
Recommending Source Code Examples via API Call
Usages and Documentation

Collin McMillan
Department of Computer Science

College of William & Mary
Williamsburg, VA 23185

cmc@cs.wm.edu

Denys Poshyvanyk
Department of Computer Science

College of William & Mary
Williamsburg, VA 23185

denys@cs.wm.edu

Mark Grechanik
Accenture Technology Labs
University of Illinois, Chicago

Chicago, IL 60601

drmark@uic.edu

ABSTRACT

Online source code repositories contain software projects that

already implement certain requirements that developers must

fulfill. Programmers can reuse code from these existing projects

if they can find relevant code without significant effort. We

propose a new method to recommend source code examples to

developers by querying against Application Programming

Interface (API) calls and their documentations that are fused with

structural information about the code. We conducted an empirical

evaluation that suggests that our approach is lightweight and

accurate.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software – reusable

libraries, reuse models.

1. INTRODUCTION
Online source code repositories contain software projects that

already implement certain requirements that developers must

fulfill. This code can be reused if found; however, manually

finding relevant code among libraries of legacy projects or the

jungle of open-source repositories is a daunting task. A typical

solution is to match words from user queries to the corpus of

source code by analyzing its identifier names, comments, or other

textual components. Unfortunately, there is no guarantee that

needed functionality will be found because the vocabulary used

for identifiers and other parts of source code may not overlap with

that of users who submit queries. We believe that usage

documentation is more likely to contain terms that are also found

in queries since both are intended to describe the desired

functionality of the code that users search for. Therefore, we use

it in our approach to match keywords in queries to documents

describing Application Programming Interface (API) calls.

Programmers routinely use API calls as functional abstractions.

Popular libraries like file I/O, network, and GUI are generally

used in many different projects. For example, the Java

Development Kit (JDK) contains over 1,079 classes exporting

over 26,906 API calls that address various aspects of software

development.

API call documentation is an attractive source of information for

programmers to determine how to use these API calls. Contained

in these documentation pages are abundant descriptions of these

API calls, their behavior, parameters, and output data. In other

words, there are two types of information: 1) structural from the

location of the API calls in the source code classes (e.g., what

classes make what calls), and 2) textual from the standard

documentation descriptions of how the API calls work and

interact. The JDK provides a way to produce large, uniform

documentation (e.g., Javadocs1) of this kind.

Our work leverages information from the source code’s list of

API calls and those calls’ usage documentation. We use text-

based Information Retrieval (IR) [2] to associate user queries

with documentation of API calls. To recommend API calls, we

match these associations with software that uses these calls.

Our approach has the following benefits. First, our approach

requires minimal effort on the programmer’s part; developers

simply enter queries and review retrieved data. Second, we index

documentation for textual analysis rather than source code; we

believe this may be an advantage because documentation may be

more likely to use the same vocabulary as user queries. Third, the

links between components of the API (e.g., classes or methods)

and their documentation are already defined by vendors and

programmers, minimizing the ambiguity in this part of our

system. Finally, our empirical evaluation suggests that, when our

approach makes recommendations, the correct answer is within

the top three results.

2. APPROACH
Figure 1 illustrates our approach with an example. The code

snippet shown uses components of the official Java API to extract

the contents of an archive in the ZIP file format. In the situation

depicted in Figure 1, a programmer wants to view the contents of

a compressed archive file, and enters a query to that effect. Our

recommendation system connects queries to code by matching

them to API usage documentation for calls made within a set of

Java example classes. Our implementation is divided into four

1 http://java.sun.com/j2se/1.5.0/docs/api/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

RSSE’10, May 2-8, 2010, Cape Town, South Africa.

Copyright 2010 ACM 978-1-60558-974-9/10/05.

following components.

Documentation Extractor. Classes in the Java API are each

associated with a usage document in the JavaDocs. The

Documentation Extractor creates a textual corpus from the

JavaDocs against which the query can be compared. This corpus

is represented in Figure 1 as a mapping of documentation to the

Java classes they describe

Bytecode Extractor. Our approach matches queries to Java

classes using a list of API calls those classes make. One solution

to finding these lists is to extract method calls from the source

code for each Java class. Analysis of the source code would

introduce a type resolution problem, in which located method

calls must be linked to the classes where they are defined.

Fortunately, these lists can be readily obtained from the bytecode

because the type resolution information is already included at

compile-time by the Java compiler. We extract the lists of calls

made for every Java class by examining the classes’ bytecode

with the third-party tool jclassinfo2. The bytecode extractor then

filters the lists such that they contain only calls to methods for

which documentation exists. This gives our approach the

2 http://jclassinfo.sourceforge.net/

advantage of definitively matching API calls to source code,

rather than matching based on the source’s textual content alone.

