Chapter 1 Probability

1.1 Basic Concepts

Probability

A <u>researcher claims</u> that 10% of a large population have disease H.

A random sample of 100 people is taken from this population and examined.

If 20 people in this random sample have the disease, what does it mean? **How likely** would this happen if the researcher is right?

1.2 Properties of Probability

Notations

 $\begin{array}{l} \mathsf{A} = \varnothing \Rightarrow \mathsf{A} \text{ is an empty set} \\ \mathsf{A} \subset \mathsf{B} \Rightarrow \mathsf{A} \text{ is a subset of }\mathsf{B} \\ \mathsf{A} \supset \mathsf{B} \Rightarrow \mathsf{B} \text{ is a subset of }\mathsf{A} \\ \mathsf{A} \cup \mathsf{B} \Rightarrow \mathsf{Union of }\mathsf{A} \& \mathsf{B} \\ \mathsf{A} \cap \mathsf{B} \Rightarrow \mathsf{Intersection of }\mathsf{A} \& \mathsf{B} \\ \mathsf{A}' \Rightarrow \mathsf{Complement of }\mathsf{A} \end{array}$

Em En ba	pirical Proba	bility Assignr	nent
	Outcome	Frequency	
	Head	512	
	Tail	488	
	Total	1000	
·			13

F F	Relativ Probat	e Frequer bility Distri	ncy and butions	
Number o	f times	visited a doo	ctor from a	random
sample	<u>of 300 i</u>	ndividuals fr	om a comr	<u>m</u> unity
	Class	Frequency	Relative Frequency	
	0	54	.18	P(0) = .18
	1	117	.39	P(1) = .39
	2	72	.24	P(2) = .24
	3	42	.14	P(3) = .14
	4	12	.04	P(4) = .04
	5	3	.01	P(5) = .01
	Total	300	1.00	_
				20

random from a population, the probability distribution and the relative frequency distribution are the same.

22

Distinguishable Permutations

Example: For Christmas decoration, three different colors of light bulbs are used to line up is a row with 3 yellow, 5 green, and 6 red light bulbs. How many different ways can these light bulbs be arranged?

$$\binom{14}{3,5,6} = \frac{14!}{3! \cdot 5! \cdot 6!} = 168168$$

62

(Condition	al Proba	bility P(A	$A \mid B) = \frac{n(A \land n(B))}{n(B)}$ Total	ר <u>שר (</u> B)
		С	C'		
	Smoke S	20	30	50	
	Not Smoke S'	5	45	50	
		25	75	100	
	P(C S) = 20 P(C S') = 5	0/50 = .4 5/50 = .1		6	5

Example

If a balanced die is rolled twice, what is the probability of having two 6's?

 6_1 = the event of getting a 6 on the 1st trial

 6_2 = the event of getting a 6 on the 2nd trial

 $P(6_1) = 1/6, P(6_2) = P(6_2|6_1) = 1/6,$

 6_1 and 6_2 are independent events

 $P(6_1 \cap 6_2) = P(6_1) P(6_2) = (1/6)(1/6) = 1/36$

Independent Events

"10%" of the people in a large population has disease H. If a random sample of two subjects was selected from this population, what is the probability that both subjects have disease H?

 $\rm H_{i}$: Event that the i-th randomly selected subject has disease H.

$$\begin{split} \mathsf{P}(\mathsf{H}_2|\mathsf{H}_1) &= \mathsf{P}(\mathsf{H}_2) \quad \text{[Events are almost independent]} \\ \mathsf{P}(\mathsf{H}_1 \cap \mathsf{H}_2) &= \mathsf{P}(\mathsf{H}_1) \ \mathsf{P}(\mathsf{H}_2) = .1 \ x \ .1 = .01 \end{split}$$

74

76

Independent Events

"10%" of the people in a large population has disease H. If a random sample of **3** subjects was selected from this population, what is the probability that all subjects have disease H?

 $\rm H_{i}$: Event that the i-th randomly selected subject has disease H.

[Events are almost independent] $P(H_1 \cap H_2 \cap H_3) = P(H_1) P(H_2) P(H_3)$

 $= .1 \times .1 \times .1 = .001$

Example: Coronary artery disease

	Present D+	Absent D-	Total
Positive T*	815	115	930
Negative <i>T</i> -	208	327	535
Total	1023	442	1465
[From the book table from data	, <i>Medical Statis</i> of Weiner et al	<i>tics</i> page 30, a l (1979)]	nd the 2x2 88

Positive T^{+} 815 115 930 Negative T^{-} 208 327 535 Total 1023 442 1465 Calculate the following: $P(D^{-}) = ____$ $P(T^{-}) = ___$	Positive 7 ⁺ Negative 7 ⁻ Total	815 208	115	930
Negative T^- 208 327 535 Total 1023 442 1465 Calculate the following: $P(D^-) = \ P(D^-) = \ P(D^-) = \ $	Negative <i>T</i> - Total	208		
Total10234421465Calculate the following: $P(D^-) = $ $P(T^-) =$	Total		327	535
alculate the following: $(D^{-}) = ___$ $(T^{-}) =$		1023	442	1465
$P(D^+ \cap T^+) - P(D^+)P(T^+) =$	$P(D^{-}) = \underline{\qquad}$ $P(T^{-}) = \underline{\qquad}$ $P(D^{+} \cap T^{+})$	$-P(D^+)P$	$(T^{+}) =$	

		Present D ⁺	Absent D-	Total
	Positive <i>T</i> [≁]	815	115	930
	Negative T^-	208	327	535
	Total	1023	442	1465
$P(T^+ L$	$D^+) = \frac{P(T^+ \cap D^+)}{P(D^+)}$	$\left(\frac{D^+}{D^+}\right) = \frac{815}{1023}$	$\frac{1465}{1465} = 815$	/1023 ≈ .8

