path (except the source and sink nodes) are then
treated as a sequence of matched blocks to the input frames.

C. Finding Optimal Path

In the path-searching stage, the dynamic-programming (DP)
technique is used to find the optimal path, i.e. the path from the
source node to the sink node with the lowest accumulated cost of
the nodes and edges passed by it. In our work, to avoid recursive
programming, the Dijkstra algorithm [13] is used to find the
optimal path. For each node, an incoming edge with the lowest
accumulated cost is retained in our approach. After finding the
best incoming choice for all nodes, our process backtracks, from
the sink node to the source node, to obtain an optimal path.
Except for the source and sink nodes, each node passed by the
optimal path then represents a match between an image frame
in the video and a region in a panorama. Note that the cost of
the optimal path cost is if either of the following
cases holds. First, there are some adjacent layers by which no
edges connect. Second, no candidate blocks can be found for
some frame, and thus, matching graphs cannot be constructed.

D. Time Complexity Analysis of PGVRT

The time complexity of the proposed algorithm for the
PGVRT phase is briefly analyzed below. Note that the anal-
ysis focuses on the online recognition time and discard the
procedures that can be done offline. For example, computation
of the moment invariants of all the blocks contained in the
panoramas can be done offline and, thus, is not considered in
the time-complexity analysis shown in the following.

• Coarse candidate selection via moment invariants: In
this step, the computation of the moment invariants of
the image frame takes O , where is the number
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Fig. 4. Six of the 20 panoramas contained in the database used in our experiment. (a) Third panorama: Taichi Plaza (taken on September 17, 2001). (b) Fourth
panorama: Hu-Shih Memorial Hall (taken on April 4, 2001). (c) Sixth panorama: lobby of Institute of Information Science (taken on September 17, 2001). (d)
Seventh panorama: Chung-Cheng Memorial Hall (taken on January 5, 2002). (e) Eighth panorama: Military Cemetery (taken on January 7, 2002). (f) Twentieth
panorama: a street scene (downloaded from Internet).

of pixels contained in a block, and is the number
of frames in the test video, as defined in Section II-A.
Finding the candidates takes O , where is
the number of elements contained in . Hence, the time
complexity is O O because

is far smaller than .
• Matching with rotated templates: This step requires the

taking of block matching O times for each
image frame, where and are the numbers of
rotation degrees and coarsely selected blocks contained in

and , respectively. Each block matching takes O .
Hence, this step takes O .

• Graph-construction and path-searching stages: These

stages take O to find the shortest

path, which is approximately O O ,
where is the average number of the finely-selected
candidate blocks for each frame.

To sum up, the time complexity of the PGVRT algorithm is
O .

III. DEALING WITH PARTIALLY RECOGNIZABLE CASES

In the above discussion, a video segment is taken as a whole

for recognition. More specifically, the video segment is sup-
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posed to be either fully recognized as taken from an environ-

ment that has been recorded in the database or fully rejected.

It therefore cannot deal with cases that are only partially rec-

ognizable, that is, some image frames are taken from a known

environment, but the others are not. For example, when a video

is taken by someone who goes into a known environment from

outside, initial frames in the beginning of the video would be

taken from an unknown environment, but the rest of the frames

would be taken from a known one. In addition, it is desired that

the task of environmental recognition can also be done incre-

mentally. That is, recognition can be achieved when sufficient

initial frames of a video, but not necessarily all frames, were

presented.

To achieve this purpose, a video is segmented into several

nonoverlapping episodic videos (EVs) in our approach. Con-

sider a video containing image frames . Assume

that an EV contains successive image frames. Let

denote the EVs, where . Then,

, and

. Given an EV , assume that

is processed with the method introduced in Sec-

tion II, and an average cost can

thus be obtained. If is smaller than a threshold ,

then is called recognizable and set Recognize

, where

is the recognized panorama, and

is the sequence of recognized blocks contained

in associated with the optimal path. Otherwise, if is larger

than , is treated as unrecognizable and Recognize .

A pair of recognition results

and

is called continuously

consistent if and , ,
, where “ ,” approximately equal, is defined

via thresholds. In essence, it is desired that the recognized
video satisfies the following constraint: If a pair of consecutive
EVs and are both recognizable, then their recognition
results must be continuously consistent. This constraint holds
because in our framework, the environments recorded in a
database are restricted to be independent to each other.

