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ABSTRACT 

Online source code repositories contain software projects that 

already implement certain requirements that developers must 

fulfill.  Programmers can reuse code from these existing projects 

if they can find relevant code without significant effort.  We 

propose a new method to recommend source code examples to 

developers by querying against Application Programming 

Interface (API) calls and their documentations that are fused with 

structural information about the code.  We conducted an empirical 

evaluation that suggests that our approach is lightweight and 

accurate. 

Categories and Subject Descriptors 

D.2.13 [Software Engineering]: Reusable Software – reusable 

libraries, reuse models. 

1. INTRODUCTION 
Online source code repositories contain software projects that 

already implement certain requirements that developers must 

fulfill.  This code can be reused if found; however, manually 

finding relevant code among libraries of legacy projects or the 

jungle of open-source repositories is a daunting task.  A typical 

solution is to match words from user queries to the corpus of 

source code by analyzing its identifier names, comments, or other 

textual components.  Unfortunately, there is no guarantee that 

needed functionality will be found because the vocabulary used 

for identifiers and other parts of source code may not overlap with 

that of users who submit queries.  We believe that usage 

documentation is more likely to contain terms that are also found 

in queries since both are intended to describe the desired 

functionality of the code that users search for.  Therefore, we use 

it in our approach to match keywords in queries to documents 

describing Application Programming Interface (API) calls. 

Programmers routinely use API calls as functional abstractions. 

Popular libraries like file I/O, network, and GUI are generally 

used in many different projects. For example, the Java 

Development Kit (JDK) contains over 1,079 classes exporting 

over 26,906 API calls that address various aspects of software 

development. 

API call documentation is an attractive source of information for 

programmers to determine how to use these API calls.  Contained 

in these documentation pages are abundant descriptions of these 

API calls, their behavior, parameters, and output data.  In other 

words, there are two types of information: 1) structural from the 

location of the API calls in the source code classes (e.g., what 

classes make what calls), and 2) textual from the standard 

documentation descriptions of how the API calls work and 

interact.  The JDK provides a way to produce large, uniform 

documentation (e.g., Javadocs1) of this kind.   

Our work leverages information from the source code’s list of 

API calls and those calls’ usage documentation. We use text-

based Information Retrieval  (IR) [2] to associate user queries 

with documentation of API calls.  To recommend API calls, we 

match these associations with software that uses these calls. 

Our approach has the following benefits. First, our approach 

requires minimal effort on the programmer’s part; developers 

simply enter queries and review retrieved data.  Second, we index 

documentation for textual analysis rather than source code; we 

believe this may be an advantage because documentation may be 

more likely to use the same vocabulary as user queries.  Third, the 

links between components of the API (e.g., classes or methods) 

and their documentation are already defined by vendors and 

programmers, minimizing the ambiguity in this part of our 

system.  Finally, our empirical evaluation suggests that, when our 

approach makes recommendations, the correct answer is within 

the top three results. 

2. APPROACH 
Figure 1 illustrates our approach with an example.  The code 

snippet shown uses components of the official Java API to extract 

the contents of an archive in the ZIP file format.  In the situation 

depicted in Figure 1, a programmer wants to view the contents of 

a compressed archive file, and enters a query to that effect.  Our 

recommendation system connects queries to code by matching 

them to API usage documentation for calls made within a set of 

Java example classes.  Our implementation is divided into four 

                                                                 

1 http://java.sun.com/j2se/1.5.0/docs/api/ 
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following components. 

Documentation Extractor. Classes in the Java API are each 

associated with a usage document in the JavaDocs.  The 

Documentation Extractor creates a textual corpus from the 

JavaDocs against which the query can be compared.  This corpus 

is represented in Figure 1 as a mapping of documentation to the 

Java classes they describe   

Bytecode Extractor.  Our approach matches queries to Java 

classes using a list of API calls those classes make.  One solution 

to finding these lists is to extract method calls from the source 

code for each Java class.  Analysis of the source code would 

introduce a type resolution problem, in which located method 

calls must be linked to the classes where they are defined.  

