Score ___

Honors Math 8 - "Solving Square and Cubic Equations"

1. Find the square roots:

 $\sqrt{400}$

 $\sqrt{0.49}$

$$\sqrt{\frac{4}{9}}$$

 $\sqrt{5^{10}}$

- 2. Simplify: $\sqrt{100 64} (\sqrt{100} \sqrt{64})$
- 3. The area of a square with sides of length *s* is given by the formula $A = s^2$, where *A* is the area and *s* is the length of one side. If the area of a square is 441 square inches, what is the length of one side?
- 4. The formula $d = 16t^2$, where d is the distance in feet and t is the time in seconds, relates time and distance for falling objects. Calculate the time required to drop a ball from a height of 400 feet.
- 5. The formula $a = 2s^2$, where *a* is the area of any rectangle with one side length *s*, and one side twice as long, relates dimension and area of such rectangles.

Calculate the side length of such a rectangle if the area is 288 square units.

6. Suppose you were asked for the radius of a circle whose area is $16\pi \text{ m}^2$. Would your answer include the positive square root of 16, the negative square root, or both? Explain.

- 7. To find a perfect square, we most commonly multiply a number by itself, for example $6 \times 6 = 36$. Another way to find a perfect square is to multiply four consecutive integers and then add the number 1 to the product. For example $2 \times 3 \times 4 \times 5 + 1 = 121$, which is a perfect square. Use this method to find three other perfect squares.
- 8. Find: $\sqrt{\frac{36}{49}}$
- 9. Evaluate the expression using the standard order of operations:

$$(\sqrt{64}+4) \div 9^{\frac{1}{2}}$$

- 10. The formula for finding the surface area of a cube is $SA = 6s^2$. If the surface area of a cube is 384, how long is each side?
- 11. What is the value of $(\sqrt{25})^2$?
- 12. In which of these models does the shaded portion represent $\sqrt{36}$?

Β.

D.

- 13. Marcus knows that a cubed shaped bin at the nursery holds 1000 cubic feet of dirt. Which expression can he use to calculate the length of an edge of the bin?
 - A. $\sqrt[3]{1000}$
 - B. 1000 × 3
 - C. 1000 ÷ 3
 - D. 1000 ÷ 6

- 14. Write $4.01\overline{2}$ as a rational number.
- 15. Place a mark in every box that describes the number.

If a number is Rational, explain.

Number	Rational	Irrational
$-\pi$		
-11.1689		
\[\sqrt{169}\]		
$\frac{5}{3}$		
$4\sqrt{5}$		
$\sqrt{101}$		

Give reasons for your sorting.

16. Solve each of the following radical equations.

a)
$$\frac{c^2}{0.8} = 80$$

b) $n^3 + 7 = 350$

c) $2x^2 + 34 = 2$

- 17. Which of these numbers would, as the denominator of a reduced fraction, lead to a *terminating* decimal form?
 - A. 12 B. 14 C. 16 D. 18
- 18. An irrational number is a number that is-
- 19. Classify the following list of real numbers by category. (Some numbers may fit in more than one category.)

-7	$\frac{1}{2}$	-0.6	1.	67342	•
$\sqrt{25}$	3 ²	$\frac{5}{11}$	12	$\sqrt{3}$	0

Whole	Integer	Dational	Innotional
whole	integer	Kational	Irrational

20. $\sqrt{20}$ is located between which of the letters on the number line?

21. Which integer is the closest to $\sqrt{38}$?

22. Insert a rational and an irrational number between the following decimals.

 $1.274\overline{4}$

_____ (rational) _____ (irrational)

 $1.274\overline{274}$

- 23. Estimate $\sqrt{115}$ to the nearest tenth without using a calculator. Explain in words the procedure you used to come up with your estimate.
- 24. Find two consecutive whole numbers that the following is between:

 $\sqrt{125}$

A vacant lot measures 20 yd by 30 yd. The neighborhood kids have cut a diagonal path through the lot. The exact length of this path is $\sqrt{20^2 + 30^2}$ yd. What is the approximate length of the path?

26. A square garden has an area of 5 square feet. To the nearest tenth of a foot, what is the length of one side of the garden?

- 27. The volume of a cube is 138 cubic centimeters. Which of the following is the best estimate for the length of an edge of the cube?
 - A. between 5 cm and 6 cm
 - B. between 6 cm and 7 cm
 - C. between 7 cm and 8 cm
 - D. between 8 cm and 9 cm
- 28. $\sqrt{180}$ is between what pair of consecutive integers?
- 29. The coordinate (3, 5) is *not* the solution to which system of equations?

A.
$$y = 2x - 1$$

 $y = x + 2$
B. $y = x + 4$
 $2y = 3x - 6$

C. y = 3y = x + 2D. y = 8 - x3y - 9 = 2x

30. Solve:
$$3x - 4y = 6$$

 $3x - 2y = 2$

31. Which point does *not* belong to the solution set of the given system?

$$3x - y > 6$$
$$4x + y \ge -4$$

A. (1,-5) B. (2,-2) C. (3,-4) D. (4,6)

32. Graph the solution to $6x + 2y \ge 4$.

33. Evaluate: $16^{\frac{3}{2}}$

34. Simplify: $(-2x^4)^3$

35. Simplify: $(3a^4)^2 (-2ab^2)^3$

36. Using the operations symbols, " \times , -, \div , and +", each once and the standard order of operations, make the following statement true:

$$\sqrt{36}$$
 $\sqrt{121}$ $\sqrt{225}$ $\sqrt{25}$ $\sqrt{4} = 11$

37. Simplify: $\sqrt{48}$

38. Simplify: $\sqrt{27}$

39. Simplify: $\sqrt{120}$