
1

STRATEGIES FOR LINKING MEDICAID ELIGIBILITY FILES TO VITAL STATISTICS

BIRTH FILES TO ASSESS THE EFFICACY OF MEDICAID MANAGED CARE

Patrick J. Roohan, NYS Department of Health

John R. Piddock, NYS Department of Health

Peter B. Lannon, NYS Department of Health

I. Introduction

In 1996, the New York State Department of Health

(NYSDOH) was awarded a grant from Health Resources

and Services Administration (HRSA) to build the

information system infrastructure to incorporate birth

record data into the Medicaid Encounter Sata System

(MEDS). The grant also provided resources to link

mother/infant inpatient discharge data to birth record

data. NYSDOH has experience in linking data sets for

specific analytic purposes, but this grant was an

opportunity to create linked files for multiple uses

throughout the department. As managed care becomes

the delivery of health care in Medicaid, linked file

systems are essential to compare outcomes and quality of

care to the previous fee-for-service system.

This paper will cover two major areas: the linking

process and applications using the data. Multiple stages

of matching are preformed using SAS software to

insure a high level of accuracy, while minimizing false

positives. Use of this linked data set will be discussed

including efforts to evaluate the efficacy of managed care

in Medicaid.

II. The Process

To link the Medicaid eligibility data to the Vital

Statistics birth files, there are three major stages of

matching to be preformed:

1) The Vital Statistics (VS) birth file to all claims

(with a delivery) from the Fee-for-Service (FFS)

claims file.

2) The VS, with FFS matches, to Quality Assurance

Reporting Requirements (QARR) data. QARR are

annual performance indicator reports submitted by

managed care plans in New York State.

Information on mothers that delivered during the

reporting year is required by managed care plans.

3) The VS, with FFS and QARR matches, to all

women aged 10-50 that are enrolled for one or

more months in that calendar year from the

Medicaid Managed Care (MC) enrollment file.

Within these stages there are two principal steps;

cleansing and matching of the data. Once the three

stages are completed, the VS birth file with FFS, QARR,

and MC matches is tested one last time to further ensure

that the number of false positives are minimized. The

valid records are then matched with the VS birth

statistical file, giving the matched production data file.

II.a Cleansing of Data Files

The cleansing of data files is dependent on each stage

and it’s associated data files, due to their unique data

elements. However, there are some common cleansing

steps among the stages. They are:

• Eliminate of out-of-state records.

• Check coded variables to ensure they are valid and

correct them if not; i.e. hospital codes correspond to

the appropriate hospitals.

• Check the data files for duplicate records. These

could be the result of either multiple births (i.e.

twins) or an error with data entry. If duplicate

records do exist, they are split off into another data

file and addressed later.

• For QARR, add an indicator to each record to

distinguish whether it is Medicaid or Commercial.

• Change the street address for each record to a

standardized format.

 The standardization of the street address is required

because the characters used in a street address may take

various forms between data files and even among records

within a data file. Without having the addresses in a

standardized format, this field would be, in essence,

useless for matching. The SAS code for the street

address standardization macro is as follows.

 %MACRO STREETS(STRVAR);

 ST_NW_NM=' ' || &STRVAR || ' ';
 ST_NW_NM=TRANSLATE(ST_NW_NM,' ','#"*.');
 ST_NW_NM=TRANWRD(ST_NW_NM,' ALLEY ',' AL ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' AND ',' & ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' AVENUE ',' AV ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' AVEN ',' AV ');

2

 ST_NW_NM=TRANWRD(ST_NW_NM,' AVE ',' AV ');
 .
 .
 .

 ST_NW_NM=TRANWRD(ST_NW_NM,' PO BX ',' PO BOX ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' RIDGE ',' RI ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' ROAD ',' RD ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' ROUTE ',' RT ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' ROUT ',' RT ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' RTE ',' RT ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SAINT ',' ST ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SISTER ',' SR ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SOUTH ',' S ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SOUT ',' S ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SO ',' S ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SQUARE ',' SQ ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' STREET ',' ST ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' STRE ',' ST ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' STR ',' ST ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' TERRACE ',' TER ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' TERR ',' TER ');

 .
 .
 .

 ST_NW_NM=TRANWRD(ST_NW_NM,'1ST ','1 ');
 ST_NW_NM=TRANWRD(ST_NW_NM,'1TH ','1 ');
 ST_NW_NM=TRANWRD(ST_NW_NM,'2ND ','2 ');
 ST_NW_NM=TRANWRD(ST_NW_NM,'2TH ','2 ');

 .
 .
 .