The developed algorithm, which can deal with partial recog-
nition cases incrementally based on EVs, is shown at the bottom
of the page. It ensures that recognition results satisfying the
above continuously consistent constraint are obtained.

In essence, the above algorithm can recognize a video incre-

mentally, but there is at most 1.5 EV delay of the recognition re-

sponse. In this algorithm, a function Verify is used

to verify whether or not an EV can be recognized as a contin-

uous sequence of image blocks approximately starting from the

position of the th panoramas, whose scales are approx-

Episode-Based Incremental Recognition Algorithm

0. Input new image frames in turn, until that the first EV is formed. Set all

frames of as recognized based on Recognize ; Set .

1. Continuously input new image frames in turn, until a new EV is formed.

2. If is unrecognizable, set all frames of as unrecognizable, and go to Step 4.

3. If there is any unrecognizable frame in ,

set all frames of as recognized based on Recognize .

Else (i.e., all frames in are recognizable),

assume that Recognize .

If the recognized result of is continuously consistent with that of ,

set all frames of as recognized based on Recognize .

Else (i.e., they are not continuously consistent),

let be a new EV composed of the latter half frames of and the

former half frames of .

Let , , , the scale and

position of the middle block in Recognize .

If Verify (i.e., unrecognizable),

modify the later half frames of as unrecognizable. Set the

former half frames of as unrecognizable and set its later half frames

as recognized based on Recognize .

Else (i.e., Verify )

Let be a new EV composed of and the later half frames of .

If Verify ,

set the former half frames of as recognized (in the th panorama)

based on Verify , and set its later half frames as

unrecognizable.

Else

set all frames of and the later half frames of as recognized

(in the th panorama) based on Verify .

4. If no further image frames are available in the video, stop.

Else, set , and go to Step 1.
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Fig. 5. (a) Test video used in our experiment. This video contains 76 image frames, and the image frames shown in this figure are the 0th, 15th, 30th, 45th, 60th, and
75th frames, respectively. This video was recognized with the method introduced in Section II. It was then correctly found that the seventh panorama—Chung-Cheng
Memorial Hall—is the correct match, and (b) shows the matched panorama in association with the matched blocks corresponding to the images frames shown
in (a). (c) These matched blocks more clearly. Note that the video was taken about 10 m away from the center of the panorama, and thus, there are detectable
disparities between them. In addition, the video and the panorama were taken at different dates and times, and thus, their weather conditions are not the same (the
video was taken on a cloudier day). However, the proposed method can still find approximately correct matches for the video frames.

imately . This verification procedure can be treated as a spe-

cial recognition problem in which only one panorama is used to

construct a database , and the nodes in

the first layer of its matching graph are restricted to those asso-

ciated with blocks whose position and scale are approximately

and . Hence, the verification can also be performed with

the method introduced in Section II, and Verify is

then set equal to Recognize when the specific recognition

problem mentioned above is solved.

IV. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS

Twenty panoramas, most of which were taken from an aca-

demic campus, were used to construct an environment database

for use in our experiment. These panoramas include both indoor

and outdoor scenes, six of which are shown in Fig. 4.

A. Implementation Issues

To speed up the candidate-selection process, a useful prop-

erty about the structure of the constructed matching graph can

be used. Remember that no edges are constructed between the

nodes associated with adjacent image frames during the graph-

construction stage; therefore, the candidate blocks of an image

frame need only to be found within a neighbor region and

range of approximate scales of those have been found for .

By using this property, only the candidate blocks of the first

frame of a video segment were matched with all the blocks con-

tained in (the set of images blocks contained in all scaled

panoramas in the implementation), whereas those of the other

frames are matched only within neighborhoods of the candidate

blocks found for their previous frames. Note that the time com-

plexity of candidate-selection stage presented in Section II-D is

analyzed at the case when candidate blocks are independently

found for each image frame. Hence, the time complexity men-

tioned above can be lowered by using this fast implementation,

which can be seen as an upper bound of that of the fast imple-

mentation.

To further increase the computational efficiency and obtain

a smooth trajectory of matched regions during recognition in

our implementation, a video is uniformly subsampled every

frames, and only those sampled frames are used to construct

the matching graph. Then, the matched positions and scales of

the other frames are obtained by linear interpolation from those

obtained with the subsampled video.

