
Foundations of

Data Quality Management

Wenfei Fan
University of Edinburgh

Floris Geerts
University of Antwerp

SYNTHESIS LECTURES ON DATA MANAGEMENT #29

C
M
&

cLaypoolMorgan publishers&



ABSTRACT
Data quality is one of the most important problems in data management. A database system typically
aims to support the creation, maintenance, and use of large amount of data, focusing on the quantity
of data. However, real-life data are often dirty: inconsistent, duplicated, inaccurate, incomplete, or
stale. Dirty data in a database routinely generate misleading or biased analytical results and decisions,
and lead to loss of revenues, credibility and customers. With this comes the need for data quality
management. In contrast to traditional data management tasks, data quality management enables
the detection and correction of errors in the data, syntactic or semantic, in order to improve the
quality of the data and hence, add value to business processes.

This monograph gives an overview of fundamental issues underlying central aspects of data
quality, namely, data consistency, data deduplication, data accuracy, data currency, and information
completeness. We promote a uniform logical framework for dealing with these issues, based on
data quality rules. The text is organized into seven chapters, focusing on relational data. Chapter
1 introduces data quality issues. A conditional dependency theory is developed in Chapter 2, for
capturing data inconsistencies. It is followed by practical techniques in Chapter 3 for discovering
conditional dependencies, and for detecting inconsistencies and repairing data based on conditional
dependencies. Matching dependencies are introduced in Chapter 4, as matching rules for data
deduplication. A theory of relative information completeness is studied in Chapter 5, revising the
classical Closed World Assumption and the Open World Assumption, to characterize incomplete
information in the real world. A data currency model is presented in Chapter 6, to identify the
current values of entities in a database and to answer queries with the current values, in the absence of
reliable timestamps. Finally, interactions between these data quality issues are explored in Chapter 7.
Important theoretical results and practical algorithms are covered, but formal proofs are omitted.
The bibliographical notes contain pointers to papers in which the results were presented and proven,
as well as references to materials for further reading.

This text is intended for a seminar course at the graduate level. It is also to serve as a useful
resource for researchers and practitioners who are interested in the study of data quality. The funda-
mental research on data quality draws on several areas, including mathematical logic, computational
complexity and database theory. It has raised as many questions as it has answered, and is a rich
source of questions and vitality.

KEYWORDS
data quality, data consistency, data deduplication, data accuracy, information complete-
ness, data currency, data dependencies, dependency discovery, rule validation, error
detection, data repairing, master data, certain fixes
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C H A P T E R 1

Data Quality: An Overview

Database texts typically teach us how to design databases, formulate queries, and speed up query
evaluation. We are led to believe that as long as we get a query right, then our database management
system (DBMS) will find the correct answer to the query, and voilà! Unfortunately, this may not
happen. In the real world, data are often dirty. Given dirty data in a database, we are not warranted
to get accurate, complete, up-to-date or even correct answer to our query, no matter how well we
write our query and how efficient our DBMS is. These highlight the need for improving the quality

of the data.
This chapter identifies central issues in connection with data quality, and introduces a uniform

logical framework to deal with these issues, based on data quality rules.

1.1 DATA QUALITY MANAGEMENT

Traditional database systems typically focus on the quantity of data, to support the creation, mainte-
nance, and use of large volumes of data. But such a database system may not find correct answers to
our queries if the data in the database are “dirty,” i.e., when the data do not properly represent the
real world entities to which they refer.

To illustrate this, let us consider an employee relation residing in a database of a company,
specified by the following schema:

employee(FN, LN, CC, AC, phn, street, city, zip, salary, status) .

Here each tuple specifies an employee’s name (first name FN and last name LN), office phone (country
code CC, area code AC, phone phn), office address (street, city, zip code), salary, and marital status.
An instance D0 of the employee schema is shown in Figure 1.1.

Consider the following queries posted on relation D0.

