© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 1

2. Creating and Saving Datasets

This chapter discusses how to create, save, and load a dataset, and how to store what you
have done to a log file.

2.1. CREATING A DATASET USING DATA EDITOR (.edif)
Before conducting analyses, you need to get a dataset in memory. You may create a dataset
by typing in data, loading an existing Stata data file (see the next section), or importing one

from other types of data files (see Chapter 8). This section addresses the first case.

Suppose you wish to create a dataset of the data listed as follow.

State Cigar Bladder Lung Kidney Leukemia Area
AK 30.34 3.46 25.88 4.32 4.90 3
AL 18.20 2.90 17.05 1.59 6.15 3
AZ 25.82 3.52 19.80 2.75 6.61 4
AR 18.24 2.99 15.98 2.02 6.94 3
CA 28.60 4.46 22.07 2.66 7.06 4

Data Graphics Statistics User Wit Y ou need to open Stata Editor window by choosing

Describe data * | DATA->Data Editor, choosing WINDOW ->Data Editor
Data editor (Ctrl + 7), or executing the .edit command.
Data browser (read-only editor) .
Create or change wariables p| - edit
sart * | Editor window looks like a spreadsheet such as Microsoft
Combine datasets * | Excel and Quattro Pro. You may see the highlighted cell
Labels & nokes v | called cell pointer at the first column and first row.
Yariable ukilities »

: First, type in “AK” and hit ENTER. You may find that
Matrices L4 .

“varl” appears at the top of the first column and “1” in the

Dkher utilities * | far-left of the first row. Column corresponds to variables,

while row represents observations; so “varl” is the name of
the first variable and “1” is the serial number of the first observation. Now the second row
and first column is highlighted.

Type in “AL” and hit ENTER again. Cell pointer is now at the third row. You can see the “2”
in the far-left of the second row. Repeat the same process until “CA.”

Il stata Editor 1 x|
Ereservel Bestare I Sart | <4 I B I Hide I Qelete...l ﬂ
var2l31 = 2582
varl vapr2 I
1 AK 30.34
2 AL i8._2
4 AR -
5 CA
2 ' 4

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 2

Now, locate the cell pointer to the second column and first row using arrow keys or mouse.
Then, type in “30.34” and hit ENTER. Similarly, “var2” occurs at the top of the second
column and cell pointer is located at the second row of the column. You can see dot (.) in the
second through fifth row of the second column. The dot indicates a missing value of a
numeric variable. Keep typing in the data all the way though the end.

You may have seven variables from varl through var7, which are automatically assigned by
Stata regardless of users’ preferences.

Stata Yariable Information You may want to change the variable names.

Double-click the first column to pop up the Stata
M arne: Variable Information dialog box. Provide a
variable name “state” instead of “varl”, and then
click OK. Again double-click other columns to
change corresponding variable names.

Farmat: After making sure no error in data entry, close
[%8s the Stata Editor window by choosing
FILE->Exit (Alt + F4) or clicking Xl icon at the
ok | L right top of the Editor window. Do not worry

about losing data since the current dataset
remains in the memory. Note that you cannot save the data before closing the Editor window.

Now you are ready to store the data into a secondary storage unit (e.g., harddisk, floppy disk,
zip disk, flash memory). Keep in mind that any change in the current dataset is not

permanently stored until you save it. Choose FILE->Save (Ctrl + S) or clicking El icon to
save the data. Then, choose the directory and provide the file name you prefer in the dialog
box. Or you may just execute the .save command as follow.

. save c:\stata\data\cancer.dta
file C:\stataldata\cancer.dta saved

Note that you can omit the default extension .dta of Stata data files. Stata reports that the file
is saved at the right below the .save command.

Since Stata can handle only one dataset at a time, you may need to remove a current dataset

out of memory in order to use other datasets. The .clear command eliminates all the variables
and observations in the memory.

. clear

You may not see anything in the Variables window after the .clear command executed.
2.2. DATA INPUT FROM KEYBOARD (.inpuf)

2.3. LOADING A DATASET (.use)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 3

In order to open a Stata data file, you may choose FILE->Open (Ctrl + O) or clicking El
icon. Then, locate the right directory and specify a file name. Alternatively, you may use
the .use (or. u) command as follow.

. use c:\stata\data\cancer.dta

You can see the list of variables of the dataset cancer.dta in the Variables window. Note that
the .dta extension, the default extension, can be omitted.

If a current dataset is changed, but you may still want to discard changes and load a new
dataset, you need to use the clear option at the end of the .use command. The comma is used
to separate a command and its options. But do not be confused with the .clear command and
the clear option.

. use c:\stata\data\cancer, clear

In some case, you may wish to prevent labels of a dataset from being loaded in the memory.
The nolabel (or nol) option is the case.

. use c:\stata\data\cancer, clear nolabel

If you may want only subset of a dataset loaded, specify variables and/or observations to be
read. This is an efficient and safe way of listing observations especially when you have a
huge dataset.

. use state cigar using c:\stata\data\cancer, clear nol
Note that you cannot omit the using subcommand when variable names are listed.

In addition, use the in qualifier to limit the range of observations and if qualifier to select
observations that satisfy the condition. Note that “u” is abbreviation of the .use.

. use c:\stata\data\cancer in 1/10, clear
. u c:\stata\data\cancer if area==1, clear nol

The first command loads first 10 observations from the dataset, while the second reads only
those observations whose area is coded as 1. Note that the equal relational operator is not =,
but ==. Following example combines three ways of specifying subsets of a data.

. u state cigar using c:\stata\data\cancer in 1/10 if cigar < 20, nol

Stata’s Internet feature allows users to load a dataset from web pages through TCP/IP
protocol. Just provide the URL after the .use command. You may also use the in and if
qualifiers to select the subset of a dataset. The second command reads variable cigar from 1%
through 10™ observation from the dataset smoking.

. use http://www.iu.edu/~statmath/stat/all/ttest/smoking.dta, clear
. u cigar using http://www.iu.edu/~statmath/stat/all/ttest/smoking in 1/10, clear

Alternatively, you may use the .webuse command to load a dataset over the web. First, you
need to check the URL currently set using the .webuse query command. The default URL is
http://www.stata-press.com/r8/.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 4

. webuse query
(prefix now "http://www.stata-press.com/data/r8")

Now, let us change the URL using the .webuse set command and load the dataset from there..

. webuse set http://www.iu.edu/~statmath/stat/all/ttest
. webuse smoking, clear

If you want to load example datasets shipped with Stata, execute the .sysuse command. Let us
see which Stata files are available by running .sysuse dir command, which and then load one
of the datasets.

. sysuse dir
. sysuse auto.dta

You may feel like using the .use command. However, the command does not work; you
should use the .sysuse command to Stata example datasets.

2.4. SAVING A DATA SET (.save and .saveold)
In order to save the current dataset, choose FILE>Save (Ctrl + S) or clicking El icon.