 ST_NW_NM=TRANWRD(ST_NW_NM,' FIRST ',' 1 ');
 ST_NW_NM=TRANWRD(ST_NW_NM,' SECOND ',' 2 ');

 ST_NW_NM = COMPRESS(ST_NW_NM,"$()',-@&:;{}[]_");
 ST_NW_NM = COMPBL(ST_NW_NM);
 &STRVAR = TRIM(LEFT(ST_NW_NM));
 DROP ST_NW_NM;
 %MEND;

 %STREETS(STREET);

 The macro initially adds one space to the left and 5

spaces to the right of the field by means of concatenation.

It then changes some non-essential symbols (#"*.) to

blanks and certain key characters to a standardized

version (i.e. “ street ”, “ stre ” and “ str ” are modified

to “ ST ”). Finally, the street address has special

characters and the blanks on the left of the field removed.

 II.b Matching of Data Files

 For each stage, the matching of the data files is achieved

through an eight round process. By round, we mean a

pass at the data using a combination of personal

identifiers, or 'linker’ variable, to try and find matching

records. Each round has the same method;

• match the data files by means of the “matching

macro”,

• edit the matches to minimize the number of false

matches at the expense of some potential matches,

and

• process the unmatched records for the next round.

II.b.1 Matching Macro

For each round, matching starts by defining the ‘linker’

variable. The attached table shows what the ‘linker’

variable is for each round of the three stages. The

‘linker’ variable and the two cleansed data sets are then

submitted to the “matching macro”.

This macro uses pointer files for matching. First the

macro sorts the two data sets by the ‘linker’ variable. It

then sets up a pointer file for each of the data sets. The

pointer files are then matched for every combination

between the two data sets based on the linker variable,

creating a merged pointer file. The two original pointer

files are then deleted and the actual observations from the

data sets are combined based upon the merged pointer

file.

%MACRO MATCH(DATASET1,DATASET2,LINKER);

 PROC SORT DATA = &DATASET1; BY &LINKER;
 PROC SORT DATA = &DATASET2; BY &LINKER;

DATA POINTER1 (KEEP = START1 END1 &LINKER);
 RETAIN START1;
 SET &DATASET1; BY &LINKER;
 IF FIRST.&LINKER THEN START1 = _N_;
 IF LAST.&LINKER THEN DO;
 END1 = _N_; OUTPUT;
 END;

DATA POINTER2 (KEEP = START2 END2 &LINKER);
 RETAIN START2;
 SET &DATASET2; BY &LINKER;
 IF FIRST.&LINKER THEN START2 = _N_;
 IF LAST.&LINKER THEN DO;
 END2 = _N_; OUTPUT;
 END;

DATA MATCHEDP (KEEP = START1 END1 START2 END2);
 MERGE POINTER1 (IN = D1MATCH) POINTER2 (IN =
D2MATCH); BY &LINKER; IF D1MATCH AND D2MATCH;

PROC DELETE DATA = POINTER1 POINTER2;

DATA MATCHED (DROP = START1 END1 START2 END2);
 SET MATCHEDP;
 DO I = START1 TO END1;
 SET &DATASET1 POINT = I;
 DO J = START2 TO END2;
 SET &DATASET2 POINT = J; OUTPUT;
 END;
 END;
 PROC DELETE DATA = MATCHEDP;

%MEND MATCH;

The results of this macro are three data sets returned to

the main program; the matched data set and two non-

matched data sets. The matched data set contains the

matched set

3

of records and all variables from both inputted data sets.

Each of the two non-matched data sets contains ONLY

the unmatched variables from that original data set (i.e.

unmatched data set #2 contains ONLY records from the

2nd data set that did not match with a record from the 1st

data set).

II.b.2 The Edits

After the records match, using the ‘linker’ variable, we

then apply an edit to the matched records to ensure that

the matches were valid. If the matched records meet the

edit criteria, then the match is kept. If it did not, then

both records are put back into the proper unmatched file

to be used in subsequent rounds. For example, suppose

we tried to match up records using only the mom’s date

of birth as the ‘linker’ variable. You would expect to

have many matches, both valid and not. In order to try to

electronically determine which of the matches are valid,

we may apply the following edit to the matched records:

the infant’s last name or address must agree.

Data Matched;
 Set Matched;
 If xInfLst = InfLst or xSTAdd = STAdd;
Run;

Using this process eliminates the need to manually

verify the matched records. This has several advantages:

1. Saves a large amount of time, especially considering

there are over 100,000 matches.

