1. There are two non-intersecting circles C_{1} and C_{2}, with centers X_{1} and X_{2} respectively, with neither circle inside the other. From X_{1} and X_{2}, we draw the tangents to the opposite circles. For $i=1,2$, the tangents from X_{i} intersect C_{i} at points A_{i} and B_{i}. (We label the points so that A_{1} and A_{2} are on the same side of the line $X_{1} X_{2}$.) Show that the line segments $A_{1} B_{1}$ and $A_{2} B_{2}$ have equal
 length.
2. Suppose that $a \geq b \geq c \geq 0$ and $a+b+c \leq 1$. Show that $a^{2}+3 b^{2}+5 c^{2} \leq 1$.
3. We would like to find sets $A_{1}, A_{2}, \ldots, A_{n}$ of size three which are all subsets of $\{1,2, \ldots, 100\}$ and for any $1 \leq a<b \leq 100$ there is exactly one A_{i} with $\{a, b\} \subset A_{i}$. Decide if it is possible to construct such sets.
4. Given a set of $2 n+1$ points on a circle, prove that there are at most $\frac{1}{6} n(n+1)(2 n+1)$ acute triangles with vertices at those points.
5. In a school we have n girl and n boy students with $n>2013$. We know that the number of ways we can choose a club consisting of 5 boys and 6 girls is a square number. What's the smallest possible value of n ?

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on this problem page. Remember that solutions require a proof or justification.

Return To	MATHEMATICS TALENT SEARCH Dept. of Mathematics, 480 Lincoln Drive University of Wisconsin, Madison, WI 53706 talent@math.wisc.edu
Or Email To	PROBLEM SET V
Name \& Grade	
School \& Town	
Home Address	
Town \& Zip	
Email Address	

Deadline March 8, 2013	
Problem	Score
1	
2	
3	
4	
5	