For example, in Figure 1 the API call entry.isDirectory() from the

code is connected to the API class java.util.ZipEntry – there

would be no way to know that isDirectory() is a component of

ZipEntry without structural analysis.

Ranking Engine. We use Latent Semantic Indexing (LSI) [2] to

associate user queries with documentation of API calls.

Specifically, with LSI we discover which API classes are relevant

to user queries of software functionality. The Ranking Engine

ultimately outputs a complete list of Java API classes ranked by

the textual similarities of each class’s usage documentation.

Source and Documentation Linking Unit. The Bytecode

Extractor provides a list of API calls made by each source code

example. We link those examples to the list of relevant API calls

in six steps:

1. We filter the list of documents provided by the Ranking

Engine by keeping only the documents which have a similarity

value above a given threshold. The result is the set of relevant

API classes, ranked by their similarity to the query. Figure 1 lists

four classes from the API that comprise the relevant set.

2. The method set of an API class is the set of methods

contained by the class. In Figure 1, entries() is a member of the

method set for java.util.zip.ZipFile.

3. We define a call set for every example we want to index as

the list of API calls that the Bytecode Extractor determines the

example makes. The call set for the example in Figure 1 is

java.util.zip.ZipFile.entries(), java.util.zip.ZipEntry.isDirectory(),

and java.io.File.exists().

4. We compute a weight for each software example by adding

together the number of API calls it makes that are in the list of

relevant API classes. More formally:

|}{}{| setcallsetmethodweight 

5. Some examples have a large number of calls of one API

class, while others make fewer API calls spread across several

relevant API classes. We prioritize the latter by adding a 50%

bonus to every software class that makes API calls belonging to

more than one API class (the idea of this bonus is further

explained with an example in Section 4.2):

50.1*weightweight 

Table 1. Sample listing of software set class,

associated description/query, and API calls made

Query, Class API Calls

“Retrieving the

Metadata of Script

Engines”,

MetadataDemo

java.lang.StringBuilder.toString()

java.lang.StringBuilder.append()

javax.script.ScriptEngineManager.

 getEngineFactories()

java.io.PrintStream.println()

java.util.Iterator.hasNext()

java.util.Iterator.next()

javax.script.ScriptEngineFactory.

 getEngineName()

 getEngineVersion()

 getLanguageVersion()

java.util.List.iterator()

“Using thread to

run JavaScript by

Java”,

InterfaceTest

javax.script.ScriptEngineManager.

 getEngineByName()

java.lang.Thread.join()

java.lang.Thread.start()

javax.script.Invocable.getInterface()

javax.script.ScriptEngine.eval()

Figure 1. An overview of our approach.

6. Return the list of classes, organized by their weights in the

descending order.

3. EMPIRICAL EVALUATION
We focused on the official Sun Java 1.6 API, a body containing

1,079 classes and a total 26,906 methods. The documentation

extractor generated a corpus of 1,079 documents (one for each

class in the API) and 31,144 terms. As a searchable software

base, we chose a list of 40 publicly available Java examples3. The

descriptions used to help users locate and organize the examples

provide us with sample queries. In this way, the mapping is clear

and the software is by design using features provided by the Java

API.

Table 1 shows a sample listing of our software base. The API

calls column lists the calls made by the class named in the same

row. The query is the text description which we use for our

analysis – our goal is to link this query to API class

documentation for the classes to which the API calls belong.

The list of relevant software classes has a one-to-one mapping

with our list of user queries. Unfortunately, the traditional

metrics for IR-based search mechanisms, precision and recall, are

not highly useful in this case because recall would be either zero

or 100% (the single answer is either found or not). Additionally,

because our tool’s recommendations are returned for inspection

by the programmer, the rank of the correct result is also important

since we expect that the class in the first position of the suggested

results will be examined first. In light of these considerations, we

define accuracy and discovery measures as analogs to precision

and recall:

)(

)(

)(*104

queriesofnumbertotal

accuracypositivewithqueries
verydisco

resultcorrectofranknaccuracy





In this way, accuracy measures how well the correct result is

ranked, while discovery measures the number of queries that

returned any correct recommendation at all. We reason that a

programmer may examine at most 25 recommendations. Homan

et al. also used only 25 recommendations [5]. Therefore, we

3 http://www.java2s.com/

chose four for the value of n so that accuracy will be positive

down to this point. Accuracy will be negative if the correct

answer is recommended beyond this point. A correct result in the

5th position will give 80% accuracy, 0% accuracy in the 25th

position, etc. Also, the discovery will improve if more queries

obtain answers in the top 25.