In the following, seven experiments are shown to demon-

strate the effectiveness of our method. In the first three experi-

ments, a simple version of our algorithm that does not consider

image rotations (i.e., ) was employed, and only the

first ten panoramas contained in the database were used. In the

other four experiments, image rotations were considered

and all 20 panoramas

contained in the database were used.
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Fig. 6. Comparison of the results obtained using our method with that using the best-only strategy (i.e., associating each image frame with the corresponding
candidate block with the smallest matching cost). (a) Matched blocks when best-only strategy was used for recognizing the same video shown in Fig.5(a). (b)
Matched panoramas associated with the matched blocks. Comparing them with the recognition results shown in Fig. 5, it is found that motion and scale continuities
integrated with DP are very successfully used in our image sequence-based approach for removing the ambiguities of individual matches.

B. Experimental Results1

A test video containing 76 image frames, some of which

are shown in Fig.5 (a), was used for testing the performance

of our method. The sample interval is set to 5 in this ex-

periment. By using the method introduced in Section II, a

matching graph was first constructed for the subsampled video.

Then, the shortest path associated with this graph was found

1Demo videos associated with all the experimental results can be found
in [51].

for recognition. This experiment was done using a PC with

1.8-GHz CPU and 512 MB memory, where it took 4.096 s for

the candidate-selection and graph-construction stage, and 0.04

s for finding the optimal path. The average recognition is about

s/frame. More specifically, finding

the candidate blocks of the first frame takes 1.630 s, and finding

those of the other frames takes 0.165 s/frame, which shows

that the implementation strategy described in Section IV-A

can improve the efficiency for candidate selection. In this

experiment, it was correctly found that the seventh panorama
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Fig. 7. (a) Video shot with a slight partial occlusion showing its 0th, third, sixth, ninth, 12th, and 15th image frames. (b), (c) Recognized panorama of this video
and matched image blocks of the image frames shown in (a) obtained with our method. (d), (e) Recognized panorama of this video and matched image blocks of
the image frames shown in (a) obtained with the best-only strategy.

(Chung-Cheng Memorial Hall) is the right match. Fig.5(b)

shows the matched panorama, in association with the matched

blocks, corresponding to the images frames shown in Fig.5(a).

To be clear, Fig.5(c) further shows these matched blocks

individually. It can be observed that our method successfully

found very convincing matches for the test video.

It is worth noting that the video was taken in about 10 m

away from the center of the panorama; therefore, there are de-

tectable disparities between them. In addition, the video and the

panorama were taken at different dates and times (the video was

taken on January 20, 2002, and the panorama was taken on Jan-

uary 5, 2002); therefore, their weather conditions are different

(the video was actually taken on a cloudier day). However, our

method can still find approximately correct matches of the video

frames. We owe this to the following. First, the component

used in the matching measure (10) has been normalized; there-

fore, linear lighting variations can be compensated. Second, a

sequence of image frames, but not individual ones, was used for

video content recognition, which helped to remove ambiguities

or illusions occurring in individual matching results.

To clarify the second reason, let us compare our method with

the best-only strategy that associates each image frame with
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Fig. 8. Some images from a video containing 750 image frames. This video is segmented into five EVs, and each EV contains 150 frames. (a)–(e) Some image
frames contained in the first, second, third, fourth, and fifth EVs, respectively.

the corresponding candidate block with the smallest matching

cost. Fig.6(a) shows the matched blocks when the best-only

strategy is used for recognizing the same video shown in

Fig.5(a). Fig.6(b) further shows the matched panoramas in

association with the matched blocks. Comparing the recog-

nition results shown in Fig. 5, it is found that the motion and

scale continuities (integrated with DP) are very successfully

exploited and integrated in our image sequence-based approach

for removing the ambiguities of individual matches. (A demo

video exp_1-fig5-fig6.zip can be found in [51].)

In another experiment, a video with slight partial occlusion

was employed as input, as shown in Fig.7(a). The video con-
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Fig. 9. (a) Upper row shows some image frames contained in the second EV, and the middle and lower rows show their matched blocks in the third panorama
shown in Fig.4 (a). (b) Upper row shows some image frames contained in the third EV, and the middle and lower rows show their matched blocks in the third
panorama shown in Fig.4 (a). (c) Upper tow shows some image frames contained in the fourth EV, and the middle and lower rows show their matched blocks in
the third panorama shown in Fig.4 (a).

tained 22 image frames, and , which is the sample interval,

was set to 3. After being processed with the simple version of

our method, the recognized panorama and matched sequence

of blocks are shown in Figs.7(b) and (c), respectively, which

reveals that our method still found quite convincing matches.

