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Detection of Active Wildland Fires Using
Multitemporal MODIS Images

Keiji Kushida

Abstract—The fire fractional area and radiances at 4 and 11 µm
of active fires in the boreal forests in Siberia and Mongolia were
estimated using Advanced Spaceborne Thermal Emission and
Reflection Radiometer images. In addition, a stochastic fire model
was constructed. The efficiency of a biband threshold method used
for detecting active fires on the basis of the thermal anomaly
obtained from multitemporal Moderate Resolution Imaging Spec-
troradiometer (MODIS) images was evaluated using the stochastic
fire model. The simulation results of fire detection indicated that
the aforementioned method accurately detected 80% of the fire
pixels with false alarms that were less than 2 × 10

−5 when the
radiances of the nonfire pixels at 4 and 11 µm were estimated
using past MODIS images with a standard deviation (SD) of 1 K.
The analyses also indicated that, in order to obtain fewer errors
than those obtained using the conventional contextual algorithm
(MOD14) from the objective area (omission errors that are less
than 62% and commission errors that are less than 2 × 10

−5), it
is essential to carry out the nonfire radiance estimation using past
images with an SD of less than 3 K. During an actual application
of the multitemporal method to several fire cases, fewer errors
occurred than those that occurred using MOD14.

Index Terms—Fire detection, infrared, Moderate Resolution
Imaging Spectroradiometer (MODIS), stochastic modeling.

I. INTRODUCTION

A CTIVE-FIRE detection, fire-spread prediction, and ap-
propriate fire suppression are essential for restricting the

expansion of fire.
A contextual fire-detection algorithm [1] is used for develop-

ing Moderate Resolution Imaging Spectroradiometer (MODIS)
fire product version 4 (MOD14). The contextual fire-detection
algorithm was evaluated in Siberia [2], the U.S. [3], southern
Africa [4], and Brazil [5], [6]. Comparisons with Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) onboard the Earth Observing System (EOS) Terra
suggested that the commission errors of MODIS active-fire
detection (false alarms per nonfire area) were small—3% in
Brazil [6] and 3% in Siberia [2]—while omission errors were
more common, particularly for small fires. MODIS had a 50%
detection rate when fire activity was observed in an ASTER
image as a 0.04-km2 cluster in Brazil [5], 0.03-km2 cluster in
southern Africa [4], and 0.05-km2 cluster in Siberia [2].

Because the present operational algorithm was based on fire
detection with a single-date image, there was a need to develop
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a multitemporal approach based on the detection of an anom-
alous change, which has great potential for developing future
advanced fire-detection algorithms. Most recently, the multi-
temporal approach was tested for MODIS fire detection [7].
Cloud-removed nonfire background radiances of a current im-
age at respective 4 and 11 µm were estimated with root-mean-
square errors (rmses) of 0.5–2.0 K and 0.5–1.5 K using past
multitemporal MODIS images. However, the relationship be-
tween the error of the background radiance estimation and the
fire-detection error has not been studied, and the acceptable er-
ror levels in the estimated background radiance, which is essen-
tial for developing a more reliable fire-detection algorithm than
the contextual single-date algorithm, have not been determined.

In this letter, I first determine the distribution of fire char-
acteristics such as fire fractional area and thermal radiance of
the active fire and background pixels in the boreal forests in
Siberia and Mongolia using ASTER images. Second, I evaluate
active-fire detection with the simulated multitemporal MODIS
images using biband thresholds based on a stochastic model
of fire and the estimated error levels of background radiances.
Third, I test fire detection in actual cases by comparing with
MOD14. Daytime images are used for the study.

II. STOCHASTIC FIRE MODEL

A. ASTER and MODIS Images

The study areas were the boreal forests in Siberia and
Mongolia. Table I shows the fire scenes used in constructing
the stochastic fire model (scenes A–E) and the fire scenes
used in evaluating fire detection (scenes F–I). The burnt area
was calculated as the cumulative area up until the time of the
satellite overpass by tracing the fire scars in the ASTER images.
The Siberian study area (scenes except for C) was dominated
by larch, pine, and birch forests. The Mongolian study area
(scene C) was dominated by larch, pine, and birch forests and
grassland. All of the fires occurred in the forest.