3.1 Analysis of the Results
We address the following research questions (RQs) through our

analysis of the results:

RQ1: What effect does the LSI similarity threshold have on

accuracy and discovery when choosing API classes? Figure 2

shows two graphs, one each for accuracy and discovery against a

range of thresholds. We ran every query through our system on

the corpus described above across the range of thresholds 0.05 to

0.85 in increments of 0.05. We then computed the average

accuracy, for every time the correct result occurred in the top 25.

Discovery represents how many times the correct result appears

by the 25th suggestion because accuracy is 0% if the correct

result is in the 25th position. There is a predictable trade-off of

discovery for accuracy as the criterion for similarity becomes

more stringent (that is, the threshold is increased). Accuracy is

only 62% at the low threshold of 0.10 while discovery is at its

peak of 27.5%. The accuracy is conversely at 100% at a

threshold of 0.55 while discovery stands at 17.5%. In the first

case, the low threshold caused our system to select a large number

of API classes. Many of these API classes were not actually

relevant, reducing the correct answer’s position and lowering

accuracy.

RQ2: How many software class recommendations should we

return to the programmer? In our evaluation, we assumed that

a programmer will not look past the first 25 software classes, but

it may be the case that the correct result generally appears at a

higher point. Therefore, we want to determine how many results

are actually useful to return in order to reduce the programmer’s

workload. We observe an average accuracy of over 90% at

similarity thresholds above 0.15; the correlated discovery is

22.5%. These results mean that, on average, the correct result is

supplied within the top three suggestions 22.5% of the time, or

not at all. A similar conclusion can be drawn at a threshold of

0.40. These are promising results; with only three choices given,

there is minimal clutter for the programmer even when we cannot

Figure 2: Accuracy and discovery for our approach against the known list.

recommend the correct example.

3.2 Example
To illustrate our approach, consider the user query “using thread

to run JavaScript by Java” from a user who needs to run

JavaScript inside a newly created Java thread. Table 1 shows the

API calls that our source code extractor found that it makes from

our analyzed Java classes. Table 2 lists the top 5 most relevant

API classes to each sample query as ranked by their computed

similarity values. For this example, we cropped the list with

threshold of 0.40; the entire list of similarities obtained between

the query and each API class is too long to list here, but the

source and documentation linking unit found that four of these

calls matched calls contained by related API classes. Of these, at

least two were made to different classes, qualifying the correct

answer for a combination bonus of two (50% of the number of

unique calls made), resulting in a weight of six. This placed it in

second place across the corpus, as shown in Table 3. Therefore,

this query was found with 96% accuracy.

LSI did not always report that the queries matched any API

documentation, meaning that our system had a peak discovery of

only 27.5%. The majority of queries had no relevant classes

found. For example, the query “retrieving the Metadata of Script

Engines” had no results; in this instance, the ranking engine

returned as relevant API classes which had little to do with the

required task. The API classes organized under java.awt.font, for

example, were found to have textually similar documentation,

while in reality providing very different functionality.

4. THREATS TO VALIDITY
We attempted to limit internal threats of validity by using as

queries text descriptions of Java source code examples, neither of

which were provided by the authors. To confirm our results we

need to do the same for multiple datasets as well as conduct a user

study of actual queries linked to software classes we know users

want to find. Additionally, we need a way to handle multiple

correct results, rather than just one. We define our own testing

metrics which are untested elsewhere.

One problem in generalizing our results may be the use of only

one programming language, though we chose Java, a popular

language used in thousands of projects worldwide. Other external

threats to validity include the small size of the Java examples

comprising our corpus and some imprecision associated with the

text parser. Our text parser occasionally makes mistakes when

removing HTML; for example, “file” and “Zip” might be in two

separate columns of a table, but without the HTML formatting

they will appear as one word: “fileZip.” Addressing these two

challenges is an area of future work.

5. RELATED WORK
This work approaches the problem of software reuse in a novel

way, but is founded upon widely-accepted techniques and tools.

Among these techniques is Latent Semantic Indexing (LSI) [2], a

natural language processing technique based on Singular Value

Decomposition (SVD) that is used to determine textual

similarities among words and documents in large passages of text.