Or you may use the .save (or.sa) command whose usage is quite similar to that of the .use
command. Consider the following examples.

. save c:\stata\data\cancer.dta

. save, replace

. save c:\statal\data\cancer, replace

. save c:\stata\data\cancer, replace nolabel

To resave the current dataset, you may omit the file name (see the second command). Note
that the replace option overwrites an existing file and the nolabel option omits the label from
the saved dataset.

For the sake of compatibility, you may need to save a dataset in old format (i.e., Stata 7.0).
Choose FILE>Save As (Shift + Ctrl + S) and select Stata 7 Data (*.dta) from the dialog box.
Then, specify the directory and file name you prefer. Alternatively, you may use the .saveold
command as follow.

. saveold c:\stata\data\newcancer

If you have a huge dataset, you may compress it to reduce its size. The .compress command
reduces the amount of memory used by a dataset by changing variable types. For example,
double type may be changed to float, which may be reduced to int or byte.

. compress
. save c:\stata\data\small_cancer

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 5

3. Navigating (Exploring) Viewing a Dataset
This chapter addresses viewing datasets, listing observations, and labeling.
3.1 VIEWING INFORMATION OF A DATASET (.describe)

The .describe (or .d) command shows information of the current dataset.

. describe

Contains data from http://mypage.iu.edu/~kucc625/documents/cancer.dta
obs: 44

vars: 7
size: 2,640 (99.9% of memory free)
storage display value
variable name type format label variable label
state str8 %8s
cigar double %10.0g
bladder double %10.0g
lung double %10.0g
kidney double %10.0g
leukemi double %10.0g
area double %10.0g
Sorted by:

Note: dataset has changed since last saved

The results describe where the dataset comes from, how many observations and variables are
in the dataset, what kinds of data types variables have, and so on. You may specify variables
to be listed.

. d state cigar, detail

If you want to know information of a particular dataset, provide the data file name with full
path as follow. In this case, the current dataset remains unchanged.

. d using c:\stata\data\open_system.dta, short
Note that the short option suppresses specific information of each variable.

You may want to see summary statistics (e.g., mean and standard deviations) of variables in
the current dataset. Use the .summarize (or .sum) command. The separator(7) option puts a
separate line every seven observations; its default is five.

. summarize, separator(7)

Variable | Obs Mean Std. Dev Min Max

_____________ +__
state | 0

cigar | 44 24.91409 5.573286 14 42.4

bladder | 44 4.121136 .9649249 2.86 6.54

lung | 44 19.65318 4.228122 12.01 27.27

kidney | 44 2.794545 .5190799 1.59 4.32

leukemi | 44 6.829773 .6382589 4.9 8.28

area | 44 2.568182 1.020664 1 4

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 6

3.2 SUMMARY STATISTICS (.inspect)

Like the .codebook, the .inspect command is useful when you wan to keep summary statistics
of variables for the future use.

. inspect smoke

smoke: Number of Observations
Total Integers Nonintegers

| # # Negative - - -
| # # Zero 22 22 -
| # # Positive 22 22 -
[# 2 et Nt
| # # Total 44 44 -
[# Missing -

ol

0 1 44

(2 unique values)
3.3 BROWSING (.browse)

The easiest way of taking a look the current dataset is browsing. Choose DATA->""Data
Browser (read-only editor)” or execute the .hbrowse (or .br) command.

The spreadsheet-like interface provides a visual way of viewing observations in the current
dataset. However, if your dataset is large enough, browsing may not be a good solution.
The .browse is the exactly the same as the .edit except that the former does not allow any
change in the dataset.

. browse

The .list (or.l) command lists the observations of the current dataset.

list
B it e +
| state cigar bladder lung kidney leukemia area smoke west |
[=== m o I
1. | AK 30.34 3.46 25.88 4.32 4.9 3 1 1|
2. AL 18.2 2.9 17.05 1.59 6.15 3 0 1 |
3. AZ 25.82 3.52 19.8 2.75 6.61 4 1 1|
4. | AR 18.24 2.99 15.98 2.02 6.94 3 0 1 |
5. | CA 28.6 4.46 22.07 2.66 7.06 4 1 1|
[=== m o I
6. | CT 31.1 5.11 22.83 3.35 7.2 1 1 0 |
7. | DE 33.6 4.78 24.55 3.36 6.45 3 1 1 |
8. | DC 40.46 5.6 27.27 3.13 7.08 3 1 1|
9. | FL 28.27 4.46 23.57 2.41 6.07 3 1 1]
10. | ID 20.1 3.08 13.58 2.46 6.62 4 0 1|

If observations are more than one page, Stata will list the first page and pause. The “—
more—* at the left bottom indicates that there are more observations to be listed. You may
hit ENTER to see one next observation and SPACE to list one next page. If you want to stop
listing, press Ctrl+Break.

3.4 LISTING VARIABLES AND OBSERVATIONS (./is?)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 7

If a dataset has many variables and observations, the result of the ./ist may be messy. You
may wish to take a look at some variables or observations rather than all of them. Following
examples specify the variables to be listed using wildcards

. list state cigar bladder
. list state-lung;

. 1 state 1%
R e L L R kel +
| state lung leukemi |
| oo |
1. | AK 25.88 4.9 |
2. | AL 17.05 6.15 |
3. | AZ 19.8 6.61 |
4. | AR 15.98 6.94 |
5. | CA 22.07 7.06 |
| oo |
6. | CT 22.83 7.2 |
7. | DE 24.55 6.45 |
8. | DC 27.27 7.08 |
9. | FL 23.57 6.07 |
10. | ID 13.58 6.62 |
R T SORLEELEE |
11. | IL 22.8 7.27 |
12. | IN 20.3 7 |
13. | 10 16.59 7.69 |
14. | KS 16.84 7.42 |
--more--

Note that state-lung includes cigar and bladder located between state and lung. “1*” indicates
all the variables beginning with “l.”

The in and if qualifiers are commonly used to specify observations to be listed. See Chapter
2.8 for the details. First, consider the following examples of the in qualifier.

. list in 10/15

. 1 state k* in 10

. 1 state cigar lung in 15/-1
. 1 state ?i* in -5/1

40. | VT 25.89 3.17 |
41. | WA 21.17 2.78 |
42. | WI 21.25 2.34 |
43. | WV 22.86 3.28 |
44. | Wy 28.04 2.66 |

e L LT +

The first command lists all the variables of observation 10 through 15. The second command
displays the values of state and kidney of 10™ observation. The third lists state, cigar, and
lung of observation 15 through the last one. The last command shows state, cigar, and kidney
of the last five observations since “?i*” reads any character, i, and any characters. Note that
“-5” refers to the fifth observation from the last and “-1” or “I” indicates the last observation.

Following examples select observations using the if qualifier. Be careful not to use wildcards
(e.g., * and ?) in the if qualifier.