2. Provides a consistent quality of matches over time.

Using the same standards, the computer makes

objective determination for each record. Further, it

removes human elements, which leads to arbitrary

selection.

3. Control over the quality of matches.

The only disadvantage is the trade off between letting a

few bad matches through the edit process and

maintaining a high percent of records matched.

However, we can control this to some degree by use of

the ‘global’ edit.

By ‘global’ edit, we mean edit criteria that were applied

to every round of matching for that stage (note: the

QARR stage does not use the global edit because of the

limited number of data fields within the QARR data file).

The global edit occurs after the matching of records and

their passage through the regular edits.

Data Matched; Drop FieldCt;
 Set Matched; FieldCt = 0;
 xMomLst = left(compress(xMomLst,'-'));
 xInfLst = left(compress(xInfLst,'-'));
 MomLst = left(compress(MomLst,'-'));
 InfLst = left(compress(InfLst,'-'));

 DadLst = left(compress(DadLst,'-'));
 If (xMomLst = DadLst or xMomLst = MomLst or
 xMomLst = InfLst) and
 (xMomlst gt ' ')
 then FieldCt = FieldCt + 1;
 If (xInfLst = DadLst or xInfLst = MomLst or
 xInfLst = InfLst) and
 (xInfLst gt ' ')
 then FieldCt = FieldCt + 1;
 If xMom1st = Mom1st and xMom1st gt ' '
 then FieldCt = FieldCt + 1;
 If xInf1st = Inf1st and xInf1st gt ' '
 then FieldCt = FieldCt + 1;
 If xMomDOB = MomDOB and xMomDOB gt ' '
 then FieldCt = FieldCt + 1;
 If xInfDOB = InfDOB and xMomDOB gt ' '
 then FieldCt = FieldCt + 1;
 If substr(xMacRes,1,10) = substr(MacRes,1,10)
 and substr(xMacRes,1,10) gt ' '
 then FieldCt = FieldCt + 1;
 If xZip = Zip and xZip gt ' '
 then FieldCt = FieldCt + 1;
 If xCounty = County and xCounty gt ' '
 then FieldCt = FieldCt + 1;
 If xPlace = Place and xPlace gt ' '
 then FieldCt = FieldCt + 1;
 If xSSN = SSN and xSSN gt ' '
 then FieldCt = FieldCt + 1;
 If FieldCt gt 3;
Run;

It compares all of the printed fields and requires that at

least 4 of the fields have to agree for the match to be

considered valid, otherwise it is thrown back for

matching in future rounds. The ‘global’ edit does have

control over the quality of matches. If we wish for a

higher quality of match, we increase the minimum

number of fields in agreement to 5 or 6. For increased

match rates, we could lower the cutoff to 3.

One final edit is performed at the end of the third, or

MC, stage of matching. This edit occurs between when

the eight matched files are combined and adding the

unmatched VS file. The edit compares the matched

records, excluding those matched in the eighth round,

against the eight ‘linker’ variables to determine whether

the records would have been matched in other rounds. If

any record indicates that it would not have been matched

in any other round, it is visually inspected to check the

validity of its match. If the match is deemed invalid, it is

returned to the unmatched files.

II.b.3 Process of Unmatched Records for

The Next Round

After the matching and edits, the unmatched data sets are

then checked to ensure that all of their data elements are

still intact, that no elements from the other data set were

accidentally added, and that they are ready for the next

round. The first step of this process is to strip off all of

the matched records from the original data sets

containing the ‘linker’ variable, thus leaving all

unmatched records after edits.

4

We achieve this by merging each of the two original

unmatched data sets with the matched data set with the

condition that all merged data elements containing a

match are deleted. This ensures that the unmatched data

sets contain no data elements from the matched data set.

Further, this step also ‘adds’ back those records that did

not pass the edits.

** Unmatched birth records from original birth;

Proc sort data = MatR1; By CertNo; Run;
Proc Sort data = BR1; By CertNo; Run;

Data UnMatBR1;
 Merge MatR1 (in = DidMat) BR1 (in = DidBir);
 By CertNo; If Not DidMat;
Run;

Proc delete data = BR1; Run;

** Unmatched FFS records from original FFS;

Proc sort data = MatR1; By MdNo; Run;
Proc Sort data = FFSR1; By MdNo; Run;

Data UnMatFR1;
 Merge MatR1 (in = DidMat) FFSR1 (in = DidFFS);
By MdNo; If Not DidMat; Run;

Proc delete data = FFSR1; Run;

The second step of this process uses a drop statement for

the other unmatched data set’s variables, thus ensuring

that the unmatched data set does not contain any of the

other unmatched data set’s variables. In addition, those

records that did not contain the ‘linker’ variable are

added back.

