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Abstract 

In a joint project with the FAA, NASA 

Langley is developing a hardware design in 

accordance with RTCA DO-254: Design Assurance 

Guidance for Airborne Electronic Hardware. The 

purpose of the case study is to gain understanding 

of the new guidance document and generate an 

example suitable for use in training. 

For the case study, we have selected a core 

subsystem of the Scalable Processor-Independent 

Design for Electromagnetic Resilience (SPIDER). 

SPIDER is a new fault-tolerant architecture under 

development at NASA Langley Research Center. 

Introduction 

RTCA, Inc. has recently approved DO-254: 

Design Assurance Guidance for Airborne 

Electronic Hardware [1]. This document is 

intended to provide a basis for the certification of 

complex electronic hardware devices used in 

aircraft. As with all new guidance documents, there 

will be a period of uncertainty while developers and 

the FAA learn how best to apply the document. 

This uncertainty will likely be compounded by the 

flexibility DO-254 offers for developing a design 

assurance strategy. 

To alleviate some of this uncertainty the FAA 

initiated this case study to gain some experience 

with this new guidance document. This case study 

has limited scope; there are insufficient resources to 

explore all aspects of DO-254. The focus of the 

case study is on logical aspects of design, and is 

targeted to early stages of the design process. 

There are two goals for the case study. The 

primary purpose is to help identify problems in 

applying the new document. A secondary purpose 

is to provide material suitable for use in training. 

The second objective places some constraints on the 

project scope. Specifically, the hardware device 

should be non-proprietary, non-commercial, and of 

limited complexity. 

NASA Langley Research Center also has some 

objectives for this case study. One goal is to 

demonstrate the application of formal methods on a 

representative example. Another priority for NASA 

is to develop a hardware platform to support in-

house research targeted toward demonstrating 

systematic recovery from multiple correlated 

transient failures. 

With these objectives and restrictions in mind, 

the chosen device for the case study is a core 

subsystem of a new fault-tolerant architecture under 

development at NASA Langley Research Center. 

Several factors motivated the choice of a fault-

tolerant system for this exercise. Hardware 

realizations of fault-tolerant protocols are generally 

compact designs; this allows for comprehensive 

treatment within the time constraints of a training 

exercise. Also, the behavior of fault-tolerant 

devices is inherently complex; such a device is 

clearly within the scope of DO-254. Furthermore, 

there is a considerable amount of research literature 

addressing the formal analysis of fault-tolerant 

protocols; a fault-tolerant system is a good 

candidate for a formal methods demonstration. 

Finally, any device expected to recover from 

transient failures will necessarily need to deal with 

a bounded set of permanent failures, as well. 

The architecture being explored for this case 

study is the Scalable Processor-Independent Design 

for Electromagnetic Resilience (SPIDER). In this 

architecture, the primary basis for fault-tolerance is 

a communication subsystem called the Reliable 

Optical Bus (ROBUS). The concept for the 

SPIDER architecture builds on previous fault-
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tolerant computing research at NASA Langley 

Research Center. The main concept was inspired 

by a fault-tolerant system designed as part of the 

Fly-by-Light/Power-by-Wire (FBL/PBW) program 

[2] [3]. 

Project Overview 

The project consists of three sequential phases 

beginning in August 1999 and ending in December 

2001. The first phase, which began in August 1999 

and ended in January 2000, consisted of planning 

the hardware development activities. The initial 

Plan for Hardware Aspects of Certification was 

presented to the FAA in January and was 

subsequently revised. The second phase consists of 

the development of a detailed design in accordance 

with the submitted plan. The detailed design will 

include a limited laboratory prototype intended to 

illustrate certain characteristics of the architectural 

concept. The final phase will culminate in a more 

complete prototype implementation; this prototype 

will include sufficient features to make a fair 

assessment of the proposed design. 

