Confidence Interval Estimate
Mean (σ Unknown and $\mathrm{n}<30$)

巴 Confidence Interval Mean (σ Unknown)

1. Assumptions

Population Standard Deviation Is Unknown Population Must Be Normally Distributed if sample size is relatively small.
2. Use Student's t Distribution
3. Confidence Interval Estimate
$\left(\bar{X}-t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{X}+t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}\right)$
$\overline{\bar{X} \pm t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}}$,

Jennifer visited Las Vegas, and was still thinking about statistics. She took a random sample of 5 visitors who played game during the day she took the sample and asked them how much money they won that day. The data is the following, in dollars. Negative number represents loss.

$$
62.00, \quad-116.00, \quad-90.00, \quad-220.00, \quad-165.50
$$

[^0]\[

$$
\begin{aligned}
& \qquad \bar{X} \pm t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}} \\
& \text { Sample mean }=-105.90 \\
& \text { Sample standard deviation }=106.20 \\
& \mathrm{t}_{.05}=2.132 \text { (or Confidence interval } 90 \% \text {) } \\
& \text { The } 90 \% \text { confidence interval is } \\
& -105.90 \pm 2.132 \times \frac{106.2}{\sqrt{5}} \\
& -105.90 \pm 101.26 \Leftrightarrow(-207.16,-4.64)
\end{aligned}
$$
\]

One-sample t-Test
 (with Unknown Variance σ^{2})

In practice, population variance is unknown most of the time. The sample standard deviation $\mathbf{s}^{\mathbf{2}}$ is used instead for $\sigma^{\mathbf{2}}$. If the random sample of size n is from a normal distributed population and if the null hypothesis is true, the test statistic (standardized sample mean) will have a t-distribution with degrees of freedom $n-1$.

Test Statistic: $\quad t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}$

II. Test Statistic

If we have a random sample of size 16 from a normal population that has a mean of $98.32^{\circ} \mathrm{F}$, and a sample standard deviation 0.4 . The test statistic will be a t-test statistic and the value will be: (standardized score of sample mean)
Test Statistic : $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}=\frac{98.32-98.6}{\frac{0.4}{\sqrt{16}}}=\frac{-0.28}{0.1}=-2.8$
Under null hypothesis, this t-statistic has a t distribution with degrees of freedom $\mathrm{n}-1$, that is, $15=16-1$.

I. State Hypothesis

One-side test example:
If one wish to test whether the body temperature is less than 98.6 or not.
$H_{0}: \mu=98.6$ v.s. $H_{a}: \mu<98.6$
(Left-sided Test)

III. Decision Rule

Critical Value Approach:

To test the hypothesis at α level 0.05 ,
the critical value is $-t_{\alpha}=-t_{0.05}=-1.753$.

Descion Rule: Reject null hypothesis if $t<-1.753$

IV. Conclusion

Decision Rule:
If $t<-1.753$, we reject the null hypothesis.
Conclusion: Since $t=-2.8<-1.753$, we reject the null hypothesis. There is sufficient evidence to support the research hypothesis that the average body temperature is less than $98.6^{\circ} \mathrm{F}$.

P-value Approach
 III. Decision Rule

Decision Rule: Reject null hypothesis if p-value < α.

p-value Calculation

p-value corresponding the test statistic:

For t test, unless computer program is used, p value can only be approximated with a range because of the limitation of t-table.
p-value $=P(\mathrm{~T}<-2.8)<P(\mathrm{~T}<-2.602)=0.01$
Since the area to the left of -2.602 is .01 , the area to the left of -2.8 is definitely less than 0.01 .

IV. Conclusion

Decision Rule:

If p-value <0.05, we reject the null hypothesis.
Conclusion: Since p-value $<0.01<0.05$, we reject the null hypothesis. There is sufficient evidence to support the research hypothesis that the average body temperature is less than $98.6^{\circ} \mathrm{F}$.

What if we wish to test whether the average body temperature is different from $98.6^{\circ} \mathrm{F}$ or not using t-test with the same data?

The p-value is equal to twice the p value of the left-sided test which will be less than . 02 .