. list if area==1

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 8

. list if state=="IN"

. 1 state cigar if missing(cigar)

. 1 state cigar bladder if (area==2) & (cigar <=20)

. 1 state cigar lung in 5/25 if (area==4) | (lung >= 30)

R e L] +
| state cigar lung |
[-eomm oo |

5. | CA 28.6 22.07 |

10. | 1D 20.1 13.58 |

24. | MT 23.75 19.5 |
R L L] +

The first command lists observations whose area is coded as 1. The second shows that a
string variable requires enclosing a string with double quotation marks. The third selects
observations whose value of cigar is missing. The fourth lists observations whose area is 2
and cigar is less than or equal to 20. The last example shows how the in and if qualifiers are
used at the same time. Note that & and | are respectively “and” and “or” logical operators.
The order of the in and if does not matter.

Among useful options are noobs, divider, separator(#), string(#), and nolabel. The noobs
suppresses observation numbers listed. The divider and separator(#) respectively put dividers
of column and separate lines of row. The string(#) truncates a long string so that only first #
characters are listed. The nolabel suppresses the value labels and shows the original values.

. list state cigar 1*, nolabel string(3)
. 1 state cigar kidney in 1/6, noobs divider separator(2)

Fommmmmmm e e e oo +
| state | cigar | kidney |
|------- #omomane ot |
| AK | 30.34 | 4.32 |
| AL | 18.2 | 1.59 |
|------- Homomoee Homemo e |
| AZ | 25.82 | 2.75 |
| AR | 18.24 | 2.02 |
|------- Homonoee omemoe |
| CA| 28.6 | 2.66 |
| CT | 31.1 | 3.35 |
L L e b +

3.5 COUNTING OBSERVATIONS (.count)

This command counts the number of observations that meet the condition specified.

. count if cigar > 20
38

3.6 FORMATTING (.format)

The .format command specifies the format of variables to be displayed. But this command
does not affect actual values of variables. When a variable is copied, its format is also copied.

You may check the current display format of each variable by execute .describe command,
which shows variable names, types, formats, and labels.

. describe

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 9

In general, a format begins with % that is followed by a number (the total number of digits),
period, a number (the number of digits below the decimal point), and letters indicating types
of format.

Let us put a comma in variable in order to make numbers more readable. In the following
example, the first number “10” indicates the total number of digits including the decimal
point, while the second “2” sets the number of digits below the decimal point. The letter “f”
and “c” respectively mean “fixed format” and “comma format.”

. format gnp2 gdp2 %10.2fc
. list gnp gnp2 gdp gdp2

R L L L L L L L R LD L +

I gnp gnp2 gdp gdp2 }
1. | 1600.929 1,600.93 3420.02 3,420.02 |
2. | 251.0714 251.07 3559.387 3,559.39 |
3. | 469 469.00 3569.177 3,569.18 |
4. | 227.7857 227.79 3910.404 3,910.40 |
5. | 339.8571 339.86 4649.005 4,649.00 |

Note that “gnp” and “gdp” are displayed in their default format. The following is an example
of a numeric format without any digit below the decimal point.

. format 1* %5.0f

If you wish to fill leading zero, add “0” right after the %. Note that wildcards * and - are used
to list variables efficiently.

. format cigar-kidney %010.2f

I3 €6
- S

Now, you may want string variables to be left-justified. Use the “-*“ and “s” to indicate “left-
justified format” and “string format,” respectively. Again the “15” indicates the total number
of characters of the variables to be displayed.

. format last_name first_name %-15s

(1313

You may take
66+"’

out in order to get back to the default right-justified format. But, do not use

. format last_name first_name %15s
For detailed formats, run the .help format command.

3.7 SEARCHING VARIABLES (.lookfor)

This command is used to search a string in variables and labels. The following command lists

cC_9

the variables whose names include “1”.

. lookfor 1

storage display value
variable name type format label variable label

http://www.sonsoo.org

©2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 10

bladder double %10.0g
lung double %$10.0g
leukemia double %10.0g

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets. 11

4. Labeling and Logging

4.1 LABELING (./abel)
Stata provides ways of labeling data, variables, and values of a variable.
4.1.1 Labeling Dataset (.label data)

You can label datasets, variables, and values of variables using the .label (or .la) command.
Proper labeling makes it easy to read data. First, let us give a name to the current dataset.
Note that the keyword data in the following indicates the label is for the current dataset and
the label is enclosed by double quotation marks.

. label data "Study on Cigarette Smoking and Cancers"
4.1.2 Labeling Variables (./abel variable)

Next, put labels on first two variables. Note that the variable can be reduced to var.

. label variable state "State"
. la var cigar "The Number of Cigarette Sold"

4.1.3 Labeling Values of Variables (.label values)

Let us move on to label values of variables. First, we need to define a value label. Then, we
can apply the label to proper variables.

. la define place 1 "East" 2 "Midwest" 3 "South" 4 "West"
. la values area place

. 1 state area cigar in -5/1 . 1 state area cigar in -5/1, noobs nol
R e e e e e + B L e +
| state area cigar | | state area cigar |
[-om oo | [-om oo |
40. | VT East 25.89 | | VT 1 25.89 |
41. | WA West 21.17 | | WA 4 21.17 |
42. | WI Midwest 21.25 | | WI 2 21.25 |
43, | Wv South 22.86 | | Wv 3 22.86 |
44. | WY West 28.04 | | % 4 28.04 |
R e e e + e L +

Note that a variable name precedes its label name (see the second example). Let us take a
look at the variable label of the “area” in comparison to the second command that suppresses
observation numbers and labels.

Now, it is time to check what happened. The .describe (or .d) command shows labels put on
the current dataset and two variables. You can see two variable labels and one value label.

. describe

Contains data from C:\stataldata\cigarette_cancer.dta

obs: 44
vars: 7 13 Oct 2003 00:53
size: 2,068 (99.9% of memory free)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 12

storage display value
variable name type format label variable label
state str2 %9s State
cigar double %10.0g The Number of Cigarette Sold
bladder double %10.0g
lung double %10.0g
kidney double %10.0g
leukemi double %10.0g
area byte %10.0g place

Sorted by:

You may wish to remove labels. Execute the .label command without labels.
. label data
. la var state

. la values area
. la drop place

Moving from the first command to the last, the commands remove labels for the data,
variable, value, and label defined, respectively.

4.2 PRODUCING VALUE LABELS (.labelbook)

This command produces a codebook that describes value labels of variables.

labelbook smoke

values labels
range: [0,1] string length: [5,8]
N: 2 unique at full length: vyes
gaps: no unique at length 12: vyes
missing .*: 0 null string: no

leading/trailing blanks: no
numeric -> numeric: no

definition
0 No-smoke
1 Smoke

variables: smoke
4.3 SAVING WHAT YOU HAVE DONE (./og)
Log contains commands executed and their outputs. What you are seeing in the Stata Results

window will go away as you continue the job. Saving log is important since it allows you to
review what you have done. Thus, you can

Open. .. Tl replicate entire steps of data manipulations or
Wil ., analyses to get the results in the future." To sum,
SEE Crl+5 PLEASE begin logging all the time before you
Save fs... ShiftA-CEr 45 navigate Stata.

