Simplest Radical Form

In the expression $\sqrt[n]{b} n$ is the "index' and b is the "radicand". Example: $\sqrt[3]{16x^4}$ the index is 3 and the radicand is $16x^4$. Example: $\sqrt{75}$ the index is 2 and the radicand is 75. To write and expression in simplest radical form the following conditions must be satisfied:

- 1. A radicand contains no prime factor to a power greater than or equal to the index.
- 2. The power of the radicand and the index of the radical have no common factor greater than 1.
- 3. No radical appears in the denominator.
- 4. No fraction appears within the radical.

The replacement set for all variables should be understood to be **positive** real numbers. Examples:

- a) $\sqrt{75}$ violates rule 1, since $\sqrt{75} = \sqrt{3 \times 5^2}$
- b) $\sqrt[3]{16x^4}$ violates rule 1 since $\sqrt[3]{16x^4} = \sqrt[3]{2^4x^4}$. In fact it violates it twice.
- c) $\sqrt[4]{25x^2}$ violates rule 2.

d)
$$\frac{2}{\sqrt{5}}$$
 and $\frac{3}{2+\sqrt{5}}$ violate rule 3.

e)
$$\frac{\sqrt{x^3}}{\sqrt{y}}$$
 violates rule 1 and rule 3

f)
$$\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{x}}, \sqrt[3]{\frac{3}{16}}$$
 all violate rule 4.

To write in simplest radical form:

a)
$$\sqrt{75} = \sqrt{3} \times 5^2 = \sqrt{5^2} \times \sqrt{3} = 5\sqrt{3}$$

b) $\sqrt[3]{16x^4} = \sqrt[3]{2^4x^4} = \sqrt[3]{2^3} \times 2 \times x^3 \times x} = \sqrt[3]{2^3x^3} \times \sqrt[3]{2x} = 2x\sqrt[3]{2x}$

c)
$$\sqrt[4]{25x^2} = \sqrt[4]{5^2x^2} = \sqrt{5x}$$

d)
$$\frac{2}{\sqrt{5}} = \frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

 $\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} = \frac{3(2-\sqrt{5})}{4-5} = \frac{6-3\sqrt{5}}{-1} = -6+3\sqrt{5}$
We say the "conjugate" of $a+\sqrt{b}$ is $a-\sqrt{b}$. Therefore the last example

We say the "conjugate" of $a + \sqrt{b}$ is $a - \sqrt{b}$. Therefore the last example is often described by "multiply the numerator and denominator by the conjugate of the denominator".

e)
$$\frac{\sqrt{x^3}}{\sqrt{y}} = \frac{\sqrt{x^3}}{\sqrt{y}} \times \frac{\sqrt{y}}{\sqrt{y}} = \frac{x\sqrt{xy}}{y}$$

f) $\sqrt{\frac{1}{2}} = \frac{\sqrt{1}}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

Another example: $\frac{2+\sqrt{84}}{2} = \frac{2+\sqrt{2^2 \times 3 \times 7}}{2} = \frac{2+2\sqrt{21}}{2} = \frac{2(1+\sqrt{21})}{2} = 1+\sqrt{21}$

Write in simplest radical form:

1. $\sqrt{8}$	13. $\frac{1}{\sqrt{x}}$
2. $\sqrt{50}$	V
$3. \sqrt{45}$	14. $\frac{\sqrt{8}}{2}$
4. $\sqrt{6} \times \sqrt{12}$ 5. $\sqrt{3^2 + 4^2}$	15. $\frac{1}{2-\sqrt{3}}$
5. $\sqrt{3^2 + 4^2}$ 6. $\sqrt{27x^3}$	_ v °
7. $\sqrt{40x^3y^5}$	16. $\frac{x}{\sqrt{x}-1}$
8. $\sqrt[3]{40x^3y^5}$	17. $\frac{2-\sqrt{8}}{2}$
9. $\sqrt[4]{4x^2y^6}$	18. $\frac{2+\sqrt{16-12}}{2}$
10. $\frac{\sqrt{125}}{\sqrt{5}}$	ے۔
11. $2\sqrt{xy^2} - y\sqrt{x}$	19. $\frac{-2 + \sqrt{2^2 - 4 \times (-7)}}{2}$
12. $\frac{1}{\sqrt{3}}$	20. $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}$