(1) Query Q1 is to find the number of employees working in the NYC office (New York City). A
DBMS will tell us that the answer to Q1 in D0 is 3, by counting tuples t1, t2, and t3. However, the
answer may not be correct, for the following reasons. First, the data in D0 are inconsistent. Indeed,
the CC and AC values of t1, t2, and t3 have conflicts with their corresponding city attributes: when
CC = 44 and AC = 131, the city should be Edinburgh (EDI) in the UK, rather than NYC in the U.S.;
and similarly, when CC = 01 and AC = 908, city should be Murray Hill (MH) in the U.S. It is thus
likely that NYC is not the true city value of t1, t2, and t3. Second, the information in D0 may be
incomplete for employees working in NYC. That is, some tuples representing employees working in
NYC may be missing from D0. Hence, we cannot trust 3 to be the answer to Q1.
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FN LN CC AC phn street city zip salary status

t1: Mike Clark 44 131 null Mayfield NYC EH4 8LE 60k single
t2: Rick Stark 44 131 3456789 Crichton NYC EH4 8LE 96k married
t3: Joe Brady 01 908 7966899 Mtn Ave NYC NJ 07974 90k married
t4: Mary Smith 01 908 7966899 Mtn Ave MH NJ 07974 50k single
t5: Mary Luth 01 908 7966899 Mtn Ave MH NJ 07974 50k married
t6: Mary Luth 44 131 3456789 Mayfield EDI EH4 8LE 80k married

Figure 1.1: An employee instance.

(2) Query Q2 is to find the number of distinct employees with FN = Mary. In D0 the answer to Q2

is 3, by enumerating tuples t4, t5, and t6. Nevertheless, the chances are that t4, t5, and t6 actually
refer to the same person: all these tuples were once the true values of Mary, but some have become
obsolete. Hence, the correct answer to Q2 may be 1 instead of 3.

(3) Query Q3 is to find Mary’s current salary and current last name, provided that we know that
t4, t5, and t6 refer to the same person. Simply evaluating Q3 on D0 will get us that salary is either
50k or 80k, and that LN is either Smith or Luth. However, it does not tell us whether Mary’s
current salary is 50k, and whether her current last name is Smith. Indeed, reliable timestamps for
t4, t5, and t6 may not be available, as commonly found in practice, and hence, we cannot tell which
of 50k or 80k is more current; similarly for LN.

This example tells us that when the data are dirty, we cannot expect a database system to
answer our queries correctly, no matter what capacity it provides to accommodate large data and
how efficiently it processes our queries.

Unfortunately, real-life data are often dirty: inconsistent, duplicated, inaccurate, incomplete,
and out of date. Indeed,enterprises typically find data error rates of approximately 1–5%,and for some
companies it is above 30% [Redman, 1998]. In most data warehouse projects, data cleaning accounts
for 30–80% of the development time and budget [Shilakes and Tylman, 1998], for improving the
quality of the data rather than for developing the systems.When it comes to incomplete information,
it is estimated that “pieces of information perceived as being needed for clinical decisions were missing
from 13.6% to 81% of the time” [Miller Jr. et al., 2005].When data currency is concerned, it is known
that “2% of records in a customer file become obsolete in one month” [Eckerson, 2002]. That is, in a
database of 500,000 customer records, 10,000 records may go stale per month, 120,000 records per
year, and within two years about 50% of all the records may be obsolete.

Why do we care about dirty data? Data quality has become one of the most pressing challenges
to data management. It is reported that dirty data cost U.S. businesses 600 billion dollars annually
[Eckerson, 2002], and that erroneously priced data in retail databases alone cost U.S. consumers $2.5
billion each year [English, 2000]. While these indicate the daunting cost of dirty data in the U.S.,
there is no reason to believe that the scale of the problem is any different in any other society that
is dependent on information technology.
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These highlight the need for data quality management, to improve the quality of the data in
our databases such that the data consistently, accurately, completely, timely, and uniquely represent
the real-world entities to which they refer.

Data quality management is at least as important as traditional data management tasks for
coping with the quantity of data.There has been increasing demand in industries for developing data
quality management systems, aiming to effectively detect and correct errors in the data, and thus to
add accuracy and value to business processes. Indeed, the market for data quality tools is growing
at 16% annually, way above the 7% average forecast for other IT segments [Gartner, 2011]. As an
example, data quality tools deliver “an overall business value of more than 600 million GBP” each
year at British Telecom [Otto and Weber, 2009]. Data quality management is also a critical part
of big data management, master data management (MDM) [Loshin, 2009], customer relationship
management (CRM), enterprise resource planning (ERP), and supply chain management (SCM),
among other things.