Da...

i If you wish to store the log, choose

Begin... | FILE->Log—>Begin menu, and then provide a

Import r Zlose

S k| Suspend ch. Once having log files, you can know how data are
Open Graph. .. Fesurme hich set of steps are followed whenever you want.
Save Graph. .. Wigw, ..

Brink Gragh. .. Translake. ..

Prink Results. ..

Exit Ale+F4

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 13

log file name. Alternatively, use the .log command with appropriate options before
conducting analyses.

. log using c:\stata\data\cancer.log

The .log command declares and opens a log file. From now on, all commands and their
outputs appearing in the Stata Results window will be stored in the file cancer.log. If you
wish to overwrite or append to a existing file, attach the replace and append options,
respectively.

. log using c:\stata\data\cancer.log, append

When you need to pause or suspend logging temporarily, use the .log off command. To
resume logging, use the .log on command. The .log close terminates logging and close the
file. These three commands correspond to suspend, resume, and close menu in the previous
screenshot.

. log off
. log on
. log close

4.4 SAVING COMMANDS (.log and .cmdlog)

Sometimes you may wish to save commands only. Use the .cmdlog command whose usage is
similar to that of the .Jog command. Consider following examples.

. cmdlog using c:\stata\data\open_cmd.log, append
. cmdlog off

. cmdlog on

. cmdlog close

You may forget to save log sometimes. But do not be frustrated. The .#review command
shows you the list of commands you have executed so far. Let us save the list to a log file at
once. Note that “50” displays the most recent 50 commands executed. The default number is
5, so only recent five commands are displayed.

. log using c:\stata\data\past_cmd.log
. #review 50

4.5 USING CODEBOOK (.codebook)

Like a database dictionary, a codebook contains essential information of variables such as
data type, range, mean, standard deviation, frequencies or percentiles, missing values, and
label. Thus, keeping codebooks is important for those (including authors) who want to use the
dataset later.

. codebook
. codebook, header notes
. codebook cigar area

type: numeric (double)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013)

range:
unique values:

mean:
std. dev:

percentiles:

type:
label:

range:
unique values:

tabulation:

Stata Datasets: 14

[14,42.4] units: .e1
43 missing .: /44
24.9141
5.57329
10% 25% 50% 75% 90%
18.24 21.21 23.765 28.155 30.34
Four Different Areas
numeric (double)
place
[1,4] units: 1
4 missing .: /44
Freq. Numeric Label
8 1 East
12 2 Midwest
15 3 South
9 4 West

The first command above shows a codebook of entire variables in the current dataset. The
second puts headers at the top of the codebook and notes attached to variables. The third

displays a codebook of the variables specified.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 15

5. Importing and Exporting

This chapter explains how to read a dataset from external files and export to ASCII text files.
Stata can read and write to various ASCII text files, and also retrieve data stored in
spreadsheet and database files indirectly through ODBC drivers.

5.1 UNDERSTANDING ASCII TEXT FORMAT

The ASCII text is the basic file format in computers. So, it is important to understand
fundamentals of this format.

5.1.1. ASCII Text

The ASCII (American Standard Code for Information Interchange) is a set of codes of 256
characters used in computers. It includes alphabet (A-Z and a-z), number (0-9), control
characters (e.g., ENTER and SHIFT), and graphic characters.” The ASCII text has raw data
and/or delimiter. This format does not include information about font, size, and color. This
basic file format is simplest in data structure and lightest in size. It is not surprising that
ASCII text format, mainly due to its high compatibility, has been widely used in computers.
There are in general three groups of ASCII text depending on delimiters: free, delimited, and
fixed formats.

5.1.2 Free Format

Free format ASCII text separates data items using space (Table 5.1). So, this format is simple
and intuitive enough to be used for small data. However, this format is not appropriate
especially when data items contain space and/or data are ill-organized.

Table 5.1 ASCII Text Formats According to Delimiter

Free Format (space delimited) Tab delimited format Comma delimited (CSV)
James 87 40 James 87 40 “James”, 87,40
David 85 100 David 85 100 | “bavid”, 85,100
Ginger 89 25 Ginger 89 25 “Ginger”, 89,25

5.1.3 Delimited Format

Delimited ASCII text format uses other delimiters than space (Table 5. 1).3 The tab-delimited
and comma-delimited are most common in this format, but any special characters such as @,
#, 8, %, ", &, and * also can be a delimiter. In particular, the comma-delimited is called CSV
(comma Separated Value) format, which is able to deal with complicated and ill-organized
data from spreadsheet and database. This format often has a list of variable names at the first
line.

5.1.4 Fixed Format

The fixed format, most generally and widely used in computers, does not use delimiter at all.
It recognizes data items by column positions (column ranges). If there are many variables to
be read, it is efficient to write a separate file to provide necessary information. This file is

called data dictionary that defines variable type, name, position, format, label, or value label.

2 For example, A is assigned to 65, a to 97, zero (0) to 48, + to 43, ENTER to 13, and so forth.
? In fact, Stata can read an ASCII text file that uses space (free format), Tab, and comma at the same time.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 16

That is, a data dictionary defines how variables are read and write. See section 5.4 and 5.5 for
details about data dictionary.

Table 5.2 summarizes Stata importing commands according to the data formats. It is notable
that the . insheet does not use data dictionary and in/if qualifiers.

Table 5.2 Import Commands According to ASCII Formats.

Data Format | Free format Delimited format Fixed format
Command .infile .insheet .infix .infile
Delimiter Space (Blank) Tab, Comma, etc. N/A N/A
Data Dictionary No

in/if Qualifiers No

Data Beginning _first (#) Names # first _first (#)
Line Control _line(#) #:0r / _line(#)
Column Control #-# _column (#)
Multiple Lines _lines (#) # lines _lines (#)
Multiple Obs _lrecl(#)
Variable Type Yes No Yes Yes
Informat No No Option
Variable Label Option® No No Option
Value Label Option No No Option

* Available only in data dictionary
5.2 [IMPORTING THE FREE FORMAT

Stata .infile is flexible in that it can handle Tab, comma, or space delimited and their
combination. This command also can read the fixed format. In order to invoke the import
menu, click File=>Import.

5.2.1 Basics of the .infile

Supposed you need to read a free formatted ASCII file with five numeric variables. The
easiest way is to run the following . infile command. Note that the using specifies the
ASCII text file and the c1ear option replaces existing dataset in memory with new one.

. infile v1-v5 using c:\stata\cancer.txt, clear

This command reads five variables in the float type (default type) and assigns names from v1
through v5. Users may specify substantive variable names as follows. The . inf below is the
abbreviation of the .infile.