Compared with the matches found with the best-only strategy,

as shown in Figs.7(d) and (e), it can be seen that interframe

consistencies among consecutive image frames are also very

helpful for identifying correct matches when partial occlusions

occurred. The average recognition time is 0.30 s/frame. (A demo

video exp_2-fig7.zip can be found in [51].)

In the third experiment, we investigated partially recogniz-

able situations. Fig. 8 shows a video containing 750 frames,

which was grabbed with a handheld video camera taken by a

person who went into the Taichi Plaza [shown in Fig.4 (a)] from

its periphery. Hence, a period of its initial video segment should

be unrecognizable. The test video is divided into five nonover-

lapping EVs, as illustrated in Fig. 8, and each EV consists of 150
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Fig. 10. (a) Initial recognition result of the fifth EV, which was recognized as in the eigth panorama shown in Fig.4 (e). The upper row shows some frames in the
fifth EV, the middle row shows their matched blocks, and the lower row shows the recognized panorama. (b) Some frames contained in the EV � that is used for
verification as described in the algorithm shown in Section III. (c) Some frames contained in the EV � that is used for verification. (d) Final recognition result of
the fourth EV. The matched blocks (in the third panorama) associated with the upper row of Fig.9 (c) are shown here. (e) Final recognition result of the fifth EV.
The matched blocks (in the third panorama) associated with the upper row of (a) are shown.

frames. Because , which is the sample interval, is set to 5, 30

frames are uniformly sampled in each EV and are used to con-

struct a matching graph for recognition. The algorithm shown

in Section III (while image rotation is not considered and there-

fore ) was used to process each EV in turn to maintain

continuity between consecutive EVs, and the results obtained

are shown in the following.

The first EV did not match any panoramas contained in the

database and, hence, was set as unrecognizable. The second,

third, and fourth EVs were recognized as a sequence of succes-

sively matched blocks contained in the third panorama (Taichi

Plaza), as shown in Fig.4(a), and each consecutive pair of them

is also continuously consistent. Fig. 9 shows some of the image

frames contained in the second, third, and fourth EVs, as well as
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their matched blocks. The fifth episodic video was initially rec-

ognized as in the eigth panorama, as shown in Fig. 10(a), so it

is not continuously consistent with the fourth one because their

recognized panoramas are not the same. Hence, according to

the method introduced in Section III, a new EV was formed

as composed of the latter half segment of the fourth EV and

the former half segment of the fifth one. Then, was verified,

whether or not it can be recognized as a sequence of image

blocks continuously consistent with the recognition result of the

former half segment of the fourth EV. In our experiment, was

successfully verified, and hence, another EV composed of

and the later half of the fifth one was further verified, ac-

cording to Step 3 in the algorithm, and was successfully veri-

fied again in this experiment. The final recognition results of the

fourth and fifth EVs are shown in Figs.10(d) and (e), respec-

tively. From the results shown above, it can be observed that

the test video was initially unrecognizable and was successfully

recognized as having been taken in the environment recorded in

the third panorama in our database. This shows that a series of

continuously consistent recognition results can be obtained with

our method. The average recognition time of this experiment

is about 0.30 s/frame. (A demo video exp_3-fig8-fig9-fig10.zip

can be found in [51].)

To verify the applicability of our approach under different

conditions such as image rotation, scaling, viewpoint variation,

and illumination changes in a detailed way, we have done a se-

ries of experiments as shown below, where the sample interval

was set to 5.

1) Influences of the Distance From the Video-Shooting Po-

sition to the Panorama Center: In the fourth experiment, we

further investigate the influence of the distance between the

video camera and the panorama center. This distance is re-

ferred to as the baseline length because the panorama and

the image taken with the video camera essentially form a

“stereo pair.” The environment to be recognized is the same

as that of experiment 1, where a south building is about 90

foot steps away from the panorama center, and a west arch

is from this center about 150 foot steps away (a foot step

is roughly equal to 67 cm). In this experiment, seven videos

away from the center 0, 15, 30, 45, 60, 75, and 90 foot steps

to the west arch were taken, respectively, by panning the

camera from south to west. An illustration of the shooting

conditions is shown in Fig.11(a), and Fig. 11 (b) shows the

other seven videos taken for recognition in this experiment.