1.2 CENTRAL ISSUES OF DATA QUALITY

We highlight five central issues in connection with data quality, namely, data consistency, data
deduplication, data accuracy, information completeness, and data currency.

1.2.1 DATA CONSISTENCY

Data consistency refers to the validity and integrity of data representing real-world entities. It aims
to detect inconsistencies or conflicts in the data. In a relational database, inconsistencies may exist
within a single tuple, between different tuples in the same relation (table), and between tuples across
different relations.

As an example, consider tuples t1, t2, and t3 in Figure 1.1.There are discrepancies and conflicts
within each of these tuples, as well as inconsistencies between different tuples.

(1) It is known that in the UK (when CC = 44), if the area code is 131, then the city should be
Edinburgh (EDI). In tuple t1, however, CC = 44 and AC = 131, but city �= EDI. That is, there exist
inconsistencies between the values of the CC, AC, and city attributes of t1; similarly for tuple t2.
These tell us that tuples t1 and t2 are erroneous.

(2) Similarly, in the U.S. (CC = 01), if the area code is 908, the city should be Murray Hill (MH).
Nevertheless, CC = 01 and AC = 908 in tuple t3, whereas its city is not MH. This indicates that tuple
t3 is not quite correct.

(3) It is also known that in the UK, zip code uniquely determines street. That is, for any two tuples
that refer to employees in the UK, if they share the same zip code, then they should have the
same value in their street attributes. However, while t1[CC] = t2[CC] = 44 and t1[zip] = t2[zip],
t1[street] �= t2[street]. Hence, there are conflicts between t1 and t2.
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Inconsistencies in the data are typically identified as violations of data dependencies (a.k.a.

integrity constraints [Abiteboul et al., 1995]). As will be seen in Chapter 2, errors in a single relation
can be detected by intrarelation constraints such as extensions of functional dependencies, while
errors across different relations can be identified by interrelation constraints such as extensions of
inclusion dependencies.

1.2.2 DATA DEDUPLICATION

Data deduplication aims to identify tuples in one or more relations that refer to the same real-world
entity. It is also known as entity resolution, duplicate detection, record matching, record linkage,
merge-purge, and object identification (for data with complex structures).

For example, consider tuples t4, t5, and t6 in Figure 1.1. To answer query Q2 given earlier,
we want to know whether these tuples refer to the same employee. The answer is affirmative if, for
instance, there exists another relation that indicates that Mary Smith and Mary Luth have the same
email account and hence, are the same person.

The need for studying data deduplication is evident: for data cleaning it is needed to eliminate
duplicate records; for data integration it is to collate and fuse information about the same entity
from multiple data sources; and for master data management it helps us identify links between input
tuples and master data.The need is also highlighted by payment card fraud, which cost $4.84 billion
worldwide in 2006 [SAS, 2006]. In fraud detection it is a routine process to cross-check whether a
credit card user is the legitimate card holder. As another example, there was a recent effort to match
records on licensed airplane pilots with records on individuals receiving disability benefits from the
U.S. Social Security Administration. The finding was quite surprising: there were 40 pilots whose
records turned up in both databases (cf. [Herzog et al., 2009]).

No matter how important it is, data deduplication is nontrivial. As will be seen in Chapter 4,
tuples pertaining to the same object may have different representations in various data sources
with different schemas. Moreover, the data sources may contain errors. These make it hard, if not
impossible, to match a pair of tuples by simply checking whether their attributes are pairwise equal
to each other. Worse still, it is often too costly to compare and examine every pair of tuples from
large data sources.

1.2.3 DATA ACCURACY

Data accuracy refers to the closeness of values in a database to the true values of the entities that the
data in the database represent. Consider, for example, a person schema:

person(FN, LN, age, height, status),

where a tuple specifies the name (FN, LN), age, height, and marital status of a person. A person

instance is shown Figure 1.2.3, in which s0 presents the “true” information for Mike. From these
we can conclude that s1[age, height] are more accurate than s2[age, height] as they are closer to the
true values of Mike, while s2[FN, status] are more accurate than s1[FN, status].
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FN LN age height status

s0: Mike Clark 14 1.70 single
s1: M. Clark 14 1.69 married
s2: Mike Clark 45 1.60 single

Figure 1.2: A person instance.