Planning Phase 

Any organization applying DO-254 for the 

first time must decide how to map its existing 

development processes to those of DO-254. Since 

our research group did not have any defined 

hardware development processes, we were free to 

define all aspects of our hardware development 

environment. This served as both a blessing and a 

curse. We were able to select from a variety of 

options. However, some of the choices we made 

were necessarily uninformed. It is likely that we 

shall need to update our processes as the project 

progresses. 

During the planning phase of the project, we 

identified the target design artifacts and determined 

the various components of our development 

environment. In addition to identifying the design 

and verification methods, we needed to define the 

supporting processes that serve to control the 

development and maintenance of the developed 

product. These supporting processes include: 

• Certification Liaison 

• Process Assurance 

• Configuration Management 

The certification liaison activities consist of 

regular interaction with a small team from the FAA. 

The initial Plan for Hardware Aspects of 

Certification was presented to the FAA in January. 

They agreed with the proposed plan, in principle, 

but deferred judgement on some of the proposed 

verification activities until more detailed 

descriptions are developed. 

The process assurance activities are primarily 

focused on monitoring the development activities to 

ensure that they are proceeding in accordance with 

the approved plans. For this project, the emphasis 

is on ensuring the internal consistency of the set of 

controlled data we accumulate throughout the 

development effort. 

An integral part of developing hardware in 

accordance with DO-254 is the management of 

design and verification data throughout the life of 

the product. Hence, there is a need for an effective 

recording and configuration management system. 

The purpose of configuration management is 

to ensure consistent replication and controlled 

modification of artifacts produced during the design 

process. There are several interrelated aspects to 

configuration management. The primary 

requirement is a consistent repository of data. This 

repository contains identification of the design 

environment, a collection of design artifacts 

sufficient for consistent replication, and verification 

data that provides sufficient evidence that the 

design meets its requirements. Information in this 

repository needs to be maintained such that 

controlled changes preserve a consistent set of data. 

Configuration Management Tools 

Configuration management for this project is 

supported by two tools, the Concurrent Versions 

System (CVS) [4] and GNATS [5].  Both tools are 

freely available on the Internet and are distributed 

under the GNU public license. Both of these tools 

provide access for users from both UNIX and 

Windows systems. This is necessary for the 

SPIDER project because the development involves 

data generated on both UNIX and Windows 

platforms. Additionally, both of these tools have 

auxiliary programs that provide a web-based 

interface. 
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CVS is a revision control system. As such, it 

maintains a history of changes to the controlled 

project files.  , it records:  

• who makes a change 

• when it is made  

• why it is made (if the user provides 

meaningful log messages) 

• what other changes are made at the same 

time   

 

The change history is traceable.  VS does not 

implement any change control policies. However, it 

can be used in a manner where changes are 

restricted.  S is based on a copy­modify­merge 

philosophy for version control.  , each 

developer maintains a copy of their part of the 

development tree, implements changes on the local 

copy, then merges the changes into the central 

repository.  plemented to 

restrict the authority to commit changes to the 

central repository. 

GNATS is a problem reporting system.  

Problem reports are submitted via e-mail and are 

automatically logged into a database and forwarded 

to a responsible party.  The problem reports can 

later be updated to reflect actions taken to resolve 

the problems.  he problem report database is 

always accessible for review.  s the design is 

modified in response to problem reports, the CVS 

change logs can readily reflect the problem report 

number from GNATS.     

The GNATS system can also be used to log 

other reports generated during the course of a 

design.   this project, we are using GNATS to 

record all of our process-control actions. 

The hardware design life cycle data is being 

accumulated following the process data-flow model 

depicted in Figure 1.  he emphasis is on managing 

all data that will serve as a basis for certification.  

The data flow depicted in Figure 1 corresponds to 

controlled data.  he central idea is that data cannot 

be controlled unless all the data on which it depends 

is also controlled.   
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Figure 1: Documented Hardware Design Life 

Cycle 

 

Design Assurance Strategy 

For this project, we are developing the 

ROBUS to support any level A aircraft function.  