Note that these videos were all taken on a different date (July

28, 2002) from that of the panorama (January 5, 2002), and it

can be observed that the environment has a little change with

occlusions (the video captures some additional tents, cars, and

people). Fig. 12 shows the matched panorama in association

with the matched blocks for each video. As can be seen, the

larger the baseline length in terms of foot steps, the more se-

vere the image distortions. In this experiment, the videos of 0,

15, 30, 45, and 60 foot steps were treated as successfully rec-

ognized, whereas the matching results of the videos of 75 and

90 foot steps are not quite good but still in the same correct

environment [the panorama shown in Fig. 4(d)]. The average

recognition time of each video in this experiment is 0.97, 0.93,

0.83, 0.72, 0.78, 0.75, and 1.46 s/frame, respectively. (Demo

Fig. 11. (a) Shooting condition of the seven videos taken on July 28, 2002.
The seven black spots are the camera centers where the videos are taken. These
videos were taken away from the center 0, 15, 30, 45, 60, 75, and 90 foot steps
to the west arch, respectively, by panning the camera from south to west. (b)
Seven rows show some sample frames of these seven videos taken away from
the panorama center 0, 15, 30, 45, 60, 75, and 90 foot steps, respectively.

videos exp_4-fig11(b)-1.zip–exp_4-fig11(b)-7.zip, which are

in associated with 0–90 foot steps, can be found in [51].)

In principle, when the baseline length is large or the objects

in the scene are close to the camera, the matching performance

diminishes with our approach. This is because the stereo pair

formed by the panorama and the image taken with the video

camera may has nonuniform image disparities and partial oc-

clusions if the baseline is long and the objects contained in the

scene are not co-planar. Since our method is a view-based ap-

proach, nonuniform distortions of an image block caused by

large disparities between the corresponding points may affect

the matching accuracies. Nevertheless, it should be noted that

not only our approach but also all the methods belonging the

type of using panoramas or videos for encoding the appearances

of environments or objects [17], [20], [26], [27] suffer from this

problem.
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Fig. 12. From top to bottom, the seven images show the recognized panorama and the matched blocks, respectively, for the sampled frames of the videos of 0,
15, 30, 45, 60, 75, and 90 foot steps shown in Fig. 11(b).

2) Influences of Scales: The intrinsic parameters of a video

camera are modified when auto-focusing is turned on or zoom-

in/out is tuned, which may affect the matching results also. In

the fifth experiment, a video containing 126 frames was taken

by panning and zooming in/out in a scene of our campus with

a Sony DCR-TRV11 DV in an auto-focus mode, as shown in

the upper row of Fig. 13(a). After processed by our method,

the video was correctly recognized, and it was found that the

third panorama [Taichi Plaza shown in Fig. 4(a)] is the right

match. The matched panorama and matched sequence of blocks

are shown in the middle and lower rows of Fig. 13(a), respec-

tively. It can be observed that the scale of each matched block

varies according to the zooming condition of each frame. The

average recognition time for this video is 3.29 s/frame. (A demo

video exp_5-fig13(a).zip can be found in [51].)

Furthermore, different video cameras usually have different

intrinsic parameters because the lens systems and the CCD chips

are different. Therefore, we have also used another video camera

(a Canon XL1s DV) to shoot the same scene with panning and

zooming in/out, as shown in the upper row of Fig.13 (b). The

video contains 84 frames, and it was also successfully recog-

nized as shown in Fig. 13(b). From the above experimental re-

sults, it can be seen that the influence of intrinsic parameters is

less than that of the baseline lengths since our method has taken

into account scale changes by storing a set of scaled panoramas

in the database. (A demo video exp_5-fig13(b).zip can be found

in [51].)

3) Influences of Illumination Conditions and Image Rota-

tions: To show how different lighting conditions affect the

recognition results in practice, several videos were taken in

the sixth experiment for recognition under different weather

conditions in the same position with consistent way of shooting,

which includes drizzling, cloudy, cloudless, sunny, and shower

conditions, as shown in the upper rows of Figs. 14(a)–(e).
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Fig. 13. Videos taken with different cameras and their matching results. Both videos were taken at the same time (July 29, 2002). (a) Upper row shows some of
the image frames of a video taken with a Sony DCR-TRV11 DV. The video was taken by panning and zooming in/out. The middle row and the lower row show the
recognized panorama and the matched blocks, respectively. (b) Upper row shows some of the image frames of a video taken with a Canon XL1s DV by panning
and zooming in/out. The middle row and lower row show the recognized panorama and the matched blocks, respectively.