It is more challenging, however, to determine the relative accuracy of s1 and s2 when the
reference s0 is unknown, as commonly found in practice. In this setting, it is still possible to find
that for certain attributes, the values in one tuple are more accurate than the other by an analysis of
the semantics of the data, as follows.

(1) Suppose that we know that Mike is still going to middle school. From this, we can conclude that
s1[age] is more accurate than s2[age]. That is, s1[age] is closer to Mike’s true age value than s2[age],
although Mike’s true age may not be known. Indeed, it is unlikely that students in a middle school
are 45 years old. Moreover, from the age value (s1[age]), we may deduce that s2[status] may be more
accurate than s1[status].

(2) If we know that s1[height] and s2[height] were once correct, then we may conclude that s1[height]

is more accurate than s2[height], since the height of a person is typically monotonically increasing,
at least when the person is young.

1.2.4 INFORMATION COMPLETENESS

Information completeness concerns whether our database has complete information to answer our
queries. Given a database D and a query Q, we want to know whether Q can be completely answered
by using only the data in D. If the information in D is incomplete, one can hardly expect its answer
to Q to be accurate or even correct.

In practice, our databases often do not have sufficient information for our tasks at hand. For
the entities that the data in our database intend to represent, both attribute values and tuples may
be missing from our databases. For instance, the value of t1[phn] in the relation D0 of Figure 1.1 is
missing, as indicated by null. Worse still, tuples representing employees may also be missing from
D0. As we have seen earlier, for query Q1 given above, if some tuples representing employees in
the NYC office are missing from D0, then the answer to Q1 in D0 may not be correct. Incomplete
information introduces serious problems to enterprises: it routinely leads to misleading analytical
results and biased decisions, and accounts for loss of revenues, credibility and customers.

How should we cope with incomplete information? Traditional work on information com-
pleteness adopts either the Closed World Assumption (CWA) or the Open World Assumption
(OWA), stated as follows (see, for example, [Abiteboul et al., 1995]).

• The CWA assumes that a database has collected all the tuples representing real-world entities,
but the values of some attributes in those tuples are possibly missing.
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• The OWA assumes that in addition to missing values, some tuples representing real-world
entities may also be missing. That is, our database may only be a proper subset of the set of
tuples that represent those real-world entities.

Database theory is typically developed under the CWA. Unfortunately, in practice, one often finds
that not only attribute values but also tuples are missing from our database. That is, the CWA often
does not hold. On the other hand, under the OWA, we can expect few sensible queries to find
complete answers.

As will be seen in Chapter 5, neither the CWA nor the OWA is quite appropriate in emerging
applications such as master data management. In other words, databases in the real world are neither

entirely closed-world nor entirely open-world. These databases are actually “partially closed.” The
good news is that we often find that partially closed databases have complete information to answer
our queries at hand.

1.2.5 DATA CURRENCY

Data currency is also known as timeliness. It aims to identify the current values of entities represented
by tuples in a database, and to answer queries with the current values.

The question of data currency would be trivial if all data values carried valid timestamps. In
practice, however, one often finds that timestamps are unavailable or imprecise [Zhang et al., 2010].
Add to this the complication that data values are often copied or imported from other sources
[Berti-Equille et al., 2009; Dong et al., 2010, 2009a,b], which may not support a uniform scheme
of timestamps. These make it challenging to identify the “latest” values of entities from the data in
our database.

For example, recall query Q3 and the employee relation D0 of Figure 1.1 given above. Assume
that tuples t4, t5, and t6 are found pertaining to the same employee Mary by using data deduplication
techniques [Elmagarmid et al., 2007]. As remarked earlier, in the absence of reliable timestamps,
the answer to Q3 in D0 does not tell us whether Mary’s current salary is 50k or 80k, and whether
her current last name is Smith or Luth.

Not all is lost. As will be seen in Chapter 6, it is often possible to deduce currency orders from
the semantics of the data, as illustrated below.

(1) While we do not have reliable timestamps associated with Mary’s salary, we may know that the
salary of each employee in the company does not decrease, as commonly found in the real world.
This tells us that t6[salary] is more current than t4[salary] and t5[salary]. Hence, we may conclude
that Mary’s current salary is 80k.