Fortunately, these lists can be readily obtained from the bytecode 

because the type resolution information is already included at 

compile-time by the Java compiler.  We extract the lists of calls 

made for every Java class by examining the classes’ bytecode 

with the third-party tool jclassinfo2.  The bytecode extractor then 

filters the lists such that they contain only calls to methods for 

which documentation exists.  This gives our approach the 

                                                                 

2 http://jclassinfo.sourceforge.net/ 

advantage of definitively matching API calls to source code, 

rather than matching based on the source’s textual content alone.  

For example, in Figure 1 the API call entry.isDirectory() from the 

code is connected to the API class java.util.ZipEntry – there 

would be no way to know that isDirectory() is a component of 

ZipEntry without structural analysis. 

Ranking Engine.  We use Latent Semantic Indexing (LSI) [2] to 

associate user queries with documentation of API calls.  

Specifically, with LSI we discover which API classes are relevant 

to user queries of software functionality.  The Ranking Engine 

ultimately outputs a complete list of Java API classes ranked by 

the textual similarities of each class’s usage documentation. 

Source and Documentation Linking Unit.  The Bytecode 

Extractor provides a list of API calls made by each source code 

example.  We link those examples to the list of relevant API calls 

in six steps: 

1. We filter the list of documents provided by the Ranking 

Engine by keeping only the documents which have a similarity 

value above a given threshold.  The result is the set of relevant 

API classes, ranked by their similarity to the query.  Figure 1 lists 

four classes from the API that comprise the relevant set. 

2. The method set of an API class is the set of methods 

contained by the class.  In Figure 1, entries() is a member of the 

method set for java.util.zip.ZipFile. 

3. We define a call set for every example we want to index as 

the list of API calls that the Bytecode Extractor determines the 

example makes.  The call set for the example in Figure 1 is 

java.util.zip.ZipFile.entries(), java.util.zip.ZipEntry.isDirectory(), 

and java.io.File.exists(). 

4. We compute a weight for each software example by adding 

together the number of API calls it makes that are in the list of 

relevant API classes.  More formally:   

|}{}{| setcallsetmethodweight   

5. Some examples have a large number of calls of one API 

class, while others make fewer API calls spread across several 

relevant API classes.  We prioritize the latter by adding a 50% 

bonus to every software class that makes API calls belonging to 

more than one API class (the idea of this bonus is further 

explained with an example in Section 4.2): 

50.1*weightweight   

Table 1.  Sample listing of software set class, 

associated description/query, and API calls made 

Query, Class API Calls 

“Retrieving the 

Metadata of Script 

Engines”, 

MetadataDemo 

java.lang.StringBuilder.toString() 

java.lang.StringBuilder.append() 

javax.script.ScriptEngineManager. 

                            getEngineFactories() 

java.io.PrintStream.println() 

java.util.Iterator.hasNext() 

java.util.Iterator.next() 

javax.script.ScriptEngineFactory. 

                            getEngineName() 

                            getEngineVersion() 

                            getLanguageVersion() 

java.util.List.iterator() 

“Using thread to 

run JavaScript by 

Java”, 

InterfaceTest 

javax.script.ScriptEngineManager. 

                            getEngineByName() 

java.lang.Thread.join() 

java.lang.Thread.start() 

javax.script.Invocable.getInterface() 

javax.script.ScriptEngine.eval() 

 

 

Figure 1.  An overview of our approach. 



6. Return the list of classes, organized by their weights in the 

descending order. 

3. EMPIRICAL EVALUATION 
We focused on the official Sun Java 1.6 API, a body containing 

1,079 classes and a total 26,906 methods.  The documentation 

extractor generated a corpus of 1,079 documents (one for each 

class in the API) and 31,144 terms.  As a searchable software 

base, we chose a list of 40 publicly available Java examples3.  The 

descriptions used to help users locate and organize the examples 

provide us with sample queries.  In this way, the mapping is clear 

and the software is by design using features provided by the Java 

API.   