ASTER was used for evaluating the fire characteristics in the
boreal forests in Siberia and Mongolia. It has been used for
the validation of fire-detection algorithms in previous studies
[2], [4]–[6]. One pixel of MODIS is usually larger than the
size of a burning area at a given time. With the use of fine-
resolution sensors such as ASTER, the fractional area and
spread of fire can be identified and analyzed. Table II shows the
corresponding wavelengths of MODIS and ASTER. ASTER
and MODIS have bands at 2.1–2.2 and 10–12 µm; however,
MODIS only has bands near 4 µm. The 4- and 10–12-µm bands
are important in the MOD14 algorithm. From the ASTER bands
at 1.65, 2.165, and 11.3 µm and the MODIS band at 4.0 µm,
which was acquired on the same day as the ASTER image,
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TABLE I
FIRE USED IN ANALYSIS

TABLE II
MODIS AND ASTER WAVELENGTHS FOR FIRE DETECTION

the radiance at 4.0 µm in the ASTER images was estimated
by following [8]. Kushida et al. [8] assumed that a small
portion of the burning area (f) has a high temperature (Th) and
that the remaining wide area (1 − f) has a considerably low
temperature (Tc) by following [9], calculated Th and f from
the spectral radiance equations at 1.65, 2.165, and 11.3 µm, and
obtained the radiance at 4.0 µm from Th and f . The radiance at
1.65 µm contributed to estimating the reflected solar radiance
at 2.165 µm. MODIS and ASTER are onboard the same EOS
Terra platform.

Following the previous study [10], active-fire pixels in the
ASTER images were detected. The fire pixels were treated as a
burning area, and the fraction of fire spread in every 990 m ×
990 m area (33 × 33 pixels), which is equivalent to one pixel
of MODIS, in the ASTER images was calculated and defined
as the fire fractional area. The fire pixel does not entirely cor-
respond to the burning place; however, the treatment is useful
for constructing a fire stochastic model. The radiance averages
of the burning area of each MODIS fire pixel, the background
of each MODIS fire pixel, and the background of the scenes at
11 and 4 µm were calculated. The estimations of the radiances
at 4 µm for both of the fire and nonfire MODIS pixels were
accurate with the coefficient of determination R2 = 0.70 from
the evaluation with the MODIS images [8]. A stochastic fire
model that describes the relationship between the fire fractional
area in one MODIS pixel and the radiances of the burning
area and backgrounds of the fire pixels at 4 and 11 µm was
constructed on the basis of the relationships between them,
which were observed in actual fire cases. The model also
described the distribution of the aforementioned parameters.
Some 195 samples of the MODIS fire pixel and 30 251 samples
of the MODIS nonfire pixel in the five scenes were used for
constructing the stochastic fire model.

TABLE III
RADIANCES AT 11.3 µm FOR THE BACKGROUNDS OF THE MODIS

FIRE PIXEL AND THE SCENE [W/(m2
· sr · µm)]

B. Stochastic-Fire-Model Parameterization

The Kolmogrov statistical test showed that the fire fractional
area (F [m2/m2]) and the radiance of the burning area of the fire
pixel at 11 µm (R11 [W/(m2 · sr · µm)]) and 4 µm (R4 [W/
(m2 · sr · µm)]) obeyed lognormal distributions, respectively. I
assumed lognormal distributions for each of the three variables
and obtained the following:

lnF ∼N(−3.87, 1.452) (1)

lnR11 ∼N(2.48, 0.1172) (2)

lnR4 ∼N(2.47, 0.7452). (3)

Here, N(µ, σ2) denotes the normal distribution with mean µ
and variance σ2. The coefficients of correlations between lnF
and lnR11, lnF and lnR4, and lnR4 and lnR11 were 0.71,
0.73, and 0.84, respectively. I assumed that the distribution of
lnF , lnR4, and lnR11 was a 3-D normal distribution with the
aforementioned parameters.

Table III shows the radiances of the background of the scene
(Rb11 [W/(m2 · sr · µm)]) and the background of the MODIS
fire pixel (Rbf11 [W/(m2 · sr · µm)]) at 11 µm averaged over
the scene. The relationship between the two is expressed as
follows:

Rbf11 = Rb11 + 0.498, R2 = 0.85. (4)

The higher values of Rbf11 than that of Rb11 may be caused
by smoldering areas near the burning areas identified in the
ASTER image. No significant correlations between the radi-
ances of the burning area and the background of the MODIS
fire pixel were found. By adding the variance of Rbf11 as the
average value of the five scenes, we obtain

Rbf11 ∼ Rb11 + 0.498 + 0.388N(0, 1). (5)
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Here, Rbf11 [W/(m2 · sr · µm)] denotes the background of the

MODIS fire pixel at 11 µm, and Rb11 [W/(m2 · sr · µm)]) de-
notes the background radiances of the pixel at 11 µm, estimated
by the multitemporal MODIS images before the occurrence of
fire. From the regression observed in the five scenes, the rela-
tionship between the radiances of the background of the scene
at 11 µm (Rb11 [W/(m2 · sr · µm)]) and 4 µm (Rb4 [W/(m2 ·
sr · µm)]) is expressed as follows:

Rb4 = 0.212Rb11 − 1.16, R2 = 0.69. (6)

By assuming that (6) holds for those of the background ra-
diances of the pixel at 4 µm, estimated by the multitemporal

MODIS images before the occurrence of fire (Rb4 [W/(m2 · sr ·

µm)]) and Rb11 and those of the background of the fire pixel at
4 µm (Rbf4 [W/(m2 · sr · µm)]) and Rbf11, we obtain from (5)

Rbf4 ∼ Rb4 + 0.106 + 0.0823N(0, 1). (7)

The radiances of the fire pixel at 11 µm (P11 [W/(m2 · sr ·
µm)]) and 4 µm (P4 [W/(m2 · sr · µm)]) were assumed to be a
linear mixture of those of the burning area and background of
the pixel, and they are expressed as follows:

P11 = FR11 + (1 − F )Rbf11 (8)

P4 = FR4 + (1 − F )Rbf4. (9)

III. BIBAND THRESHOLD METHOD

The estimated background radiance is defined as the cloud-
removed nonfire radiance of the image at the time of detection
estimated from past multitemporal MODIS images. The esti-
mated background radiance was compared with the radiance at
a detection time, and the thermal anomaly (TA) was detected in
the image. The difference between the observed radiance at a
detection time and the estimated background radiance was de-
fined as TA. The joint probability density distribution of TA at
4 and 11 µm (TA11, TA4) was determined for both the fire and
nonfire pixels using a 0.05 W/(m2 · sr · µm) × 0.05 W/(m2 ·
sr · µm) grid cell. The stochastic fire model shown in (1)–(9)
was used to simulate 108 fire and 108 nonfire pixels using
pseudorandom numbers.

Assuming that the probability density distributions of both
background radiances at a detection time (Rdb11, Rdb4) and
the estimated background radiances (Reb11, Reb4), respec-
tively, are 2-D normal distributions expressed using the regres-
sion equation (6), the distribution of TA [(TAb11, TAb4) =
(Rdb11, Rdb4) − (Reb11, Reb4)] obeys a 2-D normal dis-

tribution with two eigenvectors (1/
√

12 + 0.2122)(1, 0.212)

and (1/
√

12 + 0.2122)(−0.212, 1) in the case of nonfire
pixels with the average of TA (TAb11, TAb4) of (0, 0).
Furthermore, the standard deviations (SDs) of TA at 4
and 11 µm (SD(TAb11), SD(TAb4)) were assumed to be
k(0.136, 0.0276) [W/(m2 · sr · µm)] (k = 1, 2, 3). These val-
ues correspond to the difference in radiances by 1, 2, and 3 K
when the temperature value is 300 K from the Planck equation.
In the range of cloud-removed nonfire surface temperatures,
these constant values are close approximations to the radiance
differences. In the case of fire pixels, when the estimated

Fig. 1. Joint probability density distributions of TA at 4 and 11 µm for fire and
nonfire pixels under the assumption of background TA estimation. The SDs are
(a) 1 K, (b) 2 K, and (c) 3 K, and the average is 0 K.

background radiance was provided, the radiance at a detection
time was calculated using (1)–(3), (5), and (7)–(9).

Fig. 1 shows the joint probability density distributions of TA
at 4 and 11 µm in the case of fire and nonfire pixels under the
assumption that the SDs are 1, 2, and 3 K and the average is
0 K. The red and blue colors indicate the fire and nonfire pixels,
respectively. The first principal component axes of the fire and
nonfire pixel distributions were at an angle. This is because,
at a high temperature, the radiance at 4 µm is more intense as
compared to that at 11 µm. The distributions of the nonfire and
fire pixels broadened with an increase in SD.

Cost function [C (in percent)] is defined as follows [11]:

C = woEo + wcEc (10)

where Eo and Ec (in percent) denote the omission and commis-
sion errors of fire detection, respectively, and wo and wc denote
the weights assigned to Eo and Ec, respectively. In general, the
number of nonfire pixels is greater than that of fire pixels in
a satellite scene. In this case, wc should be larger than wo to
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TABLE IV
OMISSION ERRORS (IN PERCENT) AND COMMISSION ERRORS

[PER(106-km2 NONFIRE AREA)] OBTAINED IN ACTIVE-FIRE DETECTION

UNDER THE ASSUMPTIONS OF TA DISTRIBUTION OF NONFIRE PIXELS

(THE COMMISSION ERROR IS SHOWN IN THE PARENTHESIS)

minimize the number of misclassified pixels. Weight (W ) is
defined as

W =
wc

wo

. (11)