(2) We know that the marital status can only change from single to married and from married to
divorced, but not from married to single. In addition, employee tuples with the most current marital
status also contain the most current last name.Therefore, t6[LN] = t5[LN] is more current than t4[LN].
That is, Mary’s current last name is Luth.
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CC AC phn street city zip

tm1: 44 131 3456789 Mayfield EDI EH4 8LE
tm2: 01 908 7966899 Mtn Ave MH NJ 07974

Figure 1.3: An example office master data relation.

1.2.6 INTERACTIONS BETWEEN DATA QUALITY ISSUES

To improve data quality we often need to deal with each and every of the five central issues given
above. Moreover, these issues interact with each other, as illustrated below.

As we have observed earlier, tuples t1, t2, and t3 in the relation D0 of Figure 1.1 are inconsistent.
We next show how data deduplication may help us resolve the inconsistencies. Suppose that the
company maintains a master relation for its offices, consisting of consistent, complete, and current
information about the address and phone number of each office. The master relation is denoted by
Dm and given in Figure 1.3. It is specified by schema:

office(CC, AC, phn, street, city, zip),

As will be seen in Chapter 7, we may “repair” t1, t2, and t3 as follows.

(1) If the values of attributes CC and AC of these tuples are confirmed accurate, we can safely update
their city attributes by letting t1[city] = t2[city] := EDI, and t3[city] := MH, for reasons remarked
earlier. This yields t ′

1
, t ′

2
, and t ′

3
, which differ from t1, t2, and t3, respectively, only in their city

attribute values.

(2) We know that if an employee tuple t ∈ D0 and an office tuple tm ∈ Dm agree on their address
(street, city, zip), then the two tuples “match,” i.e., they refer to the same address and phone. Hence,
we can update t[CC, AC, phn] by taking the corresponding master values from tm. This allows us to
change t ′

2
[street] to tm1[street]. That is, we repair t ′

2
[street] by matching t ′

2
and tm1. This leads to

tuple t ′′
2

, which differs from t ′
2

only in the street attribute.

(3) We also know that for employee tuples t1 and t2, if they have the same address, then they should
have the same phn value. In light of this, we can augment t ′

1
[phn] by letting t ′

1
[phn] := t ′′

2
[phn], and

obtain a new tuple t ′′
1

.

One can readily verify that t ′′
1
, t ′′

2
, and t ′

3
are consistent. In the process above, we “interleave”

operations for resolving conflicts (steps 1 and 3) and operations for detecting duplicates (step 2).
On one hand, conflict resolution helps deduplication: step 2 can be conducted only after t2[city] is
corrected. On the other hand, deduplication also helps us resolve conflicts: t ′

1
[phn] is enriched only

after t ′
2
[street] is fixed via matching.

There are various interactions between data quality issues, including but not limited to the
following.

• Data currency can be improved if more temporal information can be obtained in the process
for improving information completeness.
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• To determine the current values of an entity, we need to identify tuples pertaining to the same
entity, via data deduplication. For instance, to find Mary’s LN in the relation D0 of Figure 1.1,
we have to ask whether tuples t4, t5, and t6 refer to the same person.

• To resolve conflicts in tuples representing an entity, we often need to determine whether the
information about the entity is complete, and only if so, we can find the true value of the entity
from the available data residing in our database.

These suggest that a practical data quality management system should provide functionality
to deal with each and every one of the five central issues given above, and moreover, leverage the
interactions between these issues to improve data quality.

1.3 IMPROVING DATA QUALITY USING RULES

We have seen that real-life data are often dirty, and that dirty data are costly. In light of these,
effective techniques have to be in place to improve the quality of our data. But how?

Errors in real-life data. To answer this question, we first classify errors typically found in the real
world. There are two types of errors, namely, syntactic errors and semantic errors.

(1) Syntactic errors: violations of domain constraints by the values in our database. For example,
name = 1.23 is a syntactic error if the domain of attribute name is string. Another example is age =
250 when the range of attribute age is [0, 120].