Since the design is being developed to the most 

stringent requirements, it is not necessary to justify 

the selected design assurance level.  f we desired to 

develop part of the hardware system to a lower 

design assurance level, we would need to justify our 

decision using a Functional Failure Path Analysis 

(FFPA).  A high-level description of performing an 

FFPA is presented in Appendix B of DO-254 [1].  

A worked example illustrating an FFPA is 

presented in [6]. 

Our primary strategy is to focus on ensuring 

correctness at the conceptual design stage and then 

preserving the design integrity as we proceed 

through detailed design and implementation.  

the certification basis depends upon the conceptual 

design, the conceptual design data will be 

maintained under configuration management. 

This is not the only strategy allowed by DO-

254.  n fact, DO-254 does not require conceptual 

design data to be controlled, if it is not used to 
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support certification arguments. When a system is 

being developed to assurance level A or B, DO-254 

requires that the design assurance strategy be 

developed using the guidance of Appendix B [1]. 

Selection of Design Assurance Method 

Subsection 3 of Appendix B in DO-254 

suggests a number of methods that may be 

appropriate for a level A design assurance strategy 

[1]. The methods enumerated include architectural 

mitigation, service history, and three advanced 

analysis techniques: 

• Safety-Specific Analysis 

• Elemental Analysis 

• Formal Methods 

Architectural mitigation strategies are 

employed to constrain potentially adverse effects of 

errors in the design. The ROBUS may ultimately 

be used as part of an architectural mitigation 

scheme, but there is no architectural solution to 

mask design errors within the ROBUS. Hence, we 

cannot base the design assurance of ROBUS on 

architectural mitigation techniques. Also, since 

ROBUS is a new design, we cannot appeal to 

service history as part of our design assurance 

strategy.  Therefore, we need to consider the 

suggested advanced analysis techniques. 

Since we have expertise in the application of 

formal methods, that will be the core of our design 

assurance strategy.  We will focus on formal proof 

at the conceptual design level to ensure that the 

SPIDER family of fault-tolerant systems is correct. 

We will then use conventional design and 

verification techniques to ensure that our detailed 

design and implementation are correct realizations 

of our conceptual design. 

Fault Assumptions 

There are at least two approaches to reasoning 

about faults and failures in a digital system. One is 

to postulate possible component failures and then 

assess the resulting impact on the system. 

Alternatively, one may assume that all faults have 

potentially devastating consequences and then 

design the system relative to this worst case 

assumption. Our approach is closer to the latter, but 

we allow some variation into the potential impact of 

faults. We will adopt the fault-classification 

strategy used in the development of the 

Multiprocessor Architecture for Fault-Tolerance 

(MAFT) [7]. Faulty nodes are globally classified 

based on the locally observable characteristics to 

other nodes within the system. The system is 

partitioned into Fault Containment Regions (FCRs) 

that ensure independence of random physical 

failures. The failure status of an FCR is then one of 

four mutually exclusive possibilities. An FCR may 

be 

• Good 

•  Benign Faulty: All good nodes that 

observe its behavior know that it is bad 

•  Symmetric Faulty: All good nodes 

observe consistent error manifestations, 

but do not know that it is bad 

•  Asymmetric Faulty: No assumption is 

made about the behavior. The behavior 

of an asymmetrically faulty unit has 

different manifestations to at least two 

distinct good nodes 

Several formal verifications have been 

performed using this fault classification. We will 

be able to adapt some of these proofs to the 

conceptual design of the SPIDER.  When the 

development reaches the stage of a detailed 

implementation, we will use this same classification 

when conducting the Failure Modes and Effects 

Analysis (FMEA). 

Reliability Analysis 

The system level reliability analysis uses the 

Semi-Markov Unreliability Range Evaluator 

(SURE) tool developed at NASA Langley Research 

Center [8]. Some of the reliability models have 

been generated using the Abstract Semi-Markov 

Specification Interface to the SURE Tool (ASSIST) 

[9]. The developers of these tools and techniques 

are available for consultation on this project. In 

addition, they are available for expert review of the 

generated models. 