In the setting of the thresholds, a single straight line on the
scatter plot of TA at 4 and 11 µm (TA11, TA4) was not used
as a threshold, but a grid-by-grid threshold setting was used.
This method follows the maximum-likelihood method. When
W = 1, if the probability density of TA of the fire pixel is
larger than that of the nonfire pixel in a grid cell d(i, j) on
the scatter plot of TA at 4 and 11 µm (TA11, TA4), then the
pixels whose TA ranged in d(i, j) are classified as fire pixels,
and if the probability density of TA of the fire pixel is smaller
than that of the nonfire pixel, then those pixels are classified
as nonfire pixels. The summation of the probability densities of
the fire pixels in d(i, j) that correspond to the classified nonfire
pixels is defined as omission error, and the summation of the
probability densities of nonfire pixels in d(i, j) that correspond
to the classified fire pixel is defined as commission error. When
W > 1, the probability density of TA of the fire pixel is divided
by W and compared with that of the nonfire pixel. The omission
and commission errors are calculated in a similar way. W was
first set to one, and it was increased one by one until the
commission errors reached less than 2.0 × 10−5.

So far, the distribution of the actual TA was assumed as the
same as that of the predicted one. When the actual and predicted
radiance values differ, the threshold setting is based on the
predicted distribution, and the estimation of the omission and
commission errors is based on the actual distribution. Several
cases were tested in which the predicted and actual distributions
were different. The aforementioned assumptions were adopted
for determining the actual distribution, and for each of the
cases, the predicted distribution was similarly assumed with the
parameters of the background TA distribution, the SDs of 0.5,
1, 1.5, 2, 2.5, and 3 K, and the average of 0 K.

Table IV shows the omission and commission errors obtained
during active-fire detection. The unit of the commission error in
Table IV was defined as the number of false alarms per 106-km2

nonfire area in the MODIS image. During the evaluation of
the omission and commission errors, the condition when the
omission error was less than 62% and the commission error was
less than 20/(106-km2 nonfire area) was treated as a standard.
It was reported in a previous paper [2] that the commission error
obtained by carrying out the MOD14 algorithm was 2.1 × 10−5

in Siberia. The omission error obtained by carrying out the
MOD14 algorithm was estimated at 62% from the relationship

between the omission error and the number of ASTER fire
pixels in a MODIS pixel (NF ) [2] and the NF distribution
obtained in this paper.

When the SD of the actual background TA distribution was
0.5 K–1 K, 84% of the fire pixels were correctly detected with
less than 18/(106-km2 nonfire area) false alarms with the use
of the predicted distribution N (0 K, 1 K2). The use of N (0 K,
2 K2) as the predicted distribution resulted in the generation of a
lesser number of errors than the standard number when the SD
of the actual background TA distribution was 0.5–2 K. When
the SD of the actual distribution was 2.5–3 K, the use of N
(0 K, 3 K2) as the predicted distribution resulted in the gen-
eration of a number of errors that were less than the standard
number. When the SD of the actual background TA was greater
than that of the predicted background TA, a larger number of
commission errors were generated than the standard number.

IV. FIRE DETECTION USING MODIS

Multitemporal active-fire detection was applied to real
MODIS data and evaluated with MOD14. The MODIS L1B and
MOD14.5 data in the range of 60◦−63◦30′ N and 123◦−130◦ E
(approximately 400 km × 400 km area) acquired at 3:00 GMT
on July 18, 2002, and at 3:15 GMT on July 23, 2002, were
downloaded from the Level 1 and Atmosphere Archive and
Distribution System and Land Processes Distributed Active
Archive Center sites. The fire pixels detected by MOD14 in the
image on July 18, 2002, and the cloud and water areas detected
by the cloud and water masks of MOD14 in the images on both
days were excluded from the analysis.