(2) Semantic errors: discrepancies between the values in our database and the true values of the
entities that our data intend to represent. All the examples we have seen in the previous sections
are semantic errors, related to data consistency, deduplication, accuracy, currency, and information
completeness.

While syntactic errors are relatively easy to catch, it is far more challenging to detect and
correct semantic errors. In this book we focus on semantic errors.

Dependencies as data quality rules. A central question concerns how we can tell whether our data
have semantic errors, i.e., whether the data are dirty or clean. To this end, we need data quality rules
to detect semantic errors in our data, and better still, fix those errors by using the rules. But what
data quality rules should we adopt?

A natural idea is to use data dependencies (integrity constraints). Dependency theory is almost
as old as relational databases themselves. Since Codd [1972] introduced functional dependencies, a
variety of dependency languages, defined as various classes of first-order logic sentences, have been
proposed and studied.There are good reasons to believe that dependencies should play an important
role in data quality management systems. Indeed, dependencies specify a fundamental part of the
semantics of data, in a declarative way, such that errors emerge as violations of the dependencies.
Furthermore, inference systems, implication analysis, and profiling methods for dependencies have
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shown promise as a systematic method for reasoning about the semantics of the data. These help us
deduce and discover rules for improving data quality, among other things. In addition, as will be seen
later, all five central aspects of data quality—data consistency, deduplication, accuracy, currency, and
information completeness—can be specified in terms of data dependencies. This allows us to treat
various data quality issues in a uniform logical framework, in which we can study their interactions.

Nevertheless, to make practical use of dependencies in data quality management, classical de-
pendency theory has to be extended.Traditional dependencies were developed to improve the quality

of schema via normalization, and to optimize queries and prevent invalid updates (see, for example,
[Abiteboul et al., 1995]). To improve the quality of the data, we need new forms of dependencies, by
specifying patterns of semantically related data values to capture data inconsistencies, supporting
similarity predicates to accommodate data errors in data deduplication, enforcing the containment
of certain information about core business entities in master data for reasoning about information
completeness, and by incorporating temporal orders to determine data currency.

When developing dependencies for improving data quality, we need to balance the tradeoff
between expressive power and complexity, and revisit classical problems for dependencies such as
the satisfiability, implication, and finite axiomatizability analyses.

Improving data quality with rules. After we come up with the “right” dependency languages for
specifying data quality rules, the next question is how to effectively use these rules to improve data
quality. In a nutshell, a rule-based data quality management system should provide the following
functionality.

Discovering data quality rules. To use dependencies as data quality rules, it is necessary to have
efficient techniques in place that can automatically discover dependencies from data. Indeed, it is
often unrealistic to rely solely on human experts to design data quality rules via an expensive and long
manual process, and it is typically inadequate to count on business rules that have been accumulated.
This suggests that we learn informative and interesting data quality rules from (possibly dirty) data,
and prune away trivial and insignificant rules based on a threshold set by the users.

Validating data quality rules. A given set � of dependencies, either automatically discovered or man-
ually designed by domain experts, may be dirty itself. In light of this we have to identify “consistent”
dependencies from �, i.e., those rules that make sense, to be used as data quality rules. Moreover,
we need to deduce new rules and to remove redundancies from �, via the implication analysis of
those dependencies in �.

Detecting errors. After a validated set of data quality rules is identified, the next question concerns
how to effectively catch errors in a database by using these rules. Given a set � of data quality rules
and a database D, we want to detect inconsistencies in D, i.e., to find all tuples in D that violate some
rule in �. We may also want to decide whether D has complete and current information to answer
an input query Q, among other things.

Repairing data. After the errors are detected, we want to automatically localize the errors, fix the
errors, and make the data consistent, as illustrated in Section 1.2.6. We also need to identify tuples
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that refer to the same entity, and for each entity, determine its latest and most accurate values from
the data in our database. When attribute values or tuples are missing, we need to decide what data
we should import and where to import from, so that we will have sufficient information for the
tasks at hand. As remarked earlier, these should be carried out by exploring and capitalizing on the
interactions between processes for improving various aspects of data quality.

1.4 BACKGROUND

We focus on the quality of relational data in this monograph. Data consistency will be covered in
Chapters 2 and 3, followed by data deduplication, information completeness, and data currency in
Chapters 4, 5, and 6, respectively. We study their interactions in Chapter 7.