. inf id class gl-g3 using c:\statal\cancer.txt, clear

Users may not omit all or a part of variables when reading the free format. But it is possible
to ignore some variables by specifying the skip (#) instead of variable names. The
command below read only four variables, ignoring the second.

. inf id skip(l) gl-g3 using c:\stata\cancer.txt, clear

Note that _skip (1) or skip skips one variable and continues to read next variables.

* This flexibility is a double-edged sward in the sense that beginners may get easily messed up with various
alternatives and exceptions. So, the free format in this book means by space-delimited ASCII format.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 17

5.2.2 Specifying Variable Types

You may specify variable types if needed. If a dataset contains string, you have to specify
string type (str) explicitly. The byte type is appropriate for survey questions (Likert scale).
When large integers need to be read, use the 1ong instead of int type. Some scientific
research requires double-precision type for accuracy (see Table 1.3 for variable type)

inf str8 id byte (gl-gl0) using survey.txt, clear
inf str20 firm long (sale profit) using company.txt, clear
inf int id double (weight speed ratio) using atom.txt, clear

The variables placed in parentheses are given the same type.

5.2.3 Specifying a Subset of Data
The in and/or if qualifiers import a subset of data rather than entire observations in a file.
infile id str20 name stat math using student.txt in 1/150 if stat < 50, clear

5.2.4 Adding Labels

The .infile allows users to add variable labels and/or value labels to variables.” Variable
labels must be enclosed by double quotes. A variable name and value label is separated by
colon (:). Value labels (e.g., male 1b1) must be defined beforehand.

infile id str20 name male:male 1lbl stat math student.txt, clear
5.2.5 Using Data Dictionary

If there are many variables in a free formatted ASCII file, it will be efficient to use data
dictionary.

infile dictionary using student.txt {

int id “Student ID”
str20 name “Student Name”
byte male:male 1bl “Gender”

float stat “Stat Score”
double math “Math Score”

Users can run the . infile command using data dictionary as follows.

infile using student.dct, clear

Note that the using modifier in this case requires the data dictionary student.dct, not a raw
data file.

5.2.6 Handling Missing and String

Missing values in a data file need to be coded as period (.) for numeric variables and “”” for
string variables.® Leaving blanks for missing ends up with a crumbled dataset. If string

5 Adding variable labels is allowed only in data dictionary.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 18

variables contain blanks, the values should be enclosed by single or double quotes (e.g.,
“New York”).

5.3 IMPORTING DELIMITED FORMATS

The . insheet command imports variously delimited ASCII text files. Tab and comma
delimited formats are most common. However, the . insheet cannot directly read
spreadsheet files such as Excel (*.xIs) and Quattro Pro (*.wk1).” This command does not
allow in/if qualifiers and data dictionary.

5.3.1 Importing the CSV Format (.insheet)

The .insheet reads the CSV format in an easy manner. Stata automatically checks if the
ASCII file contains a list of variable at the top line, and if the file is comma or Tab
delimited.”

. insheet using c:\stata\cancer.csv, clear

It is recommended that users explicitly specify the names and comma options when a CSV file
contains variable names at the first line. These options are abbreviated as n and c,
respectively.

. insheet using c:\stata\cancer.csv, comma names clear

If you do not list variable names in reading a CSV file without variable names, variables are
named as v1, v2, v3 ...

. insheet using c:\stata\student.csv, comma clear

When providing variable names in the . insheet, you must not list too few or too many
variables; skip or skip (#) is not allowed. The following assumes that there are three
variables in the CSV file.

. insheet id name stat math using c:\statal\student.csv, c clear
5.3.2 Importing the Tab Delimited Format (.insheet)

If an ASCII file is Tab delimited, use the tab option instead of the comma. Other usages
remain unchanged.

. insheet using c:\stata\cancer.txt, tab names clear
. insheet using c:\stata\student.txt, t clear
. insheet id name stat math using c:\statalstudent.txt, t clear

5.3.3 Importing Other Delimited Formats (.insheet)

% In fact, any string like “N/A” and “Unknown” in a numeric variable is considered missing in Stata. It is a well-
known convention to use a period for missing.

" Thus, users need to save a spreadsheet or database file to an ASCII text file with tab, comma, or other
characters delimited.

¥ Personally, I do not like this excessive flexibility and redundancy. It is recommended that the . insheet by
default assume the CSV format (comma delimited) without variable names. The names and/or delim (“...”)
options need to be used only if required.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 19

The . insheet has a general method to specify a delimiter used in an ASCII file. The
delimiter option enables users to specify various characters (e.g., ", &, and @) as a
delimiter. Again other usages remain constant.

w o

insheet using c:\stata\cancer.txt, delim(“,”) names clear

insheet using c:\stata\cancer.txt, delim(“*”) n clear

insheet using c:\statalstudent.txt, delim(“%”) clear

insheet id stat math using c:\stata\student.txt, delim(“Q@”) clear

Note that the de1im (", ”) and the comma options are equivalent.

5.4 IMPORTING FIXED FORMAT USING THE .infix

The . infix command imports a fixed formatted ASCII text. Users may or may not use data
dictionary for this command. This command does not allow variable labels and value labels.

5.4.1 The .infix without Data Dictionary

If an ASCII file has a few variables in a simple format, you just need to list the variables’
names, types, and column ranges. Consider the following example.

infix id 1-4 str name 5-19 male 20 stat 21-25 math 26-30 using student.txt

Stata reads an integer variable id from column 1 through 4; a string variable name from
column 5 through 19; a float variable male at column 20; a float stat from 21 through 25;
and so forth. Note that the str may not be omitted.

Since the . infix recognizes a data item by its column range, not by a delimiter, users may
skip variables and/or ignore the order of variables.

infix int id 1-4 str name 5-19 math 26-30 using student.txt, clear
infix stat 21-25 int id 1-4 math 26-30 str name 5-19 using student.txt, clear

Users also may select observations to be read using the in and/or if qualifiers.

infix int id 1-4 str name 5-19 math 26-30 using student.txt in 1/100, clear
5.4.2 The .infix with Data Dictionary

If there are many variables in a complicated format, users can benefit from writing a data
dictionary.” This approach is highly recommended for the purpose of data management.

Take a look at a sample data dictionary student.dct. The float, the default variable type,
can be omitted; however, [would recommend specifying explicitly.

infix dictionary using student.txt {
int id 1- 4
str name 5-19
byte male 20-20
float math 26-30

? Users may run the . doedit command to invoke the internal Stata text editor, or launch other external text
editors like Notepad.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 20

float stat 21-25

You can run the . infix command with a data dictionary as follows.
. infix using student.dct in 1/100

The using modifier in this case specifies a data dictionary file whose extension .dct can be
omitted.

