
A CASE-STUDY APPLICATION OF RTCA DO-254: DESIGN ASSURANCE

GUIDANCE FOR AIRBORNE ELECTRONIC HARDWARE

Paul S. Miner, Victor A. Carreño, Mahyar Malekpour, and Wilfredo Torres

NASA Langley Research Center, Hampton, VA

{p.s.miner, v.a.carreno, m.r.malekpour, w.torres­pomales}@larc.nasa.gov

DISCLAIMER: This paper was authored by a team from NASA Langley Research Center for the

2000 Digital Avionics Systems Conference (October 2000). It is based on a

research program being funded by the Federal Aviation Administration (FAA). It

does not represent FAA regulatory material, policy, or guidance.

1

A CASE-STUDY APPLICATION OF RTCA DO-254:

DESIGN ASSURANCE GUIDANCE FOR AIRBORNE

ELECTRONIC HARDWARE

Paul S. Miner, Victor A. Carreño, Mahyar Malekpour, and Wilfredo Torres

NASA Langley Research Center, Hampton, VA

{p.s.miner, v.a.carreno, m.r.malekpour, w.torres­pomales}@larc.nasa.gov

Abstract

In a joint project with the FAA, NASA

Langley is developing a hardware design in

accordance with RTCA DO-254: Design Assurance

Guidance for Airborne Electronic Hardware. The

purpose of the case study is to gain understanding

of the new guidance document and generate an

example suitable for use in training.

For the case study, we have selected a core

subsystem of the Scalable Processor-Independent

Design for Electromagnetic Resilience (SPIDER).

SPIDER is a new fault-tolerant architecture under

development at NASA Langley Research Center.

Introduction

RTCA, Inc. has recently approved DO-254:

Design Assurance Guidance for Airborne

Electronic Hardware [1]. This document is

intended to provide a basis for the certification of

complex electronic hardware devices used in

aircraft. As with all new guidance documents, there

will be a period of uncertainty while developers and

the FAA learn how best to apply the document.

This uncertainty will likely be compounded by the

flexibility DO-254 offers for developing a design

assurance strategy.

To alleviate some of this uncertainty the FAA

initiated this case study to gain some experience

with this new guidance document. This case study

has limited scope; there are insufficient resources to

explore all aspects of DO-254. The focus of the

case study is on logical aspects of design, and is

targeted to early stages of the design process.

There are two goals for the case study. The

primary purpose is to help identify problems in

applying the new document. A secondary purpose

is to provide material suitable for use in training.

The second objective places some constraints on the

project scope. Specifically, the hardware device

should be non-proprietary, non-commercial, and of

limited complexity.

NASA Langley Research Center also has some

objectives for this case study. One goal is to

demonstrate the application of formal methods on a

representative example. Another priority for NASA

is to develop a hardware platform to support in-

house research targeted toward demonstrating

systematic recovery from multiple correlated

transient failures.

With these objectives and restrictions in mind,

the chosen device for the case study is a core

subsystem of a new fault-tolerant architecture under

development at NASA Langley Research Center.

Several factors motivated the choice of a fault-

tolerant system for this exercise. Hardware

realizations of fault-tolerant protocols are generally

compact designs; this allows for comprehensive

treatment within the time constraints of a training

exercise. Also, the behavior of fault-tolerant

devices is inherently complex; such a device is

clearly within the scope of DO-254. Furthermore,

there is a considerable amount of research literature

addressing the formal analysis of fault-tolerant

protocols; a fault-tolerant system is a good

candidate for a formal methods demonstration.

Finally, any device expected to recover from

transient failures will necessarily need to deal with

a bounded set of permanent failures, as well.

The architecture being explored for this case

study is the Scalable Processor-Independent Design

for Electromagnetic Resilience (SPIDER). In this

architecture, the primary basis for fault-tolerance is

a communication subsystem called the Reliable

Optical Bus (ROBUS). The concept for the

SPIDER architecture builds on previous fault-

2

tolerant computing research at NASA Langley

Research Center. The main concept was inspired

by a fault-tolerant system designed as part of the

Fly-by-Light/Power-by-Wire (FBL/PBW) program

[2] [3].

