\qquad
\qquad

Honors Math 8 - "Solving Square and Cubic Equations"

1. Find the square roots:
$\sqrt{400}$
$\sqrt{0.49}$
$\sqrt{\frac{4}{9}}$
$\sqrt{5^{10}}$
2. Simplify: $\sqrt{100-64}-(\sqrt{100}-\sqrt{64})$
3. The area of a square with sides of length s is given by the formula $A=s^{2}$, where A is the area and s is the length of one side. If the area of a square is 441 square inches, what is the length of one side?
4. The formula $d=16 t^{2}$, where d is the distance in feet and t is the time in seconds, relates time and distance for falling objects. Calculate the time required to drop a ball from a height of 400 feet.
5. The formula $a=2 s^{2}$, where a is the area of any rectangle with one side length s, and one side twice as long, relates dimension and area of such rectangles.

Calculate the side length of such a rectangle if the area is 288 square units.
6. Suppose you were asked for the radius of a circle whose area is $16 \pi \mathrm{~m}^{2}$. Would your answer include the positive square root of 16 , the negative square root, or both? Explain.
7. To find a perfect square, we most commonly multiply a number by itself, for example $6 \times 6=36$. Another way to find a perfect square is to multiply four consecutive integers and then add the number 1 to the product. For example $2 \times 3 \times 4 \times 5+1=121$, which is a perfect square. Use this method to find three other perfect squares.
8. Find: $\sqrt{\frac{36}{49}}$
9. Evaluate the expression using the standard order of operations:

$$
(\sqrt{64}+4) \div 9^{\frac{1}{2}}
$$

10. The formula for finding the surface area of a cube is SA $=6 s^{2}$. If the surface area of a cube is 384 , how long is each side?
11. What is the value of $(\sqrt{25})^{2}$?
12. In which of these models does the shaded portion represent $\sqrt{36}$?
A.

B.

C.

D.

13. Marcus knows that a cubed shaped bin at the nursery holds 1000 cubic feet of dirt. Which expression can he use to calculate the length of an edge of the bin?
A. $\sqrt[3]{1000}$
B. 1000×3
C. $1000 \div 3$
D. $1000 \div 6$

14. Write $4.01 \overline{2}$ as a rational number.
15. Place a mark in every box that describes the number.

If a number is Rational, explain.

Number	Rational	Irrational
$-\pi$		
-11.1689		
$\mid \sqrt{169}$		
$\frac{5}{3}$		
$4 \sqrt{5}$		
$\sqrt{101}$		

Give reasons for your sorting.
16. Solve each of the following radical equations.
a) $\frac{c^{2}}{0.8}=80$
b) $n^{3}+7=350$
17. Which of these numbers would, as the denominator of a reduced fraction, lead to a terminating decimal form?
A. 12
B. 14
C. 16
D. 18
18. An irrational number is a number that is-
19. Classify the following list of real numbers by category. (Some numbers may fit in more than one category.)

$$
\begin{array}{cccccc}
-7 & \frac{1}{2} & -0.6 & 1.67342 \ldots & \\
\sqrt{25} & 3^{2} & \frac{5}{11} & 12 & \sqrt{3} & 0
\end{array}
$$

Whole	Integer	Rational	Irrational

20. $\sqrt{20}$ is located between which of the letters on the number line?

21. Which integer is the closest to $\sqrt{38}$?

A. 7
B. 6
C. 5
D. 4
22. Insert a rational and an irrational number between the following decimals.
$1.274 \overline{4}$
\qquad
$1.274 \overline{274}$
23. Estimate $\sqrt{115}$ to the nearest tenth without using a calculator. Explain in words the procedure you used to come up with your estimate.
24. Find two consecutive whole numbers that the following is between:
$\sqrt{125}$
25.

A vacant lot measures 20 yd by 30 yd . The neighborhood kids have cut a diagonal path through the lot. The exact length of this path is $\sqrt{20^{2}+30^{2}} \mathrm{yd}$. What is the approximate length of the path?
26. A square garden has an area of 5 square feet. To the nearest tenth of a foot, what is the length of one side of the garden?
27. The volume of a cube is 138 cubic centimeters. Which of the following is the best estimate for the length of an edge of the cube?
A. between 5 cm and 6 cm
B. between 6 cm and 7 cm
C. between 7 cm and 8 cm
D. between 8 cm and 9 cm
28. $\sqrt{180}$ is between what pair of consecutive integers?
29. The coordinate $(3,5)$ is not the solution to which system of equations?
A. $y=2 x-1$
B. $y=x+4$
$2 y=3 x-6$
C. $y=3$
D. $\begin{aligned} y & =8-x \\ 3 y-9 & =2 x\end{aligned}$
$y=x+2$
30. Solve: $3 x-4 y=6$

$$
3 x-2 y=2
$$

31. Which point does not belong to the solution set of the given system?

$$
\begin{aligned}
& 3 x-y>6 \\
& 4 x+y \geq-4
\end{aligned}
$$

A. $(1,-5)$
B. $(2,-2)$
C. $(3,-4)$
D. $(4,6)$
32. Graph the solution to $6 x+2 y \geq 4$.

33. Evaluate: $16^{\frac{3}{2}}$
34. Simplify: $\left(-2 x^{4}\right)^{3}$
35. Simplify: $\left(3 a^{4}\right)^{2}\left(-2 a b^{2}\right)^{3}$
36. Using the operations symbols, " $\times,-, \div$, and + ", each once and the standard order of operations, make the following statement true:
$\sqrt{36}$ \qquad $\sqrt{121}$ \qquad $\sqrt{225}$ \qquad $\sqrt{25}$ \qquad $\sqrt{4}=11$
37. Simplify: $\sqrt{48}$
38. Simplify: $\sqrt{27}$
39. Simplify: $\sqrt{120}$