5.4.3 Using Data Dictionary with Raw Data

The data dictionary file may contain raw data as well as definition of variables. Thus, the
using modifier and an external data file name are not necessary. Consider the following
example.

infix dictionary {

2 firstline
int id 1- 4
str name 5-19
byte male 20-20
float stat 21-25
float math 26-30

e G
3201John 1 89.1 95.0

The raw data begin after the closing brace (}). The 2 firstline states that actual data begin
at the second line; a ruler at the first line is used for column count.

5.4.4 Importing Observations Spanning Multiple Lines

The . infix command can handle data files with multiple lines per observation. Users specify
the line number followed by colon (:) before a column range. The following assumes that an
observation spans over three lines.

infix dictionary using survey2005.txt {
5 firstline

byte class 1: 1- 2
str name 2: 1-25
str state 3: 1- 2
float zipcode 3: 4- 8

}

Stata begins to read actual data from the 5™ line (5 firstline);read a byte type variable
class from column 1 to 2 (1: 1-2) in the first line of an observation; read the name from 1
through 25 in the second line; read two characters for the state in the third; and so forth. The
order of variables listed does not matter. The first line number and colon by default may be
omitted.

Alternatively, users may use other line and column controls. In the following example, the #
lines says the number of lines per observation; the #: and / respectively indicate a specific
line and going forward line (next line). However, this approach is not recommended due to
lack of simplicity.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 21

infix dictionary using survey2005.txt {
5 firstline

3 lines
1:
byte class 1- 2
2:
str name 1-25
/
str state 1- 2
int zipcode 4- 8

Note that the 3 1ines and 1: above may be omitted."
5.5 IMPORTING FIXED FORMAT USING THE .infile

The .infile can read the fixed format as well as the free format. However, this command in
general is not as efficient as the . infix command.

5.5.1 Importing the Fixed Format (.infile)

The .infile uses informat, variable label, value labels, or line/column controls. The
following is a simple example of this command.

infile dictionary using student.txt {
int id $4f
strl0 name %15s
byte male S1f
float stat %5.1f
float math %5.1f

Informats beginning with % determine whether the variable is numeric or string. Users also
specify variable types. For example, id is a five-digit integer variable, while name is a string
10 character long.

Users can import an ASCII file using a data dictionary as follows.
infile using student.dct

5.5.2 Column Controls and Adding Labels

The .infile can control column pointer using the column (#)and/or skip (#)options.
Unlike the . infix, this command also allows variable labels and/or value labels.

infile dictionary using student.txt {

int id %4f “Student ID”

strl5 name %15s “Student Name”

byte male:male 1bl 31f “Gender”
_skip(5) float math $5.1f “Math Score”
_column (21) float stat $5.1f “Stat Score”

}

!0 Again Stata’s flexibility is available at the expense of simplicity and consistency.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 22

The skip (5) move the column pointer forward by five columns to read math score from
column 26. And then the column pointer by column (21) jumps back to 21 to read statistics
score. Remember that the order of variables does not matter in the fixed format. The informat
$5.1f means a five-digit numeric variable with one digit below decimal point. Variable
labels and value labels are used as in 5.2.5.

5.5.3 Importing Observations Spanning Multiple Lines

Like the .infix, the .infile also can read the fixed format with multiple lines per
observation. The following example is equivalent to that of 5.4.4.

infile dictionary using survey2005.txt {
_firstline(5)

_lines (3)
~_line(1)

byte class %2f
~_line(2)

str25 name %25s
~_line(3)

str2 State %2s
_skip(1) int zipcode $£5

}

The_firstline(S)isequhkﬂentﬂ)S firstlineinthe.infix;_lines(B)t03 lines;
and line(3) to 3:. Note thatthe skip(1) or skip moves the column pointer by 1 to
the right."'

5.5.4 Importing Multiple Observations in a Line

Unlike the .infix, the .infile hasthe 1recl (#) option that works as a line holder.' Stata
reads # columns for an observation and reads next # columns for the next observation. When
encountering the end of a line (carriage return and linefeed), Stata continues to read data in
the same manner from the first column of the next line.

infile dictionary {

_lrecl (7)
byte group %1f
_skip(1) float score %4.1f
skip (1)

¥
3 22.4 2 54.5 2 57.5 2 68.9 3 45.2

Note that the second skip (1)above gives a space between observations. The
_lrecl (#)option must not be used with the firstline (#). This feature is useful especially
when importing data for ANOVA. See the related applications in Chapter 12.

5.6 IMPORTING EXCEL FILES (.import excel)

"' Do not be confused with the skip (1) in 5.2.1 that is used to skip variables.
"2 LRECL stands for Logical Record Length that has been used in UNIX machines.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 23

Recent Stata releases can read Excel files (both .xIs and .xIsx) directly using . import excel.
The firstrow option tells Stata to read the firstrow of the specified Excel worksheet as
variable names. The sheet and cellrange respectively specify Excel worksheet to be read
and the range of cells of the worksheet.

. import excel smoking.xls, firstrow clear
. import excel smoking.xls, sheet (“cancer”) cellrange (A2:7Z50) clear
. import excel smoking.xls, sheet (“cancer”) cellrange (A2:750) firstrow clear

If you want to export a Stata dataset to an Excel file, use the . import excel command.
5.7 IMPORTING THROUGH ODBC (.0dbc)

Stata supports ODBC (Open Database Connectivity), a standardized set of function calls for
accessing data."® This feature enables users to read and write various data formats such as
spreadsheet (e.g., Excel and Quattro Pro) and database (e.g., dBase I+, FoxPro, Paradox,
and Access) through the ODBC driver."

Users can check the ODBC drivers and system DSN (Data Source Name) that are currently
available by executing the .odbc 1ist.

. odbc list

The .odbc load reads a data table using system DSN. Users may specify variables and/or
select observations to be read.

. odbc load, table("student") dsn("school") clear
. odbc load id name stat if male==1, table("student”) dsn("school") clear

The .odbc 1load also can run SQL (Structured Query Language) SELECT statements using
the exec (“..”) option.

. odbc load, exec (“SELECT id name stat FROM student WHERE male=1") dsn("school")
clear

For other odbc commands like the .odbc insert, see the data management manual (2005)
orrun .help odbc.

5.8 COPYING AND PASTING FROM SPREADSHEETS

Microsoft Windows users can copy and past spreadsheet data to Stata Data Editor and vice
versa. In Excel and Quattro Pro, highlight entire or a part of a worksheet; copy the data to the
Clipboard; open Data Editor; and past data in the Clipboard into the Data Editor.

The copying and pasting is not available in the interactive and non-interactive modes, but
only in the point-and-click mode. This feature, although highly handy, is not recommended
especially when data are huge and less organized.

13 Stata ODBC feature is available under Microsoft Windows, Macintosh OSX, and LINUX.

' Users must install the ODBC driver of the data format and define appropriate system DSN. In order to install
the ODBC drivers, first run the ODBC Data Source Administrator by clicking START->Control
Panel> Administrative Tools—>Data Sources (ODBC).