The videos taken in drizzling, cloudy, and cloudless weathers

were successfully recognized, as shown in the middle and the

lower rows of Figs. 14(a)–(c). However, our method failed

to recognize the video taken in the showery weather or in

a sunny day with a harsh reflection of the sunlight on the

buildings, as shown in the middle and the lower rows of Figs.

14(d) and (e). The average recognition time of each video in

Figs. 14 (a)–(e) is 1.16, 3.46, 5.61, 5.53, and 12.65 s/frame,

respectively. In fact, existing methods based on panoramic

appearances suffer from the same problem because matching

images with significantly nonuniform illumination variations is

still very difficult. (Demo videos exp_6-fig14(a).zip (drizzling),

exp_6-fig14(b).zip (cloudy), exp_6-fig14(c).zip (cloudless),

exp_6-fig14(d).zip (sunny), and exp_6-fig14(e).zip (shower)

can be found in [51].)

In addition, to show the ability of our method to handle the

matching problem with image rotation, a video containing 110

frames with significant image rotations is taken in the seventh

experiment for recognition, as shown in Fig. 15(a). The com-

plete version of our algorithm successfully found convincing

matches for the input image frames, as shown in Fig. 15(b), and

the average recognition time of this video is 1.18 s/frame. (A

demo video exp_7-fig15.zip can be found in [51].)

Finally, we show that the augmented panoramas that contain

high-level descriptions associated with particular regions can

be used to generate more useful information for recognition.

Fig. 16 shows some image frames and their matched blocks

in the third panorama, whic was obtained in the third ex-

periment. By using the augmented high-level information of

this panorama shown in Fig. 1, useful descriptions about the

matched regions can be further generated and serve as part

of recognition results. Similarly, Fig. 17 shows the generated

high-level descriptions in association with the fourth experi-

ment.

C. Discussions

In this paper, a framework including three stages (candidate-

selection, graph-construction, and path-searching) is proposed

to recognize a video based on an environmental database con-
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Fig. 14. Upper rows of (a)–(e) show five videos taken in drizzling, cloudy, cloudless, sunny, and showery days, respectively. Lower rows of (a)–(e) show the
matched blocks, respectively. In this experiment, the videos taken in drizzling, cloudy, and cloudless days were successfully recognized, whereas the videos taken
in sunny and showery days failed to be recognized with our approach.

structed with multiscale panoramas. Among them, the candi-

date-selection stage is the most flexible, and there are many

choices to build it. In this paper, template matching based on full

search is adopted for this stage, but it is possible to be further

speeded up with some fast algorithms by constructing a partic-

ular multilevel structure associated with each image [12], [21]

or by constructing a specific tree structure of the whole database

[7]. In fact, we have ever implemented the method proposed

in [7] for speeding up the candidate-selection process. How-

ever, its efficiency was worse than full-search when the same

experiments described in Section IV-B were performed. We at-

tribute this to the following: First, there is extra overhead when

matching in a tree structure, which makes it possible to be even

slower than full search. Second, the memory access becomes

quite irregular when matching with a tree structure, which is

not suitable to be implemented in modern computers because
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Fig. 15. (a) Video with explicit image rotations. (b) Recognized panorama and the matched blocks.

Fig. 16. By using the augmented high-level descriptions of the third panorama shown in Fig. 1, useful information about the matched regions can be further
generated and can serve as part of recognition results. (a), (c), and (e) show the 490th, 520th, and 540th frames contained in the test video, respectively. (b),
(d), and (f) show their matching blocks in the third panorama obtained by the Episode-Based Incremental Recognition Algorithm. The corresponding high-level
descriptions generated are shown on the right side, respectively.

they are usually designed to be particularly fast for consecu-

tive memory access. However, the number of key operations to

be performed can be reduced with such approaches, and hence,

there is still the chance for it to be more efficient if different

experimental settings and implementation environments are en-

countered.