The linear regression equations were obtained for estimating
the radiances at 4 and 11 µm in the pixel in the image on
July 23, 2002 (T11−1 [W/(m2 · sr · µm)], T4−1 [W/(m2 · sr ·
µm)]) from the radiances at 4 and 11 µm in the pixel at the same
location in the image on July 18, 2002 (T11−0[W/(m2 · sr ·
µm)], T4−0 [W/(m2 · sr · µm)]) using all the pixels. The differ-
ences between (T11−1, T4−1) and the estimated (T11−1, T4−1)
were treated as TA. The multitemporal fire detection shown
in III was operated with N (0 K, 2.9 K2) as the predicted
background TA distribution. The pixels detected as fire were
removed from the data set, and the regression equation was re-
calculated until there were no pixels to remove. The calculation
was finished after the three repeats. The rmses of regression at
4 and 11 µm were 2.3 and 2.6 K, respectively. The regression
equations are as follows:

T11−1 = 0.691T11−0 − 0.159T4−0 + 3.06 (12)

T4−1 = 0.171T11−0 − 0.0391T4−0 − 0.798. (13)

The ASTER images shown in Table I scenes F–I were over-
laid in the MODIS images and were used for the evaluation of
active-fire detection. Active fires were detected in the ASTER
images, as shown in II, and MODIS pixels that include these
active fires were treated as “true” fire pixels. If a fire was
detected by one algorithm in one “true” fire, it was counted
as correctly detected. Otherwise, it was counted as an omission
error. If one algorithm detected fires where there were no “true”
fires in the eight-neighborhood, it was counted as a commis-
sion error. Table V shows the omission errors obtained dur-
ing the multitemporal algorithm and MOD14. There were no
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TABLE V
OMISSION ERRORS IN MODIS FIRE DETECTION

commission errors detected by both algorithms. The omission
error rate obtained during the multitemporal algorithm was
39%, while that obtained during MOD14 was 67%. The omis-
sion errors obtained during the multitemporal algorithm were
smaller than those obtained during MOD14 on the fire lines
along the straight-through edges of the large fire scars, which
appeared in scenes H and I.

When the TA distributions of fire and nonfire pixels were
treated as actual distributions, results revealed that the omission
and commission errors were 61% and 0/(106-km2 nonfire
area), respectively. These values were equivalent to or smaller
than 60% and 20/(106-km2 nonfire area), respectively, which
were obtained by assuming TA background distributions as N
(0 K, 2.9 K2). Since the rmses of regression at 4 and 11 µm were
2.3 and 2.6 K, respectively, the disparity of the background TA
distribution from the normal distribution was compensated by
increasing SD by 0.3–0.6 K.

V. DISCUSSIONS AND CONCLUSION

A stochastic fire model that estimates the fire fractional area
and radiances at 4 and 11 µm of the active fire in the boreal
forests in Siberia and Mongolia using ASTER images has
been constructed. This model was used to evaluate the biband
threshold method for detecting active fires on the basis of the
TA distribution obtained from multitemporal MODIS images.
The omission and commission errors were dependent on the
estimation errors of the cloud-removed nonfire background
radiances of the image at a detection time at 4 and 11 µm
derived from past multitemporal images. Assuming that the
error function was a 2-D normal distribution, it was found that
80% of the fire pixels were correctly detected with false alarms
that were less than 2 × 10−5 when the background radiances
at 4 and 11 µm were estimated from past MODIS images with
an SD of 1 K. It was essential to carry out the cloud-removed
nonfire radiance estimation using past images with an SD of
less than 3 K to obtain an omission error of less than 62% and a
commission error of less than 2 × 10−5; this technique ensured
the generation of a fewer number of errors than that generated
by MOD14. During an actual application of the multitemporal
method to several fire cases in Siberia, fewer errors occurred
than those that occurred using MOD14. The multitemporal
method had an advantage over MOD14, particularly on the fire
lines along the straight-through edges of the large fire scars.

Koltunov and Ustin [7] has estimated the background radi-
ances at respective 4 and 11 µm with the SDs of the error of
0.5–2.0 K and 0.5–1.5 K and the average of the error of approx-
imately 0 K using multitemporal MODIS images in northern
California. In more than half of the tested cases at 4 and 11 µm,

the SD was less than 1.0 K. The result of our study indicates
that the method [7] is effective in estimating background radi-
ances for detecting the active fire. However, in the method [7],
27 past multitemporal MODIS images chosen from 556 images
were used to estimate the background radiances of the image
at a detection time. The procedure was computationally more
demanding than that of MOD14. This paper indicates that the
technique presented in this paper with a simple procedure of the
background radiance estimation that provides an SD of less than
3 K could extract active fires more accurately than MOD14.

The stochastic models for determining the fire fractional area
and radiances at 4 and 11 µm of active fires are presumably de-
pendent on the fire characteristics of the place of occurrence. In
order to detect fire using multitemporal images, an appropriate
stochastic model of the burning area specific to the region or fire
type is indispensable. Therefore, it is essential to accumulate
stochastic fire information using the aforementioned technique.

Since the multitemporal and contextual techniques are based
on different procedures for fire detection, intercomparison and
combination between them have possibilities for further im-
proving the technique of fire detection.
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