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 24

5.9 EXPORTING TO EXTERNAL FILES

Exporting a dataset is independent of how it is created or imported. Users can export the
current dataset to ASCII text formats or the XML format using the .outfile, .outsheet,
and .xmlsave." In order to invoke the export menu, click File->Export.

5.9.1 Exporting to the Free Format (.outfile)

The .outfile writes entire or a part of dataset to an ASCII text file. This command by
default exports to the free format (spaced delimited format). Strings are enclosed by double
quotes.

. outfile using c:\stata\student.txt, replace

If information of an observation is longer than 80 characters (default value), users have to
specify the wide option to write an observation in a line.

. out using c:\stata\student.txt, wide replace

Users may want to write actual values of variables rather than value labels (nolable), and/or
to suppress double quotes in string variable (noquote).

. out using student.txt, w nolabel noquote replace

Like the . infile, users may specify variables and/or select observations to be exported using
the in and/or if qualifiers.

. outfile id name math using student.txt in 1/50 if male==0, nolabel replace

5.9.2 Exporting to Delimited Formats (.outsheet)

Stata can export the current dataset to a CSV or Tab delimited ASCII file. The .outsheet by
default exports to the Tab delimited ASCII format with variable names at the top line. Users
may exclude variable names using the nonames option.

. outsheet using student.txt, replace
. outsheet using student.txt, nonames replace

The comma option of the . outsheet and .outfile commands enable users to write to the
comma delimited (CSV) ASCII file.

. outsheet using student.txt, comma nolabel noquote replace
. outfile using student.txt, c nol nog replace

Like the .outfile, the .outsheet also provides nolable and noquote options. Users may
select variables and/or observations by listing variable names and using in and/or if qualifiers.

. outsheet id name math using student.txt in 1/50 if male==0, c¢ nol replace

5.9.3 Exporting to the FDA or SAS XPORT Format (.fdasave)

15 1 think these commands should be integrated into one command, say .export, just
as .infile, .insheet, and . infix need to be integrated into . import.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 25

Stata can export the current dataset to the FDA (U.S. Food and Drug Administration) or SAS
XPORT format. The following . fdasave saves the dataset to students.xpt and value labels
in formats.xpf. The default extension . xpt can be omitted.

. fdasave student.xpt, rename replace
The rename option renames variable names and value labels that are too long.

Users may provide a list of variables to be exported.
. fdasave id name math using student, ren vallabfile(sas) replace
The vallabfile (sas) saves value labels to an SAS program file, student.sas.

Stata reads this SAS XPORT file using the . fdause.

. fdause student.xpt, clear

5.9.4 Exporting to the XML Format (.xmlsave)

Stata can export the current dataset to the XML (Extensible Markup Language) format using
the . xmlsave.

. xmlsave student.xml, replace

Again users can select variables to be exported.

. xmlsave id name math using student, legible replace
The 1egible option makes the XML file more readable by adding indents and other formats.

Stata reads this XML format using the .xmluse.

. xmluse student.xml, doctype (excel) clear

The docttype (excel) indicates that the file was loaded using Microsoft’s spreadsheetML
document type definition (DTD), the Excel XML format.

5.10 UsING CONVERSION UTILITIES

Users can utilize data conversion software such as DBMS/COPY and Stat/Transfer. These
utilities support a variety of different file formats. For instance, users can convert SAS (.sd2
and .sas7bdat) and FoxPro (.dbf) datasets to a Stata dataset (.dta) and vice versa. This
approach is recommended especially when a dataset is huge in a complicated format.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013)

6. Editing Datasets

This chapter discusses creating, replacing, recoding, renaming variables. Grouping

observations and converting variable types are also addressed.

6.1 EDITING USING EDITOR WINDOW (.edif)

Stata Datasets: 26

Once loading a dataset, you may wish to create new variables, modify or recode existing
variables, and change variable names. The Stata Editor window provides an easy way of
doing such tasks as long as your dataset is not large.

You need to invoke the Editor window by choosing DATA->Data Editor or executing
the .edit (or .ed) command. Locate the cell pointer where you want to make change. Then,
change the value of the cell and hit ENTER or TAB key. Hitting ENTER moves the cursor to

the next row after changing the value, while hitting TAB jumps to the next column.

x|
-
1

Il Stata Editor .
Ereservel Eestnrel Soit I <4 | I Hide I Qelete...l
statel1] = [T
state cigar bladder lung kidney

:ﬁ 30.34 3.46 25 .88 4.32
2 AL 18.2 2.9 17 .05 1.5%
3 AZ 25.82 3.52 17.8 2.75
4 AR 18.24 2.99 15.98 2.02
5 Ch 28.6 4_46 22.07 2.66
[CT 31.1 L.11 22 .83 3.35
7 DE 33.6 4.78 24 .55 3.36
8 DG 40 _46 5.6 27 .27 3.13
7 FL 28 .27 4.46 23.57 2.41
10 ID 20.1 3.08 13.58 2.46
11 IL 2791 475 22.8 2.95
12 IN 26.18 4.09 20.3 2.81
47 in o 40 A 70 4L CO L T 1 |

2l

' 4

-

If you wish to create a new variable, move the cell pointer in empty column and type in some
data. Then, hit ENTER or TAB to sce that a new variable is created. The variable name is
assigned as var plus a column number (e.g., var31). If you want to change variable names,

double click any place of the column and provide a new name on the Stata Variable

Information dialog box.

Once you finish making changes, close the Editor window by choosing FILE>Exit (Alt + F4)
or clicking Xl icon at the right top of the window. You may have the following warning

dialog box. Click OK if you are sure all the changes are correct. Otherwise, just click

CANCEL to restore data.

Exit editor;
. QK to accept changes.

Cancel ko Restore lask Preserve,

(0 I Cancel

%|| Sometimes it is a good strategy to specify subset of a

dataset to be listed in the Editor window. You can avoid
unexpected human errors by focusing on only data you
want to change. Like the .Jist command, the .edit can

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 27

take advantage of wildcards as well as the in and if qualifiers. Consider the following
examples that show various ways of to narrow down the range of the dataset to be edited.

. edit state cigar lung

. edit state ?i* k*

. edit in 10/-10

. ed state cigar lung in -5

. ed if (area==1) & (cigar <= 20)

. ed if (area==1) & missing(cigar)

. ed state k* in -10/-1 if (cigar >= 30) | (lung <= 15)

If you have a huge dataset, however, Stata Editor cannot be a good solution to manipulate the
dataset. You may need to use some commands instead.

6.2 KEYBOARD INPUT (.inpuf)

You may add observations using . input or variables by specifying variable names in the
command (second command below).

. input
. input male

6.3. GENERATING A VARIABLE (.generate)

The .generate (or .g or .gen) command creates a new variable using functions and other valid
expressions. Consider the various examples.