Decision Rule

p-value approach: Compute p-value,
if $\mathrm{H}_{a}: \mu \neq \mu_{0}, p$-value $=2 \cdot P(T \geq \mid t /)$
if $\mathrm{H}_{a}: \mu>\mu_{0}, p$-value $=P(T \geq t)$
if $\mathrm{H}_{a}: \mu<\mu_{0}, p$-value $=P(T \leq t)$
reject \mathbf{H}_{0} if p-value $<\alpha$

Decision Rule

Critical value approach: Determine critical value(s) using α, reject \mathbf{H}_{0} against

```
i) }\mp@subsup{\textrm{H}}{a}{}:\mu\not=\mp@subsup{\mu}{0}{}\mathrm{ , if }t>\mp@subsup{t}{\alpha/2}{}\mathrm{ or }t<-\mp@subsup{t}{\alpha/2}{
    (or |t/> to/2
ii) }\mp@subsup{\textrm{H}}{a}{}:\mu>\mp@subsup{\mu}{0}{}\mathrm{ , if }t>\mp@subsup{t}{\alpha}{
iii) }\mp@subsup{\textrm{H}}{a}{}:\mu<\mp@subsup{\mu}{0}{}\mathrm{ , if }t<-\mp@subsup{t}{\alpha}{
```


Remarks

- If the sample size is relatively large (>30) both z and t tests can be used for testing hypothesis. The number 30 is just a reference for general situations and for practicing problems. In fact, if the sample is from a very skewed distribution, we need to increase the sample size or use nonparametric alternatives such Sign Test or Signed-Rank Test.
- Many commercial packages only provide t-test since standard deviation of the population is often unknown.

Example

A random sample of ten 400-gram soil specimens were sampled in location A and analyzed for certain contaminant. The sample data are the followings:

$$
65,54,66,70,72,68,64,50,81,49
$$

The contaminant levels are normally distributed. Test the hypothesis, at the level of significance 0.05 , that the true mean contaminant level in this location exceeds $50 \mathrm{mg} / \mathrm{kg}$.

Step 1

What is the hypothesis to be tested?

$$
\begin{aligned}
& \mathrm{Ho}_{j}=50 \\
& \mathrm{H}_{\mathrm{a}}: \mu \geq 50
\end{aligned}
$$

Step 2

Which test can be used for testing the hypothesis above? (Check assumptions.)
One sample t-test. Why? Because the random sample was from a normal population and unknown variance.
Compute Test Statistic:
Test statistic: $\quad t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}=\frac{63.9-50}{\frac{10.17}{\sqrt{10}}}=4.32$
The value of the test statistic is
4.32 with a p-value between .005 and .0005 from table.

P -value from SPSS is .00096 .

Step 3

Decision Rule:
Specify a level of significance, α, for the test. α $=.05$

Critical value approach:
Reject Ho if ${ }^{\mathrm{t}}>\mathrm{t}_{.05}=1.833$
p-value approach:
Reject Ho if p-value <0.05

Step 4

Conclusion:

Since $\mathbf{t}=4.32>1.833$,
(or p-value $=.00096<0.05$)
we reject the null hypothesis. The data provide sufficient evidence to support the alternative hypothesis that the average contaminant level in this location exceeds $50 \mathrm{mg} / \mathrm{kg}$.

Statistical Significance

A statistical report shows that the average blood pressure for women in certain population is significantly different from a recommended level, with a p value of 0.002 and the t-statistic of -6.2 . It generally means that the difference between the actual average and the recommended level is statistically significant. And, it is a two-sided test. (Practical Significance?)

Statistical Report

$t=-6.2$

Average Weight for Female Ten Years Old Children In US

Info. from a random sample: $n={ }^{-1} 10, x=$ $80 \mathrm{lb}, s=18.05 \mathrm{lb}$. Is average weight greater than 78 lb at $\alpha=0.05$ level?
Test Statistic: $t=\frac{80-78}{\frac{18.05}{\sqrt{10}}}=0.350 \longrightarrow \rightarrow$
$t_{\alpha}=t_{05}$, d.f. $=10-1=9, t_{0.5,9}=1.833$
Reject H_{0}, if $t=0.35<1.833$. Failed to reject \mathbf{H}_{0} !

Average Weight for Female Ten Years Old Children In US

Info. from a random sample: $n=\mathbf{4 0 0}, x$ $=80 \mathrm{lb}, s=18.05 \mathrm{lb}$. Is average weight greater than 78 lb at $\alpha=0.05$ level? Test Statistic: $t=\frac{80-78}{\frac{18.05}{\sqrt{400}}}=2.22 \xrightarrow{c}$
$t_{\alpha}=t_{.05}$, d.f. $=400-1=399, t_{0.5,399}=1.65$
Reject H_{0}, if $t=2.22>1.65 . \quad$ Reject $\mathbf{H}_{\mathbf{0}}$!

Sampling Distribution

S.E. $=\frac{18.05}{\sqrt{10}}=5.71$
$n=10$

$\underset{\text { S.E. }=\frac{18.05}{\sqrt{400}}=0.90}{ } \quad n=400$

[^0]: Assume that the amount of money won by visitor at Las Vegas from gambling is normally distributed. Find a 90\% confidence interval to estimate the average amount of money visitors win per day for visitors at Las Vegas.