We assume that the reader is familiar with the relational data model and the standard notions
of schemas, instances, data dependencies and query languages (see [Abiteboul et al., 1995]). We also
assume the knowledge of complexity theory (see, for example, [Papadimitriou, 1994]). In particular,
we use the following notations.

(1) A database is specified by a relational schema R, which consists of a collection of relation schemas
(R1, . . . , Rn). Each relation schema Ri is defined over a set of attributes, denoted by attr(R). For
each attribute A ∈ attr(R), its domain is specified in R, denoted by dom(A). We use A, B, C and
Xi, Yi to range over attributes in attr(R), and W, X, Y, Z to range over sets (or lists) of attributes.

(2) We consider the following query languages (see [Abiteboul et al., 1995] for details):
• conjunctive queries (CQ), built up from atomic formulas with constants and variables, i.e.,

relation atoms in database schema R and built-in predicates (=, �=, <, ≤, >, ≥), by closing
under conjunction ∧ and existential quantification ∃;

• union of conjunctive queries (UCQ) of the form Q1 ∪ · · · ∪ Qr , where for each i ∈ [1, r], Qi

is in CQ;
• positive existential FO queries (∃FO+), built from atomic formulas by closing under ∧, disjunc-

tion ∨ and ∃;
• first-order logic queries (FO) built from atomic formulas using ∧,∨, negation ¬,∃ and universal

quantification ∀; and
• datalog queries (FP), defined as a collection of rules p(x̄) ← p1(x̄1), . . . , pn(x̄n), where each

pi is either an atomic formula (a relation atom in R, =, �=) or an IDB predicate. In other words,
FP is an extension of ∃FO+with an inflational fixpoint operator.

BIBLIOGRAPHIC NOTES

Data quality has been a longstanding issue for decades, and the prevalent use of the Web has increased
the risks, on an unprecedented scale, of creating and propagating dirty data. There have been several
books on various topics in connection with data quality [Batini and Scannapieco, 2006; Bertossi,
2011; Herzog et al., 2009; Naumann and Herschel, 2010].



1.4. BACKGROUND 11

The need for studying the quality of relational schemas was already recognized when Codd
[1970] introduced the relational model. Starting with keys [Codd, 1970], functional dependen-
cies [Codd, 1972], and inclusion dependencies [Fagin, 1981], a variety of integrity constraints
have been studied, including equality-generating dependencies and tuple-generating dependen-
cies [Beeri and Vardi, 1984] (see [Abiteboul et al., 1995; Maier, 1983; Vardi, 1987] for a historical
account and surveys).

To improve the quality of data, rather than schemas, Fellegi and Holt [1976] introduced the
concept of edits to detect and repair inconsistent census data. The use of integrity constraints in
improving the consistency of relational data was first formalized by Arenas et al. [1999], which
introduced two approaches: repair is to find another database that is consistent and minimally
differs from the original database, and consistent query answer is to find an answer to a given query
in every repair of the original database. We consider data repairing in this book, and refer the reader
to [Bertossi, 2011] for a comprehensive lecture on consistent query answering.

There has also been a host of work on data deduplication. We refer the interested reader
to [Elmagarmid et al., 2007; Herzog et al., 2009; Naumann and Herschel, 2010].

The subject of information completeness has also received much attention; see, for exam-
ple, [Abiteboul et al., 1995; Grahne, 1991; Imieliński and Lipski Jr, 1984; van der Meyden, 1998]
for surveys.

The temporal database community has studied how to incorporate temporal information
into the relational model, in terms of timestamps; see, for example, [Chomicki and Toman, 2005;
Snodgrass, 1999; van der Meyden, 1997] for surveys.

The study of data accuracy is still in its infancy, and its formal treatment is not yet in place.
This issue will be briefly discussed in Chapter 7.

Much more extensive bibliographic comments will be provided in the subsequent chapters.
Beyond the relational model, there has also been work on improving the quality of XML data

(e.g., [Flesca et al., 2005; Weis and Naumann, 2005]) and the quality of results returned in searches
(e.g., [Cafarella et al., 2009; Dong et al., 2009a; Galland et al., 2010; Yin et al., 2008]). These are
beyond the scope of this book.
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