** Get the unmatched birth records ready for ;
** next round. ;

Data UnMatBR1;
 Drop xAllRec1 xAllRec2 MdNo xCounty xStreet
 xZip XMom1st xMomLst xSSN xMomDOB xInf1st
 xInfLst xInfDOB xPlace xMacRes xMomDOBY
 xMomDOBM xMomDOBD xInfDOBM;
 Set UnMatBR1;

Proc Append base = UnMatBR1 data = NBR1;
Proc delete data = NBR1; Run;

Data UnMatBR1; Drop Linker;
 Set UnMatBR1;

** Get the unmatched FFS records ready for ;
** next round. ;

Data UnMatFR1;
 Drop AllRec1 AllRec2 CertNo County Street Zip
 MCD Mom1st MomLst SSN MomDOB Inf1st InfLst
 InfDOB DadLst Place MacRes MomDOBYY MomDOBDD
 MomDOBMM InfDOBMM InfLst2 MomLst2 Mom1st2;
 Set UnMatFR1;

Proc Append base = UnMatFR1 data = NFFSR1;
Proc delete data = NFFSR1; Run;

Data UnMatFR1; Drop Linker;
 Set UnMatFR1;

After the eight rounds are completed, the eight ‘matched’

files are combined into one file using the PROC

APPEND statement.

II.c Process Files for the Next Stage

Between stages, there are a few steps to be performed.

First we address the issue of duplicate/twin records. Here

is where we separate the multiple births, and women who

had two pregnancies within a year, from true duplicate

records. Recall that before the matching process, a

duplicate record data file for each data file was created.

These files contain true duplicates, subsequent twins and

subsequent records for moms who had more than one

birth in a calendar year. The matched data file is

checked for records containing duplicated mother’s

identification numbers. If one is found, we know that the

same mother had matched to more than one birth record.

Next is to compare the infant’s first name and date of

birth between the two data files to find out which of the

multiple birth records truly matched. The incorrectly

matched records of the two data files are then compared

between data files based on mother’s identification

number, infants’ date of birth and first name. If the

correct records are found, they are then added to the valid

matches.

Next, the matched file is then stripped of non-essential

information and has a ‘match’ indicator added to the

records. The unmatched VS file has a ‘match’ indicator

added to its records and is reformatted mirroring that of

the matched file. The two files are then combined. The

file is then ready for either the next stage of matching (if

the first or second stage is just completed) or applications

requiring the data.

III. Applications

Previous to this project, the Vital Statistics birth file did

not contain accurate information on the payer field. By

linking to the Medicaid files and Quality Assurance

Reporting Requirements (QARR) data, the opportunity to

analyze birth outcomes by payer groups is now possible.

The following are the current applications using this

linked data set, with unlimited potential for further

analysis.

III.a Prenatal Care and Birth Outcomes

 Performance Measurement

As part of QARR, managed care plans submit identifying

information on mothers that have a delivery in the

reporting year. The plans are not required to submit

performance indicators, as the NYSDOH calculates them

using the linked file. Quality measures calculated include

trimester prenatal care began, risk-adjusted low

5

birthweight, prenatal care utilization, cesarean delivery

rates, vaginal birth after cesarean (VBAC) rates and

access to tertiary care centers for low birthweight infants.

The linked files allow NYSDOH to calculate risk-

adjusted low birthweight rates for both Medicaid and

commercial managed care. Using PROC LOGISTIC,

logistic regression models are developed to calculate an

expected low birth weight rate for each managed care

plan. Variables included in the model include maternal

age, race, ethnicity, parity, plurality, maternal education,

smoking, drinking, substance abuse and medical risk

factors. This methodology allows for plan-to-plan

comparison of low birthweight rates of managed care

plans, accounting for the various levels of risk.

III.b Comparison of Medicaid Fee-for-Service and

Managed Care

Logistic regression models have been developed to

compare the low birthweight rates of Medicaid recipients

in fee-for-service (FFS) and managed care. Using the

linked Medicaid birth certificate file, risk-adjusted odds

ratios have been developed to compare the different

health care delivery systems in Medicaid. Comparing

FFS to managed care resulted in an odds ratio that was

not significant adjusting for maternal age, race, ethnicity,

parity, plurality, maternal education, smoking, drinking,

substance abuse and medical risk factors. As New York

State enrolls Medicaid recipients into managed care, the

evaluation of birth outcomes will be an integral part of

measuring quality of care.