Project Overview

The project consists of three sequential phases

beginning in August 1999 and ending in December

2001. The first phase, which began in August 1999

and ended in January 2000, consisted of planning

the hardware development activities. The initial

Plan for Hardware Aspects of Certification was

presented to the FAA in January and was

subsequently revised. The second phase consists of

the development of a detailed design in accordance

with the submitted plan. The detailed design will

include a limited laboratory prototype intended to

illustrate certain characteristics of the architectural

concept. The final phase will culminate in a more

complete prototype implementation; this prototype

will include sufficient features to make a fair

assessment of the proposed design.

Planning Phase

Any organization applying DO-254 for the

first time must decide how to map its existing

development processes to those of DO-254. Since

our research group did not have any defined

hardware development processes, we were free to

define all aspects of our hardware development

environment. This served as both a blessing and a

curse. We were able to select from a variety of

options. However, some of the choices we made

were necessarily uninformed. It is likely that we

shall need to update our processes as the project

progresses.

During the planning phase of the project, we

identified the target design artifacts and determined

the various components of our development

environment. In addition to identifying the design

and verification methods, we needed to define the

supporting processes that serve to control the

development and maintenance of the developed

product. These supporting processes include:

• Certification Liaison

• Process Assurance

• Configuration Management

The certification liaison activities consist of

regular interaction with a small team from the FAA.

The initial Plan for Hardware Aspects of

Certification was presented to the FAA in January.

They agreed with the proposed plan, in principle,

but deferred judgement on some of the proposed

verification activities until more detailed

descriptions are developed.

The process assurance activities are primarily

focused on monitoring the development activities to

ensure that they are proceeding in accordance with

the approved plans. For this project, the emphasis

is on ensuring the internal consistency of the set of

controlled data we accumulate throughout the

development effort.

An integral part of developing hardware in

accordance with DO-254 is the management of

design and verification data throughout the life of

the product. Hence, there is a need for an effective

recording and configuration management system.

The purpose of configuration management is

to ensure consistent replication and controlled

modification of artifacts produced during the design

process. There are several interrelated aspects to

configuration management. The primary

requirement is a consistent repository of data. This

repository contains identification of the design

environment, a collection of design artifacts

sufficient for consistent replication, and verification

data that provides sufficient evidence that the

design meets its requirements. Information in this

repository needs to be maintained such that

controlled changes preserve a consistent set of data.

Configuration Management Tools

Configuration management for this project is

supported by two tools, the Concurrent Versions

System (CVS) [4] and GNATS [5]. Both tools are

freely available on the Internet and are distributed

under the GNU public license. Both of these tools

provide access for users from both UNIX and

Windows systems. This is necessary for the

SPIDER project because the development involves

data generated on both UNIX and Windows

platforms. Additionally, both of these tools have

auxiliary programs that provide a web-based

interface.

3

 4

CVS is a revision control system. As such, it

maintains a history of changes to the controlled

project files. , it records:

• who makes a change

• when it is made

• why it is made (if the user provides

meaningful log messages)

• what other changes are made at the same

time

The change history is traceable. VS does not

implement any change control policies. However, it

can be used in a manner where changes are

restricted. S is based on a copy­modify­merge

philosophy for version control. , each

developer maintains a copy of their part of the

development tree, implements changes on the local

copy, then merges the changes into the central

repository. plemented to

restrict the authority to commit changes to the

central repository.

GNATS is a problem reporting system.

Problem reports are submitted via e-mail and are

automatically logged into a database and forwarded

to a responsible party. The problem reports can

later be updated to reflect actions taken to resolve

the problems. he problem report database is

always accessible for review. s the design is

modified in response to problem reports, the CVS

change logs can readily reflect the problem report

number from GNATS.

The GNATS system can also be used to log

other reports generated during the course of a

design. this project, we are using GNATS to

record all of our process-control actions.

The hardware design life cycle data is being

accumulated following the process data-flow model

depicted in Figure 1. he emphasis is on managing

all data that will serve as a basis for certification.