Template-matching can also be modified to deal more exactly

with partial occlusions, although our experimental results show

that slight partial occlusion did not cause explicit difficulties for

recognition. It can be improved by using robust estimation tech-

niques such as M-estimators [28], [40], which pass a least square

measurement [such as (10)] in a robust loss function to reduce

the influence of outliers. In the sixth experiment presented in

Section IV-B3, it was shown that large variation of weather or

lighting conditions remains a difficult issue. It may be improved

in our approach by including more training examples, i.e., more

panoramas, which represent various lighting conditions in the

environment database [4], [5], or by building rough 3-D models

and lighting parameters of environments [46]. We will consider

this issue in our future work.
To completely handle the problem caused by image dispar-

ities, occlusions, or intrinsic parameters, one possible way is
to upgrade the view-based matching approach to a dense-point
matching one in the candidate-selection stage.2 In fact, if a dense
matching has been done, then the 3-D structure of the scene can
also be established via projective reconstruction or Euclidean
reconstruction. However, as a well-sensed phenomenon in the
computer-vision community, dense point matching considering
partial occlusions is a very difficult problem that can still not be
solved reliably. On the other hand, view-based approaches are

2The graph-construction and the path-searching stages in our framework can
still be applied as well.
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Fig. 17. Generated high-level descriptions for two frames of the video of 0 foot step in Fig.11. (b). (a) and (c) show the first and 80th frame in the test video,
respectively. (b) and (d) show their matching blocks in the seventh panorama and their corresponding high-level descriptions, respectively.

more reliable, easy to implement, and were thus indeed widely
adopted in many applications such as motion estimation, ob-
ject/face recognition, and robot localization—although such ap-
proaches may be affected by the factors mentioned above. Nev-
ertheless, note that our approach can still handle or compen-
sate the influences caused by these problems to a considerable
extent because we emphasize to use a sequence of views, in-
stead of a single view, for visual recognition. In essence, our
method only needs a “rough” matching result for each indi-
vidual view in the candidate-selection stage. After gathering
some roughly similar image blocks as the matching candidates
for every image frame in the sequence, we then make a deci-
sion by matching the whole sequence, instead of a single image
frame, by finding the shortest path in the matching graph. By
using our sequence-based approach, the matching performances
can be considerably more refined than those of the “best-only”
approach (which matches based on isolated views), as shown in
our experiments.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for recognizing scenes cap-
tured with a video camera. The framework developed in this
paper cannot only be used for recognizing environments repre-
sented in a viewer-centered way but can also be used for rec-
ognizing objects represented in an object-centered manner—if
an appropriate method is exploited for the candidate-selection
stage. For example, an eigen-space structure of multiple images
of an object can serve as a basis for finding matching candi-
dates in the candidate-selection stage. Then, by constructing a
matching graph in the same way introduced in Section II-B, in-
terframe relationships of a video can then be exploited for ap-
pearance-based object recognition. Since a recognition strategy
has been proposed for video, the framework developed in this
paper also has potential to serve as a basis for content-based
video retrieval.

The contributions of this paper are summarized as follows.

1) A generally useful scenario is proposed using an
image sequence, instead of a single image, for appear-
ance-based recognition and tracking. We demonstrate

that this problem can be transformed into a shortest-path
searching problem associated with a well-organized
matching graph, and DP can be used for finding the
optimal sequence of matches.

2) A single panorama is used, instead of multiple images,
for learning the appearances of an environment. Existing
appearance-based learning methods have the drawback
that multiple images have to be taken for a target. In ad-
dition, a multiple-image representation can only sample
finite views of a target. In this paper, the recognition tar-
gets are environments instead of objects, and we note that
panoramas are compact representations particularly suit-
able for appearance-based visual recognition and tracking
of environments because a panorama inherently records
infinitely many viewer-centered images of an environ-
ment. However, no such complete and compact way can
be used to represent all the object-centered images of an
object.

In this paper, a single panorama was used to record each
environment. As discussed in Section IV-C, although dense
matching or 3-D reconstruction is a method that can completely
cope with the problem caused by image disparities, it is still
difficult to be solved reliably. In fact, using more panoramas for
a single scene is also helpful in solving this problem. To achieve
this, a better way is to use the structure of concentric mosaics
[38] because it inherently consists of infinite panoramas
centered within a circle and, hence, is suitable to record the en-
vironments from multiple viewpoints. However, the extension
from using panoramas for environment recognition to using
concentric mosaics is not trivial and remains to be done in the
future.
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