For example, LSI can determine how similar the text of a section

of documentation is to the text of a method in source code. LSI

has already been used in software engineering for a variety of

tasks such as concept location [13, 14], impact analysis [16],

software reuse [9, 20], identification of abstract data types [10],

detection of high level concept clones [11], identification of

topics in source code [6], cohesion [12] and coupling [15]

measurement

LSI itself works by first creating a term-by-document matrix

where every unique word is parsed from a corpus of documents

and aligned such that the elements of the matrix correspond to the

number of times a given term appears in a given document (a

document’s term frequency). Queries to the corpus are in the

same form (a single-column term-by-document matrix where the

query is treated as the document). Unfortunately, unique terms

may not have a unique definition as they may be synonyms.

Therefore, two related documents may not be considered as such

if they use a different vocabulary. LSI overcomes this problem

by decomposing the matrix and reducing it into k-dimensional

space, where k is the dimensionality reduction factor in SVD [7].

Our approach also integrates structural analysis techniques for

looking at source code. A rich community for source examination

exists. Jclassinfo is a tool for structural analysis of Java byte

code providing dependency information about Java classes. It

lists every method call made in a class, including ones to the Java

API. Other work in the same area includes Sun’s own

JavaCompiler class in the official Java API which offers access to

a program’s abstract syntax tree while it compiles Java source

code. Holmes et al. developed Strathcona [4], an automated

mechanism to return relevant source code examples based on

nearby structural information and API usage. Our approach

expands on previous work by finding relevant API calls from their

documentation

We aim at providing complete examples of source code

implementing tasks described in user queries. This is similar to

research by Little et al. on keyword programming [8], except at a

higher focus. In Little et al.’s work, the programmer types

Table 2. Queries and top five API classes

Query Weight: API Class

“Retrieving

the

Metadata of

Script

Engines”

0.745: java.awt.font.TextAttribute

0.740: java.awt.font.FontRenderContext

0.737: java.awt.Graphics2D

0.665: java.awt.font.GraphicAttribute

0.636: java.awt.font.LineBreakMeasurer

“Using

thread to

run

JavaScript

by Java”

0.761: java.util.TimerTask

0.750: java.util.Timer

0.750: java.util.concurrent.Executor

0.743: java.util.concurrent.ThreadFactory

0.726: java.util.concurrent.ThreadPoolExecutor

Table 3. Final results for threshold 0.40

Query Weight: Relevant Class

“Retrieving the

Metadata of Script

Engines”

(none found)

“Using thread to run

JavaScript by Java”

6: java2s/BlockingDequeTester.class

6: java2s/InterfaceTest.class

3: java2s/HttpServerDemo.class

3: java2s/Producer.class

3: java2s/Consumer.class

keywords describing specific methods or actions which are then

seamlessly converted into a few lines of source code using

relevant API calls. Other tools for locating relevant code from

software databases based on user queries exists. For example,

PARSEWeb [18] filters results from an existing code search

engine by comparing the query to static call information.

SpotWeb [19] pinpoints code that is frequently reused. Google

Code Search conducts a text-based search over specimens of

multiple programming languages, allowing the user refine the

search with query parameters. Sourcerer [1] supports both text-

based and structural queries through code fingerprints.

CodeBroker [21] extracts queries from development activity and

returns context-relevant code components. Find-Concept [17]

uses natural language processing to locate the source code

programmers are looking for during maintenance.

Considering the user query as a code concept or feature to be

found, this work is also related to feature location which requires

specific parts of documentation to be matched exactly to their

implementation in code. A number of applications have been

developed for these techniques [3, 14, 17, 22]. Zhao et al. [22]

combined knowledge from pseudo-execution traces with

candidate links given by the Information Retrieval (IR) methods

using a branch-reserving call graph to create a static, non-

interactive approach. Eaddy et al. [3] also create a hybrid system,

combining information retrieval, execution tracing, and prune

dependency analysis (PDA). During execution tracing, activated

parts of software are logged while certain known features are

activated. Approaches using execution tracing are not applicable

in our situation because we are matching natural language text

queries to software elements and cannot know beforehand what

these queries.

There is published work to index the Java API for user queries.

Homan et al. [5] extracted identifiers from Java source code

which they manually matched to Java API classes; text

similarities of the identifiers to user queries for related API

documentation elements were then computed. We instead

automatically match API calls to Java classes using structural

analysis. Our latest work in the area is Exemplar4, a source code

search engine based on API documentation and usage in Java

applications. Exemplar also returns the entire context for relevant

software components (e.g., the application and certain included

methods), whereas we focus on recommending specific Java

classes. Finally, this work uses LSI rather than VSM for textual

comparisons and relies on analysis of byte code.