The data flow depicted in Figure 1 corresponds to

controlled data. he central idea is that data cannot

be controlled unless all the data on which it depends

is also controlled.

Process Control

Planning

Configuration
Management

Process
Assurance

Production
Transition

Manufacturing

Verification

Unmanaged
Design Data

Catalog

Conceptual
Design

Requirements
Management

System
Development

Implementation

Detailed
Design12

9

4

3

89
5
6
7

4

3

5 6 7 10

1. System Level Requirements Allocated to Hardware
2. Feedback to System Development

3. Process Control Actions
4. Process Control Requests
5. Design Development Data

6. Configuration Management Entries
7. Process Assurance Evidence
8. Design Manufacturing Data
9. Hardware Design Manual
10. Unmanaged Design Notes and Artifacts

5 6 7 10

Figure 1: Documented Hardware Design Life

Cycle

Design Assurance Strategy

For this project, we are developing the

ROBUS to support any level A aircraft function.

Since the design is being developed to the most

stringent requirements, it is not necessary to justify

the selected design assurance level. f we desired to

develop part of the hardware system to a lower

design assurance level, we would need to justify our

decision using a Functional Failure Path Analysis

(FFPA). A high-level description of performing an

FFPA is presented in Appendix B of DO-254 [1].

A worked example illustrating an FFPA is

presented in [6].

Our primary strategy is to focus on ensuring

correctness at the conceptual design stage and then

preserving the design integrity as we proceed

through detailed design and implementation.

the certification basis depends upon the conceptual

design, the conceptual design data will be

maintained under configuration management.

This is not the only strategy allowed by DO-

254. n fact, DO-254 does not require conceptual

design data to be controlled, if it is not used to

Specifically

C

CV

Specifically

Specific policies can be im

T

A

For

T

T

I

Since

I

support certification arguments. When a system is

being developed to assurance level A or B, DO-254

requires that the design assurance strategy be

developed using the guidance of Appendix B [1].

Selection of Design Assurance Method

Subsection 3 of Appendix B in DO-254

suggests a number of methods that may be

appropriate for a level A design assurance strategy

[1]. The methods enumerated include architectural

mitigation, service history, and three advanced

analysis techniques:

• Safety-Specific Analysis

• Elemental Analysis

• Formal Methods

Architectural mitigation strategies are

employed to constrain potentially adverse effects of

errors in the design. The ROBUS may ultimately

be used as part of an architectural mitigation

scheme, but there is no architectural solution to

mask design errors within the ROBUS. Hence, we

cannot base the design assurance of ROBUS on

architectural mitigation techniques. Also, since

ROBUS is a new design, we cannot appeal to

service history as part of our design assurance

strategy. Therefore, we need to consider the

suggested advanced analysis techniques.

Since we have expertise in the application of

formal methods, that will be the core of our design

assurance strategy. We will focus on formal proof

at the conceptual design level to ensure that the

SPIDER family of fault-tolerant systems is correct.

We will then use conventional design and

verification techniques to ensure that our detailed

design and implementation are correct realizations

of our conceptual design.

Fault Assumptions

There are at least two approaches to reasoning

about faults and failures in a digital system. One is

to postulate possible component failures and then

assess the resulting impact on the system.

Alternatively, one may assume that all faults have

potentially devastating consequences and then

design the system relative to this worst case

assumption. Our approach is closer to the latter, but

we allow some variation into the potential impact of

faults. We will adopt the fault-classification

strategy used in the development of the

Multiprocessor Architecture for Fault-Tolerance

(MAFT) [7]. Faulty nodes are globally classified

based on the locally observable characteristics to

other nodes within the system. The system is

partitioned into Fault Containment Regions (FCRs)

that ensure independence of random physical

failures. The failure status of an FCR is then one of

four mutually exclusive possibilities. An FCR may

be

• Good

• Benign Faulty: All good nodes that

observe its behavior know that it is bad

• Symmetric Faulty: All good nodes

observe consistent error manifestations,

but do not know that it is bad

• Asymmetric Faulty: No assumption is

made about the behavior. The behavior

of an asymmetrically faulty unit has

different manifestations to at least two

distinct good nodes

Several formal verifications have been

performed using this fault classification. We will

be able to adapt some of these proofs to the

conceptual design of the SPIDER. When the

development reaches the stage of a detailed

implementation, we will use this same classification

when conducting the Failure Modes and Effects

Analysis (FMEA).

