
WISCONSIN MATHEMATICS, SCIENCE & ENGINEERING TALENT SEARCH

PROBLEM SET V (2012-2013)

February 2013

1. There are two non-intersecting circles C_1 and C_2 , with centers X_1 and X_2 respectively, with neither circle inside the other. From X_1 and X_2 , we draw the tangents to the opposite circles. For i = 1, 2, the tangents from X_i intersect C_i at points A_i and B_i . (We label the points so that A_1 and A_2 are on the same side of the line X_1X_2 .) Show that the line segments A_1B_1 and A_2B_2 have equal length.

- **2.** Suppose that $a \ge b \ge c \ge 0$ and $a + b + c \le 1$. Show that $a^2 + 3b^2 + 5c^2 \le 1$.
- **3.** We would like to find sets A_1, A_2, \ldots, A_n of size three which are all subsets of $\{1, 2, \ldots, 100\}$ and for any $1 \le a < b \le 100$ there is exactly one A_i with $\{a, b\} \subset A_i$. Decide if it is possible to construct such sets.
- 4. Given a set of 2n + 1 points on a circle, prove that there are at most $\frac{1}{6}n(n+1)(2n+1)$ acute triangles with vertices at those points.
- 5. In a school we have n girl and n boy students with n > 2013. We know that the number of ways we can choose a club consisting of 5 boys and 6 girls is a square number. What's the smallest possible value of n?

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on this problem page. Remember that solutions require a proof or justification.

Return To Or Email To	MATHEMATICS TALENT SEARCH Dept. of Mathematics, 480 Lincoln Drive University of Wisconsin, Madison, WI 53706 talent@math.wisc.edu	Deadline March 8, 2013	
Please Fill In	PROBLEM SET V	Problem	Score
Name & Grade		1	
School & Town		2	
Home Address		3	
Town & Zip		4	
Email Address		5	