6. CONCLUSIONS
We created an approach to recommend software elements relevant

to programmer queries. We link these queries to API usage

documentation, that documentation to its described API calls, and

then those calls to software classes which use them. We define

two metrics for analyzing our results and find during our

empirical evaluation that our approach recommends with high

accuracy but relatively low discovery – that is, if our system

provides the correct result, it will occur within the top three

answers. This work is a step towards building effective

recommender systems for software reuse by combining source

code and usage documentation with both novel and established

4 http://www.xemplar.org/

tools and techniques.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge Chen Fu and Qing Xie for their

contributions to this and ongoing work. This work is supported

by NSF CCF-0916139, NSF CCF-0916260 and United States

AFOSR grant number FA9550-07-1-0030. Any opinions,

findings and conclusions expressed herein are the authors’ and do

not necessarily reflect those of the sponsors.

8. REFERENCES
[1] P. Baldi, E. Linstead, C. Lopes, and S. Bajracharya, "A Theory of

Aspects as Latent Topics," in OOPSLA'08, pp. 543-562.

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.

Harshman, "Indexing by Latent Semantic Analysis," JASIST, vol. 41, pp.

391-407, 1990.

[3] M. Eaddy, A. V. Aho, G. Antoniol, and Y. G. Guéhéneuc,

"CERBERUS: Tracing Requirements to Source Code Using Information

Retrieval, Dynamic Analysis, and Program Analysis," in ICPC'08.

[4] R. Holmes, R. J. Walker, and G. C. Murphy, "Approximate Structural

Context Matching: An Approach to Recommend Relevant Examples,"

IEEE TSE, vol. 32, pp. 952-970, Dec. 2006.

[5] M. Homan, A. Robert, and T. Ewan, "Indexing the Java API Using

Source Code," in Proceedings of the 19th ASWEC'08.

[6] A. Kuhn, S. Ducasse, and T. Gîrba, "Semantic Clustering: Identifying

Topics in Source Code," Information and Software Technology, vol. 49,

pp. 230-243, March 2007.

[7] T. K. Landauer and S. T. Dumais, "A Solution to Plato's Problem: The

Latent Semantic Analysis Theory of the Acquisition, Induction, and

Representation of Knowledge," Psychological Review, vol. 104, pp. 211-

240, 1997.

[8] G. Little and R. C. Miller, "Keyword programming in java," in

ASE'07, pp. 84-93.

[9] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, "An Information

Retrieval Approach for Automatically Constructing Software Libraries,"

IEEE TSE, vol. 17, pp. 800-813, 1991.

[10] J. I. Maletic and A. Marcus, "Supporting Program Comprehension

Using Semantic and Structural Information," in ICSE'01, pp. 103-112.

[11] A. Marcus and J. I. Maletic, "Identification of High-Level Concept

Clones in Source Code," in ASE'01, pp. 107-114.

[12] A. Marcus, D. Poshyvanyk, and R. Ferenc, "Using the Conceptual

Cohesion of Classes for Fault Prediction in Object Oriented Systems,"

IEEE TSE, vol. 34, pp. 287-300, 2008.

[13] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, "An Information

Retrieval Approach to Concept Location in Source Code," in WCRE'04.

[14] D. Poshyvanyk, Y. G. Guéhéneuc, A. Marcus, G. Antoniol, and V.

Rajlich, "Feature Location using Probabilistic Ranking of Methods based

on Execution Scenarios and Information Retrieval," IEEE TSE, vol. 33.

[15] D. Poshyvanyk and A. Marcus, "The Conceptual Coupling Metrics for

Object-Oriented Systems," in ICSM'06, pp. 469 - 478.

[16] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, "Using

Information Retrieval based Coupling Measures for Impact Analysis,"

Empirical Software Engineering, 2009.

[17] D. Shepherd, Z. Fry, E. Gibson, L. Pollock, and K. Vijay-Shanker,

"Using Natural Language Program Analysis to Locate and Understand

Action-Oriented Concerns," in AOSD'07, pp. 212-224.

[18] S. Thummalapenta and T. Xie, "Parseweb: a Programmer Assistant for

Reusing Open Source Code on the Web," in ASE '07, pp. 204-213.

[19] S. Thummalapenta and T. Xie, "SpotWeb: Detecting Framework

Hotspots and Coldspots via Mining Open Source Code on the Web," in

ASE'08.

[20] Y. Ye and G. Fischer, "Reuse-Conducive Development

Environments," Journal ASE, vol. 12, pp. 199-235, 2005.

[21] Y. Ye and G. Fischer, "Supporting Reuse by Delivering Task-

Relevant and Personalized Information," in ICSE'02, pp. 513-523.

[22] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: Towards a

Static Non-interactive Approach to Feature Location," ACM TOSEM, vol.