Table 1 shows a sample listing of our software base.  The API 

calls column lists the calls made by the class named in the same 

row.  The query is the text description which we use for our 

analysis – our goal is to link this query to API class 

documentation for the classes to which the API calls belong.   

The list of relevant software classes has a one-to-one mapping 

with our list of user queries.  Unfortunately, the traditional 

metrics for IR-based search mechanisms, precision and recall, are 

not highly useful in this case because recall would be either zero 

or 100% (the single answer is either found or not).  Additionally, 

because our tool’s recommendations are returned for inspection 

by the programmer, the rank of the correct result is also important 

since we expect that the class in the first position of the suggested 

results will be examined first.  In light of these considerations, we 

define accuracy and discovery measures as analogs to precision 

and recall: 

)(

)(

)(*104

queriesofnumbertotal

accuracypositivewithqueries
verydisco

resultcorrectofranknaccuracy




 

In this way, accuracy measures how well the correct result is 

ranked, while discovery measures the number of queries that 

returned any correct recommendation at all.  We reason that a 

programmer may examine at most 25 recommendations.  Homan 

et al. also used only 25 recommendations [5].  Therefore, we 

                                                                 

3 http://www.java2s.com/ 

chose four for the value of n so that accuracy will be positive 

down to this point.  Accuracy will be negative if the correct 

answer is recommended beyond this point.  A correct result in the 

5th position will give 80% accuracy, 0% accuracy in the 25th 

position, etc.  Also, the discovery will improve if more queries 

obtain answers in the top 25. 

3.1 Analysis of the Results 
We address the following research questions (RQs) through our 

analysis of the results: 

RQ1: What effect does the LSI similarity threshold have on 

accuracy and discovery when choosing API classes?  Figure 2 

shows two graphs, one each for accuracy and discovery against a 

range of thresholds.  We ran every query through our system on 

the corpus described above across the range of thresholds 0.05 to 

0.85 in increments of 0.05.  We then computed the average 

accuracy, for every time the correct result occurred in the top 25.   

Discovery represents how many times the correct result appears 

by the 25th suggestion because accuracy is 0% if the correct 

result is in the 25th position.  There is a predictable trade-off of 

discovery for accuracy as the criterion for similarity becomes 

more stringent (that is, the threshold is increased).  Accuracy is 

only 62% at the low threshold of 0.10 while discovery is at its 

peak of 27.5%.  The accuracy is conversely at 100% at a 

threshold of 0.55 while discovery stands at 17.5%.  In the first 

case, the low threshold caused our system to select a large number 

of API classes.  Many of these API classes were not actually 

relevant, reducing the correct answer’s position and lowering 

accuracy. 

RQ2: How many software class recommendations should we 

return to the programmer?  In our evaluation, we assumed that 

a programmer will not look past the first 25 software classes, but 

it may be the case that the correct result generally appears at a 

higher point.  Therefore, we want to determine how many results 

are actually useful to return in order to reduce the programmer’s 

workload.  We observe an average accuracy of over 90% at 

similarity thresholds above 0.15; the correlated discovery is 

22.5%.  These results mean that, on average, the correct result is 

supplied within the top three suggestions 22.5% of the time, or 

not at all.  A similar conclusion can be drawn at a threshold of 

0.40.  These are promising results; with only three choices given, 

there is minimal clutter for the programmer even when we cannot 

 
Figure 2: Accuracy and discovery for our approach against the known list. 

 



recommend the correct example. 

3.2 Example 
To illustrate our approach, consider the user query “using thread 

to run JavaScript by Java” from a user who needs to run 

JavaScript inside a newly created Java thread.  Table 1 shows the 

API calls that our source code extractor found that it makes from 

our analyzed Java classes.  Table 2 lists the top 5 most relevant 

API classes to each sample query as ranked by their computed 

similarity values.  For this example, we cropped the list with 

threshold of 0.40; the entire list of similarities obtained between 

the query and each API class is too long to list here, but the 

source and documentation linking unit found that four of these 

calls matched calls contained by related API classes.  Of these, at 

least two were made to different classes, qualifying the correct 

answer for a combination bonus of two (50% of the number of 

unique calls made), resulting in a weight of six.  This placed it in 

second place across the corpus, as shown in Table 3.  Therefore, 

this query was found with 96% accuracy. 