Reliability Analysis

The system level reliability analysis uses the

Semi-Markov Unreliability Range Evaluator

(SURE) tool developed at NASA Langley Research

Center [8]. Some of the reliability models have

been generated using the Abstract Semi-Markov

Specification Interface to the SURE Tool (ASSIST)

[9]. The developers of these tools and techniques

are available for consultation on this project. In

addition, they are available for expert review of the

generated models.

Additional Considerations

Several of the verification activities employ

formal methods. As part of the conceptual design

activities, the algorithms for providing the fault-

tolerant services are being formally specified and

5

4verified using PVS [10] (http://pvs.csl.sri.com/).

The models, algorithms, and proofs will be

reviewed by Langley personnel that have expertise

in both formal methods and fault-tolerance. In

addition, some of the detailed design artifacts may

be subjected to formal analysis.

The focus of the verification activities during

the detailed design and implementation stages will

be to preserve the integrity of the verification

performed at the conceptual design level. We

intend to explore elemental analysis and safety-

specific analysis as we proceed, but we do not yet

have sufficient understanding of these techniques.

Tool Assessment and Qualification

Section 11.4 of DO-254 details the

requirements for tool assessment and qualification.

If the output of a tool is independently checked in

some manner, it is not necessary to qualify the tool.

Given the limited resources of this project, it is not

feasible to undertake a tool qualification exercise.

Therefore, in this design effort, the output of each

tool will be independently checked.

Design Concept

The system concept for this case study is the

SPIDER family of fault-tolerant architectures. One

of the design goals is that the SPIDER will support

various fault-tolerant configurations. This will

enable experimentation with different schemes for

automatic recovery from multiple correlated

transient faults.

The SPIDER architecture is intended to

support a collection of N simplex general purpose

processing elements communicating over a Reliable

Optical Bus (ROBUS). One logical view of the

SPIDER architecture is depicted in Figure 2.

3

0

1

2

7

6

5

ROBUS

Figure 2: SPIDER Logical View

The ROBUS behaves as a time-division

multiple access (TDMA) broadcast bus. For the

ROBUS to provide unhindered access to all good

nodes, it must be protected against any one node

monopolizing its capacity. Furthermore, the

communication model must support several

fundamental services. The essential goal is to

ensure reliable communication between all pairs of

fault-free processing elements in the system. To

ensure this flexibility, the ROBUS design shall

guarantee that all good processing elements observe

an identical sequence of messages. This will enable

the development of several fault-tolerance strategies

combining the simplex nodes. For example, Figure

3 illustrates a possible SPIDER configuration with

three processors in a Triple Modular Redundant

(TMR) configuration, four processors in a dual-dual

configuration and a single simplex processor.

0
4 2 1 3

5 6 7

ROBUS

Figure 3: Sample SPIDER Configuration

Key Design Requirements

The primary requirement for the ROBUS is

that it shall ensure that all fault-free attached

processing elements observe identical message

sequences, even if there are a bounded number of

6

http://pvs.csl.sri.com/

physical component failures within the ROBUS.

This implies that the ROBUS will be a realization

of a special purpose fault-tolerant device. If the

ROBUS can be shown to meet this requirement,

then we have assurance that the failure modes of the

attached processing elements are limited to

symmetric or benign manifestations only. It will be

impossible for an attached node to exhibit

asymmetric behavior.

Schedule Agreement

The first implementation of the SPIDER will

be based upon an assumption of a static,

predetermined communication schedule. This is

similar to the approach taken for ARINC 659 [11]

and the Time-Triggered Architecture [12]. The

communication protocol for the first

implementation of the SPIDER will be based upon

the protocol developed by Malekpour for the

FBL/PBW testbench [3]. This is a statically

scheduled TDMA protocol.