III.c Regional Analysis of Birth Outcome Data

 A coalition of representatives from Albany, Schenectady

and Rensselaer Counties, along with managed care plans

has formed to address birth outcome issues in the Capital

District area of New York State. The linked Medicaid

birth certificate file allows for regional analysis of

prenatal care, low birthweight, cesarean delivery rates

and teenage pregnancy rates. This >regional approach=

is a partnership of both public (county governments) and

private (managed care plans) efforts to improve prenatal

care and birth outcomes.

III.d Risk-Adjusted Cesarean Section Rates

Crude rates of cesarean section rates for managed care

plans do not account for the clinical factors that increase

the risk of cesarean delivery. Using PROC LOGISTIC,

logistic regression models are being developed to account

for the variation in risk profiles of managed care plans.

Plan-to-plan comparisons of cesarean section delivery

rates will be computed, accounting for maternal age,

parity, preexisting co-morbid conditions, gestation, infant

body weight, obstetrical conditions and multiple

gestation.

IV. Acknowledgements

SAS is a registered trademark of the SAS Institute,

Inc., of Cary, North Carolina.

Partial funding for this project was provided by

HRSA, Maternal and Child Health Bureau.

The authors would like to thank Michael Sawyer for his

contributions to this project.

The authors would like to thank Mike Zdeb for his

background work in matching data sets with DOH.

6

TABLE: Listing of Linker Variables and Round Specific Edits

VS/FFS

Rd Linker Edit

1 Mom SSN None

2

FFS Mom Last + Mom First + Mom DOB + Infant DOB None

VS Mom Maiden + Mom First + Mom DOB + Infant DOB None

3

FFS Mom Last + Mom First + Mom DOB + Infant DOB None

VS Infant Last + Mom First + Mom DOB + Infant DOB None

4 Mom DOB + Infant DOB 2 chars of Infant First Name or 3 chars of Address

5 5 chars of Address + Mom Year of Birth Mom Month of Birth or Mom Year of Birth

6 Hospital of Birth + Mom DOB Compare 3 chars of Mom, Infant and Dad Last Name.

7 4 of Infant Last Name + 3 of Infant First Name + Infant Month of Birth First 4 of Address or Mom Year of Birth

8 4 of Mom Last + 3 of Mom First 4 of Address or Infant DOB or Infant First Name

VS/FFS/QARR

Rd Linker Edit

1 Mom First + Mom DOB + Infant DOB + PFI Either Last Name

2 First 2 chars of Mom First Name + Mom DOB + PFI First 2 chars & Last 2 chars of Either Last Name

3 7 chars of Mom First Name + PFI + Mom Year of Birth 7 chars of Mom Last Name + Month and Day of Mom and

Infant DOB

4 5 chars of Mom First Name + Mom DOB + Infant DOB + PFI None

5 5 chars of Mom First Name + YYMM of Mom Birth + YYMM of Infant Birth 5 chars of Either Last Name

6 5 chars of Mom First Name + PFI + Year of Mom Birth Compare 3 chars of Mom, Infant & Dad Last Name.

7 Mom DOB + Infant DOB + PFI

8 4 chars of Mom First Name + Mom DOB + MMDD of Infant Birth 4 chars of Either Last Name

VS/FFS/QARR/MC

Rd Linker Edit

1 Mom SSN None

2 Mom CIN None

3 Mom First Name + Mom DOB + 5 char of Address + Zip Mom Maiden Name match either Mom, Infant, or Dad Last Name

4 Mom First Name + Mom DOB + 5 char of Address 5 chars of Mom Maiden Name must 5 chars of either Mom, Infant,

or Dad Last Name

5 First 2 chars of Mom First Name + Mom DOB + 5 char of Address + Zip First & Last 2 chars of Mom Maiden Name match First and Last 2

chars of either Mom Infant, or Dad Last Name

6 Mom First Name + Mom DOB + Zip Mom Maiden Name match either Mom, Infant, or Dad Last Name

7 First 5 chars of Mom First name + 5 chars of Address + Year of Mom Birth 5 chars of Mom Maiden Name match 5 chars of either Mom, Infant,

or Dad Last Name

8 First 3 chars of Mom First name + Year and Month of Mom Birth + Zip First & Last 2 chars of Mom Maiden Name match First and Last 2

chars of either Mom, Infant, or Dad Last Name