Additional Considerations 

Several of the verification activities employ 

formal methods. As part of the conceptual design 

activities, the algorithms for providing the fault-

tolerant services are being formally specified and 
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4verified using PVS [10] (http://pvs.csl.sri.com/). 

The models, algorithms, and proofs will be 

reviewed by Langley personnel that have expertise 

in both formal methods and fault-tolerance. In 

addition, some of the detailed design artifacts may 

be subjected to formal analysis. 

The focus of the verification activities during 

the detailed design and implementation stages will 

be to preserve the integrity of the verification 

performed at the conceptual design level. We 

intend to explore elemental analysis and safety-

specific analysis as we proceed, but we do not yet 

have sufficient understanding of these techniques. 

Tool Assessment and Qualification 

Section 11.4 of DO-254 details the 

requirements for tool assessment and qualification. 

If the output of a tool is independently checked in 

some manner, it is not necessary to qualify the tool. 

Given the limited resources of this project, it is not 

feasible to undertake a tool qualification exercise. 

Therefore, in this design effort, the output of each 

tool will be independently checked. 

Design Concept 

The system concept for this case study is the 

SPIDER family of fault-tolerant architectures. One 

of the design goals is that the SPIDER will support 

various fault-tolerant configurations. This will 

enable experimentation with different schemes for 

automatic recovery from multiple correlated 

transient faults. 

The SPIDER architecture is intended to 

support a collection of N simplex general purpose 

processing elements communicating over a Reliable 

Optical Bus (ROBUS). One logical view of the 

SPIDER architecture is depicted in Figure 2. 
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Figure 2: SPIDER Logical View 

The ROBUS behaves as a time-division 

multiple access (TDMA) broadcast bus. For the 

ROBUS to provide unhindered access to all good 

nodes, it must be protected against any one node 

monopolizing its capacity. Furthermore, the 

communication model must support several 

fundamental services. The essential goal is to 

ensure reliable communication between all pairs of 

fault-free processing elements in the system. To 

ensure this flexibility, the ROBUS design shall 

guarantee that all good processing elements observe 

an identical sequence of messages. This will enable 

the development of several fault-tolerance strategies 

combining the simplex nodes. For example, Figure 

3 illustrates a possible SPIDER configuration with 

three processors in a Triple Modular Redundant 

(TMR) configuration, four processors in a dual-dual 

configuration and a single simplex processor. 

0 
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5 6 7 

ROBUS 

Figure 3: Sample SPIDER Configuration 

Key Design Requirements 

The primary requirement for the ROBUS is 

that it shall ensure that all fault-free attached 

processing elements observe identical message 

sequences, even if there are a bounded number of 

6 

http://pvs.csl.sri.com/


physical component failures within the ROBUS. 

This implies that the ROBUS will be a realization 

of a special purpose fault-tolerant device. If the 

ROBUS can be shown to meet this requirement, 

then we have assurance that the failure modes of the 

attached processing elements are limited to 

symmetric or benign manifestations only.  It will be 

impossible for an attached node to exhibit 

asymmetric behavior. 

Schedule Agreement 

The first implementation of the SPIDER will 

be based upon an assumption of a static, 

predetermined communication schedule. This is 

similar to the approach taken for ARINC 659 [11] 

and the Time-Triggered Architecture [12]. The 

communication protocol for the first 

implementation of the SPIDER will be based upon 

the protocol developed by Malekpour for the 

FBL/PBW testbench [3]. This is a statically 

scheduled TDMA protocol. 

All analysis will be based upon the weaker 

assumption that all fault-free nodes agree on the 

communication schedule. This will allow future 

exploration of dynamic scheduling algorithms for 

later instances of the SPIDER architecture. 