All analysis will be based upon the weaker

assumption that all fault-free nodes agree on the

communication schedule. This will allow future

exploration of dynamic scheduling algorithms for

later instances of the SPIDER architecture.

Interactive Consistency

In a redundant computer system, it is necessary

to ensure that all single-source data items are

consistently replicated among the redundant

computational elements. Otherwise, a single faulty

source may overwhelm the redundancy in the

system. There are several published algorithms for

ensuring interactive consistency; the first fully

general solution is by Pease, Shoshtak, and Lamport

[13]. Interactive consistency requirements are:

Agreement---All non-faulty receivers agree on

the single-source data value received

Validity---If the originator of the data is non-

faulty, then all non-faulty receivers receive the

transmitted value

Protocols achieving interactive consistency are

frequently referred to as Byzantine Agreement

protocols, following the presentation of the problem

in [14]. Byzantine agreement protocols depend on

the assumption that redundant elements fail

independently. Specifically, it is required that the

nodes participating in the protocol are sufficiently

physically and electrically isolated to ensure that a

fault in one node cannot cause a fault in another

node. These isolation regions of the design are

termed Fault-Containment Regions (FCRs). An

FCR may exhibit erroneous behavior. Additional

logic is required to address potential error

propagation. This is only possible if a sufficient

number of FCRs are fault-free. There are several

examples of formally verified interactive

consistency algorithms available. The internal

topology of the ROBUS is sufficiently similar to the

Draper FTP architecture [15] that we were able to

adapt its interactive consistency protocol. In

addition, we were also able to adapt the PVS

verification presented by Lincoln and Rushby [16].

Clock Synchronization

Both interactive consistency and TDMA

scheduling require that the redundant nodes be

synchronized within a known skew. The general

requirements for clock synchronization are:

Precision---There is a small constant d such

that for any two good clocks at real time t:

|C1(t) ­ C2(t)| < d

Accuracy---All good clocks maintain an

accurate measure of the passage of time

As in the case of interactive consistency, clock

synchronization protocols assume that the

redundant clocks are in separate FCRs and that a

sufficient number of FCRs are fault-free. There are

several clock synchronization protocols discussed

in the research literature. Ramanathan et al provide

a survey of different approaches [17]. We have

adapted a synchronization scheme proposed by

Davies and Wakerly [18] for use in the ROBUS.

There are established techniques for formal

verification of clock synchronization algorithms

[19] [20]. We have modified the approach

presented in [20] for the verification of the SPIDER

synchronization protocol.

Diagnosis

The ROBUS shall support distributed

diagnosis in the presence of a bounded number of

FCR failures. The goals of a diagnosis algorithm

are to ensure the following properties:

Correctness---Every FCR diagnosed as faulty

by a good FCR is indeed faulty

Completeness---Every faulty FCR is

eventually diagnosed as faulty

7

There exist fault scenarios where it is

impossible to identify which FCR is faulty, so in

these cases diagnosis is necessarily incomplete.

However, it is essential to always ensure the

correctness property. The ROBUS will be designed

against a modified completeness property that is

consistent with the fault assumptions of the clock

synchronization and Byzantine agreement

protocols. We will adapt the algorithms and

verification presented in [21].

Concluding Remarks

We are currently involved in the conceptual

design phase of a case study exercising the new

RTCA document DO-254: Design Assurance

Guidance for Airborne Electronic Hardware. For

the case study, we have chosen to design a central

subsystem of a new fault-tolerant architecture. For

this design, we have chosen to emphasize early life-

cycle development and verification activities. It is

our belief that if we get the conceptual design right,

then it will be easier to assure correctness of the

detailed design and implementation.

The principal focus of our conceptual design

verification activities is formal proof that the fault-

tolerance protocols are correct. Subsequent design

and verification activities will be focused on

preserving the implementation integrity of the

verified algorithms.

Acknowledgements

We are grateful to Leanna Rierson and Pete

Saraceni of the FAA for partially funding this effort

under Interagency Agreement DTFA03-96-X-

90001.