LSI did not always report that the queries matched any API 

documentation, meaning that our system had a peak discovery of 

only 27.5%.  The majority of queries had no relevant classes 

found.  For example, the query “retrieving the Metadata of Script 

Engines” had no results; in this instance, the ranking engine 

returned as relevant API classes which had little to do with the 

required task.  The API classes organized under java.awt.font, for 

example, were found to have textually similar documentation, 

while in reality providing very different functionality. 

4. THREATS TO VALIDITY 
We attempted to limit internal threats of validity by using as 

queries text descriptions of Java source code examples, neither of 

which were provided by the authors.  To confirm our results we 

need to do the same for multiple datasets as well as conduct a user 

study of actual queries linked to software classes we know users 

want to find.  Additionally, we need a way to handle multiple 

correct results, rather than just one.  We define our own testing 

metrics which are untested elsewhere. 

One problem in generalizing our results may be the use of only 

one programming language, though we chose Java, a popular 

language used in thousands of projects worldwide.  Other external 

threats to validity include the small size of the Java examples 

comprising our corpus and some imprecision associated with the 

text parser.  Our text parser occasionally makes mistakes when 

removing HTML; for example, “file” and “Zip” might be in two 

separate columns of a table, but without the HTML formatting 

they will appear as one word: “fileZip.”  Addressing these two 

challenges is an area of future work. 

5. RELATED WORK 
This work approaches the problem of software reuse in a novel 

way, but is founded upon widely-accepted techniques and tools.  

Among these techniques is Latent Semantic Indexing (LSI) [2], a 

natural language processing technique based on Singular Value 

Decomposition (SVD) that is used to determine textual 

similarities among words and documents in large passages of text.  

For example, LSI can determine how similar the text of a section 

of documentation is to the text of a method in source code.  LSI 

has already been used in software engineering for a variety of 

tasks such as concept location [13, 14], impact analysis [16], 

software reuse [9, 20], identification of abstract data types [10], 

detection of high level concept clones [11], identification of 

topics in source code [6], cohesion [12] and coupling [15] 

measurement 

LSI itself works by first creating a term-by-document matrix 

where every unique word is parsed from a corpus of documents 

and aligned such that the elements of the matrix correspond to the 

number of times a given term appears in a given document (a 

document’s term frequency).  Queries to the corpus are in the 

same form (a single-column term-by-document matrix where the 

query is treated as the document).  Unfortunately, unique terms 

may not have a unique definition as they may be synonyms.  

Therefore, two related documents may not be considered as such 

if they use a different vocabulary.  LSI overcomes this problem 

by decomposing the matrix and reducing it into k-dimensional 

space, where k is the dimensionality reduction factor in SVD [7]. 

Our approach also integrates structural analysis techniques for 

looking at source code.  A rich community for source examination 

exists.  Jclassinfo is a tool for structural analysis of Java byte 

code providing dependency information about Java classes.  It 

lists every method call made in a class, including ones to the Java 

API.  Other work in the same area includes Sun’s own 

JavaCompiler class in the official Java API which offers access to 

a program’s abstract syntax tree while it compiles Java source 

code.   Holmes et al. developed Strathcona [4], an automated 

mechanism to return relevant source code examples based on 

nearby structural information and API usage.  Our approach 

expands on previous work by finding relevant API calls from their 

documentation 

We aim at providing complete examples of source code 

implementing tasks described in user queries.  This is similar to 

research by Little et al. on keyword programming [8], except at a 

higher focus.  In Little et al.’s work, the programmer types 

Table 2.  Queries and top five API classes 

Query Weight: API Class 

“Retrieving 

the 

Metadata of 

Script 

Engines” 