Interactive Consistency 

In a redundant computer system, it is necessary 

to ensure that all single-source data items are 

consistently replicated among the redundant 

computational elements. Otherwise, a single faulty 

source may overwhelm the redundancy in the 

system. There are several published algorithms for 

ensuring interactive consistency; the first fully 

general solution is by Pease, Shoshtak, and Lamport 

[13]. Interactive consistency requirements are: 

Agreement---All non-faulty receivers agree on 

the single-source data value received 

Validity---If the originator of the data is non-

faulty, then all non-faulty receivers receive the 

transmitted value 

Protocols achieving interactive consistency are 

frequently referred to as Byzantine Agreement 

protocols, following the presentation of the problem 

in [14]. Byzantine agreement protocols depend on 

the assumption that redundant elements fail 

independently. Specifically, it is required that the 

nodes participating in the protocol are sufficiently 

physically and electrically isolated to ensure that a 

fault in one node cannot cause a fault in another 

node. These isolation regions of the design are 

termed Fault-Containment Regions (FCRs). An 

FCR may exhibit erroneous behavior. Additional 

logic is required to address potential error 

propagation. This is only possible if a sufficient 

number of FCRs are fault-free. There are several 

examples of formally verified interactive 

consistency algorithms available. The internal 

topology of the ROBUS is sufficiently similar to the 

Draper FTP architecture [15] that we were able to 

adapt its interactive consistency protocol. In 

addition, we were also able to adapt the PVS 

verification presented by Lincoln and Rushby [16]. 

Clock Synchronization 

Both interactive consistency and TDMA 

scheduling require that the redundant nodes be 

synchronized within a known skew. The general 

requirements for clock synchronization are: 

Precision---There is a small constant d such 

that for any two good clocks at real time t: 

|C1(t) ­ C2(t)| < d 

Accuracy---All good clocks maintain an 

accurate measure of the passage of time 

As in the case of interactive consistency, clock 

synchronization protocols assume that the 

redundant clocks are in separate FCRs and that a 

sufficient number of FCRs are fault-free. There are 

several clock synchronization protocols discussed 

in the research literature. Ramanathan et al provide 

a survey of different approaches [17]. We have 

adapted a synchronization scheme proposed by 

Davies and Wakerly [18] for use in the ROBUS. 

There are established techniques for formal 

verification of clock synchronization algorithms 

[19] [20]. We have modified the approach 

presented in [20] for the verification of the SPIDER 

synchronization protocol. 

Diagnosis 

The ROBUS shall support distributed 

diagnosis in the presence of a bounded number of 

FCR failures. The goals of a diagnosis algorithm 

are to ensure the following properties: 

Correctness---Every FCR diagnosed as faulty 

by a good FCR is indeed faulty 

Completeness---Every faulty FCR is 

eventually diagnosed as faulty 
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There exist fault scenarios where it is 

impossible to identify which FCR is faulty, so in 

these cases diagnosis is necessarily incomplete. 

However, it is essential to always ensure the 

correctness property.  The ROBUS will be designed 

against a modified completeness property that is 

consistent with the fault assumptions of the clock 

synchronization and Byzantine agreement 

protocols. We will adapt the algorithms and 

verification presented in [21]. 

Concluding Remarks 

We are currently involved in the conceptual 

design phase of a case study exercising the new 

RTCA document DO-254: Design Assurance 

Guidance for Airborne Electronic Hardware.  For 

the case study, we have chosen to design a central 

subsystem of a new fault-tolerant architecture. For 

this design, we have chosen to emphasize early life-

cycle development and verification activities. It is 

our belief that if we get the conceptual design right, 

then it will be easier to assure correctness of the 

detailed design and implementation. 

The principal focus of our conceptual design 

verification activities is formal proof that the fault-

tolerance protocols are correct. Subsequent design 

and verification activities will be focused on 

preserving the implementation integrity of the 

verified algorithms. 
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