References

[1] RTCA, 2000, DO­254: Design Assurance

Guidance for Airborne Electronic Hardware,

RTCA, Inc., Washington, DC.

[2] Palumbo, D.L., 1996, Fault­tolerant processing

system, United States Patent 5,533,188.

[3] Malekpour, M., To Appear, Fly­by­

Light/Power­by­Wire Fault­Tolerant Fiber­Optic

Backplane, NASA Contractor Report, NASA

Langley Research Center, Hampton, VA.

[4] Free Software Foundation, 1998, CVS -

Concurrent Versions System,

http://www.gnu.org/software/cvs/cvs.html.

[5] Osier, J. M., and B. Kehoe, 1996, Keeping

Track: Managing Messages with GNATS,

http://sourceware.cygnus.com/gnats/gnats_toc.html.

[6] Beland, S.C., and B. BonJour, 2000, Functional

Failure Path Analysis of Airborne Electronic

Hardware, in Proceedings of the 19th Digital

Avionics Systems Conference, Philadelphia, PA.

[7] Kieckhafer, R. M., C. J. Walter, A. M. Finn, and

P. M. Thambidurai, 1988, The MAFT Architecture

for Distributed Fault Tolerance, IEEE Transactions

on Computers, 37 (4), pp. 398-405.

[8] Butler, R. W., and A. L. White, 1988, SURE

Reliability Analysis: Program and Mathematics,

NASA Technical Paper, 2764.

[9] Johnson, S.C., and D. P. Boerschlein, 1995,

ASSIST User Manual, NASA Technical

Memorandum 4592, NASA Langley Research

Center, Hampton, VA.

[10] Owre, S., J. Rushby, N. Shankar, and F. von

Henke, 1995, Formal Verification for Fault-

Tolerant Architectures: Prolegomena to the Design

of PVS, IEEE Transactions on Software

Engineering, 21 (2), pp. 107-125.

[11] ARINC, 1993, ARINC Specification 659:

Backplane Data Bus, Aeronautical Radio, Inc.,

Annapolis, MD.

[12] Kopetz, H., 1997, Real­Time Systems: Design

Principles for Distributed Embedded Applications,

Kluwer Academic Publishers, Boston.

[13] Pease, M., R. Shostak, and L. Lamport, 1980,

Reaching Agreement in the Presence of Faults,

Journal of the ACM, 27 (2), pp. 228-234.

[14] Lamport, L., R. Shostak, and M. Pease, 1982,

The Byzantine Generals Problem, ACM

Transactions on Programming Languages, 4 (3),

pp. 382-401.

[15] Smith, T.B., 1984, Fault Tolerant Processor

Concepts and Operation, in Fourteenth

International Conference on Fault­Tolerant

Computing, IEEE Computer Society Press, pp. 158-

163.

8

[16] Lincoln, P., and J. Rushby, 1994, Formal

Verification of an Interactive Consistency

Algorithm for the Draper FTP Architecture Under a

Hybrid Fault Model, Proceedings of the Ninth

Annual Conference on Computer Assurance, pp.

107-120.

[17] Ramanathan, P., K. G. Shin, and R. W. Butler,

1990, Fault-Tolerant Clock Synchronization in

Distributed Systems, IEEE Computer, 23 (10), pp.

33-42.

[18] Davies, D., and J. F. Wakerly, 1978,

Synchronization and Matching in Redundant

Systems, IEEE Transactions on Computers, C­27

(6), pp. 531-539.

[19] Miner, P.S., 1993, Verification of Fault­

Tolerant Clock Synchronization Systems, NASA

Technical Paper 3349, Hampton, VA.

[20] Schwier, D., and F. von Henke, 1998,

Mechanical Verification of Clock Synchronization

Algorithms, Proceedings 5th International

Symposium on Formal Techniques in Real­Time

and Fault­Tolerant Systems, pp. 262-271.

[21] Walter, C. J., P. Lincoln, and N. Suri, 1997,

Formally Verified On-Line Diagnosis, IEEE

Transactions on Software Engineering, 23 (11), pp.

684-721.

9