0.745: java.awt.font.TextAttribute 

0.740: java.awt.font.FontRenderContext 

0.737: java.awt.Graphics2D 

0.665: java.awt.font.GraphicAttribute 

0.636: java.awt.font.LineBreakMeasurer 

“Using 

thread to 

run 

JavaScript 

by Java” 

0.761: java.util.TimerTask 

0.750: java.util.Timer 

0.750: java.util.concurrent.Executor 

0.743: java.util.concurrent.ThreadFactory 

0.726: java.util.concurrent.ThreadPoolExecutor  

Table 3.  Final results for threshold 0.40 

Query Weight: Relevant Class 

“Retrieving the 

Metadata of Script 

Engines” 

(none found) 

“Using thread to run 

JavaScript by Java” 

6:  java2s/BlockingDequeTester.class 

6:  java2s/InterfaceTest.class 

3:  java2s/HttpServerDemo.class 

3:  java2s/Producer.class 

3:  java2s/Consumer.class 



keywords describing specific methods or actions which are then 

seamlessly converted into a few lines of source code using 

relevant API calls.  Other tools for locating relevant code from 

software databases based on user queries exists.  For example, 

PARSEWeb [18] filters results from an existing code search 

engine by comparing the query to static call information.  

SpotWeb [19] pinpoints code that is frequently reused.  Google 

Code Search conducts a text-based search over specimens of 

multiple programming languages, allowing the user refine the 

search with query parameters.  Sourcerer [1] supports both text-

based and structural queries through code fingerprints.  

CodeBroker [21] extracts queries from development activity and 

returns context-relevant code components.  Find-Concept [17] 

uses natural language processing to locate the source code 

programmers are looking for during maintenance. 

Considering the user query as a code concept or feature to be 

found, this work is also related to feature location which requires 

specific parts of documentation to be matched exactly to their 

implementation in code.  A number of applications have been 

developed for these techniques [3, 14, 17, 22].  Zhao et al. [22] 

combined knowledge from pseudo-execution traces with 

candidate links given by the Information Retrieval (IR) methods 

using a branch-reserving call graph to create a static, non-

interactive approach.  Eaddy et al. [3] also create a hybrid system, 

combining information retrieval, execution tracing, and prune 

dependency analysis (PDA).  During execution tracing, activated 

parts of software are logged while certain known features are 

activated.  Approaches using execution tracing are not applicable 

in our situation because we are matching natural language text 

queries to software elements and cannot know beforehand what 

these queries. 

There is published work to index the Java API for user queries.  

Homan et al. [5] extracted identifiers from Java source code 

which they manually matched to Java API classes; text 

similarities of the identifiers to user queries for related API 

documentation elements were then computed.  We instead 

automatically match API calls to Java classes using structural 

analysis.  Our latest work in the area is Exemplar4, a source code 

search engine based on API documentation and usage in Java 

applications.  Exemplar also returns the entire context for relevant 

software components (e.g., the application and certain included 

methods), whereas we focus on recommending specific Java 

classes.  Finally, this work uses LSI rather than VSM for textual 

comparisons and relies on analysis of byte code. 

6. CONCLUSIONS 
We created an approach to recommend software elements relevant 

to programmer queries.  We link these queries to API usage 

documentation, that documentation to its described API calls, and 

then those calls to software classes which use them.  We define 

two metrics for analyzing our results and find during our 

empirical evaluation that our approach recommends with high 

accuracy but relatively low discovery – that is, if our system 

provides the correct result, it will occur within the top three 

answers.  This work is a step towards building effective 

recommender systems for software reuse by combining source 

code and usage documentation with both novel and established 
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tools and techniques. 

7. ACKNOWLEDGEMENTS 
We gratefully acknowledge Chen Fu and Qing Xie for their 

contributions to this and ongoing work.  This work is supported 

by NSF CCF-0916139, NSF CCF-0916260 and United States 

AFOSR grant number FA9550-07-1-0030.  Any opinions, 

findings and conclusions expressed herein are the authors’ and do 

not necessarily reflect those of the sponsors. 

8. REFERENCES 
[1] P. Baldi, E. Linstead, C. Lopes, and S. Bajracharya, "A Theory of 

Aspects as Latent Topics," in OOPSLA'08, pp. 543-562. 

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. 

Harshman, "Indexing by Latent Semantic Analysis," JASIST, vol. 41, pp. 

391-407, 1990. 

[3] M. Eaddy, A. V. Aho, G. Antoniol, and Y. G. Guéhéneuc, 

"CERBERUS: Tracing Requirements to Source Code Using Information 

Retrieval, Dynamic Analysis, and Program Analysis," in ICPC'08. 

[4] R. Holmes, R. J. Walker, and G. C. Murphy, "Approximate Structural 

Context Matching: An Approach to Recommend Relevant Examples," 

IEEE TSE, vol. 32, pp. 952-970, Dec. 2006. 

[5] M. Homan, A. Robert, and T. Ewan, "Indexing the Java API Using 

Source Code," in Proceedings of the 19th ASWEC'08. 

[6] A. Kuhn, S. Ducasse, and T. Gîrba, "Semantic Clustering: Identifying 

Topics in Source Code," Information and Software Technology, vol. 49, 

pp. 230-243, March 2007. 

[7] T. K. Landauer and S. T. Dumais, "A Solution to Plato's Problem: The 

Latent Semantic Analysis Theory of the Acquisition, Induction, and 

Representation of Knowledge," Psychological Review, vol. 104, pp. 211-

240, 1997. 

[8] G. Little and R. C. Miller, "Keyword programming in java," in 

ASE'07, pp. 84-93. 

[9] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, "An Information 

Retrieval Approach for Automatically Constructing Software Libraries," 

IEEE TSE, vol. 17, pp. 800-813, 1991. 

[10] J. I. Maletic and A. Marcus, "Supporting Program Comprehension 

Using Semantic and Structural Information," in ICSE'01, pp. 103-112. 

[11] A. Marcus and J. I. Maletic, "Identification of High-Level Concept 

Clones in Source Code," in ASE'01, pp. 107-114. 

[12] A. Marcus, D. Poshyvanyk, and R. Ferenc, "Using the Conceptual 

Cohesion of Classes for Fault Prediction in Object Oriented Systems," 

IEEE TSE, vol. 34, pp. 287-300, 2008. 

[13] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, "An Information 

Retrieval Approach to Concept Location in Source Code," in WCRE'04. 

[14] D. Poshyvanyk, Y. G. Guéhéneuc, A. Marcus, G. Antoniol, and V. 

Rajlich, "Feature Location using Probabilistic Ranking of Methods based 

on Execution Scenarios and Information Retrieval," IEEE TSE, vol. 33. 

[15] D. Poshyvanyk and A. Marcus, "The Conceptual Coupling Metrics for 

Object-Oriented Systems," in ICSM'06, pp. 469 - 478. 

[16] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, "Using 

Information Retrieval based Coupling Measures for Impact Analysis," 

Empirical Software Engineering, 2009. 

[17] D. Shepherd, Z. Fry, E. Gibson, L. Pollock, and K. Vijay-Shanker, 

"Using Natural Language Program Analysis to Locate and Understand 

Action-Oriented Concerns," in AOSD'07, pp. 212-224. 

[18] S. Thummalapenta and T. Xie, "Parseweb: a Programmer Assistant for 

Reusing Open Source Code on the Web," in ASE '07, pp. 204-213. 

[19] S. Thummalapenta and T. Xie, "SpotWeb: Detecting Framework 

Hotspots and Coldspots via Mining Open Source Code on the Web," in 

ASE'08. 

[20] Y. Ye and G. Fischer, "Reuse-Conducive Development 

Environments," Journal ASE, vol. 12, pp. 199-235, 2005. 

[21] Y. Ye and G. Fischer, "Supporting Reuse by Delivering Task-

Relevant and Personalized Information," in ICSE'02, pp. 513-523. 

[22] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: Towards a 

Static Non-interactive Approach to Feature Location," ACM TOSEM, vol. 