. generate race=0

. gen sex”"Male"

. g strle gender="Female"

. g str20 name = lastName +

" " 4+ firstName

The first creates a variable “race” and assigns 0 to all observations. The variable type is float,
the default. The remaining commands generate string variables. The difference between the
second and the third is in the length of variables. “sex” is four characters long because its
length is determined by the “Male.” By contrast, “gender” is 10 characters long since its type
is explicitly defined by the keyword s#r10. The last command uses the string concatenation
operator +.

. gen area2=area

. g log_gnp=1n(gnp)
. g double rate2=rate/1000000
. g id=_n

The first command above creates a new variable “area2” and copy “area” to it. The second
uses a function to generate a float type variable “log_gnp”. The third creates a double type
variable “rate2” using some expressions. The last command creates a variable containing
observation numbers. Note that the system variable _n has serial observation numbers.

You may generate a uniformly distributed random variable whose values range from 0 to 1.
Use the uniform() function without any argument in the parenthesis. For replicability, it is
highly recommended to use a seed by executing the .set seed command right before the .gen
command.'®

'S The basic rule of using a seed is to use a large number ending with a odd number.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 28

. set seed 1234567
. gen random=uniform()

Let us move on to a little bit strange formats. The first command below assigns 1 if an
observation meets the condition provided; zero, otherwise. The second shows how the if and
in qualifiers are used.

. g smoking=(cigar>=30)
. g grade=(score <= 90 | attendance==0) in 1/100 if final~=.

6.4. EXTENSIVE GENERATION (.egen)

You may want to use special functions such as std(), mean(), sum(), min(), max(), and
median() when creating a new variable. Use the .egen command, an extension of

the .generate command. The following command calculates the median of the variable cigar
and then stores it into a new variable cig med; all observations have the identical value of the
median.

. egen cig med=median (cigar)

Suppose you wish to compute the sum of several variables and save it into a new variable.
You may use either the + operator or the .egen command as follows.

. gen row_total = bladder + lung + kidney + leukemia
. egen row total2 = rowtotal (bladder-leukemia)

The first command below computes the sum of variables only if all the four variables are not
missing; otherwise, missing is set to the new variable. The .egen excludes missing values in
computation. The following two commands calculate the mean and standard deviation of five
variables

. egen row_avg = rowmean (bladder-leukemia)
. egen row sd = rowsd(bladder-leukemia)

Among these row (observation)-wise functions are rmean(), rmin(), rmax(), rmiss(), robs(),
and rsd(). For instance, the rowniss () below returns the number of missing values of a
observation.

. egen n miss = rowmiss(bladder-leukemia)

The following command counts the number of nonmissing observations in the variable
bladder and then store the number into the new variable n bladder.

. egen n bladder = count (bladder)

The following command counts the number of nonmissing observations in the variable
bladder and then store the number into the new variable n bladder.

. egen row diff = diff (bladder)

6.5 MODIFYING A VARIABLE (.replace)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 29

The .replace command changes the contents of existing variables. You may use valid
expressions and functions with the if and in qualifiers. Note that this command cannot be
abbreviated.

. replace gender=0

. replace circle=(r~2)*3.141592

. replace log_gnp=log(gnp)-100

. replace grade="A" if total >= 93

. replace area=2 in 3

. replace total=sales*1.06 in 100/-1 if state=="IN"

6.6. COMPARING VARIABLES (.compare)

This command compares two variables.

compare area west

—————————— difference ----------

count minimum average maximum

area>west 44 1 2.022727 3
jointly defined 44 1 2.022727 3

total 44
6.7 RENAMING VARIABLES (.rename)

The .rename (or .ren) command changes a variable name. The existing name should precede
its new name.

. rename sex gender

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 30

7. Recoding Variables
7.1 RECODING A VARIABLE (.recode)

The .recode command changes values of variables in a convenient manner. Like the .replace,
this command cannot be abbreviated. The command has a variety of ways of recoding
variables.

Suppose you have a five-Liker scale variable to be reversely recoded.

. recode opinion 1

= 4, gen(opinion2)
. recode opinion 1= 4

5 2=
5 2=
The first command creates a new variable “opinion2”, copies the values of “opinion” to the
“opinion2,” and switches values of “opinion2” from 1 to 5 and from 2 to 4. So the original
variable “opinion” remains unchanged. If you wish to recode a variable without creating a
new variable, just ignore the gen() option as in the second command.

You may list more than one variable if they have the same code structure. They are equally
recoded. Parenthesis is useful to clarify recoding, although not required. Note that the number
of new and transformed variables should be equal. In the second example below, variable
“ans1” is recoded to variable “al”; “ans2” to “a2”; and so on.

. recode ansl ans2 ans3 (1/2=1) (3=2) (4/5=3)
. recode ansl ans2 ans3 (1/2=1) (3=2) (4/5=3), gen(al a2 a3)

You may want to group observations using a variable. Consider the following examples of
the .replace command and .recode.

. gen strl0 level="Low"
. replace level="High" if measure >=90
. recode level missing="Medium" if (measure < 90 & measure >=70)

Unlike the .replace command, however, the .recode cannot handle string. Thus, the last
command above does not work at all; the .replace command should be used instead.

There are several useful operators and keywords for the .recode command. You may add the
in and if qualifiers to select observations.

Example Meaning
= a=> To recode fromatob
= abec=4d To recode fromabctod
/ a/b =c To recode from a through b to ¢
*or else =z To recode all others else to z
. Or missing .=z O mis=z To recode missing values to z
nonmissing nonm=a To recode nonmissing value to a
max max=a To recode maximum to a
min min/c=a To recode from minimum through c to a
0 (@ b c =d) To clarify recoding.

* The missing and nonmissing are not used in the right-hand side (e.g., 9=missing)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 31

Let us explore further examples using the above operators and keywords.

. recode class@-class5 (1=0) (2=1) (*=.)
. recode class6 (1 2 3 5=0) 4=1 in 100/200
. recode class7 (1/3=0) 4=1 if sex==

The first command changes 1 to zero, 2 to 1, and all others to missing (.). The second recodes
from 1, 2,3, 5to0and4 to 1 for the 100" through 200th observations. The third changes 1
through 3 to zero and 4 to 1 only when the value of “sex” is equal to zero.

In some circumstances, you need to deal with missing values. Consider the followings.

. recode level (min/@0=0) (1/10=1) (20 30 40=2) (9999=.) (nonmissing=.)
. recode level 1=5 2=4 3=3 (nonm=@) (mis=.)

In the first command, 9999 and other nonmissing values are recoded to missing value (.).
Note that the nonm and mis are abbreviations of the nonmissing and missing. Let us go over
to the max and min.

. recode score (min/60=1) (60/80=2) (80/max=3), gen(grade)
. recode score? (min/50=min) (51/89=80) (90/max=max) if (name !=.)

The first command above shows how min and max are used. The second changes the
minimum value through 50 to the minimum value and puts the maximum values if a value is
greater than or equal 90. Note that “score?”” may include from score0 through score9.

7.2 ASSIGNING NUMBERS FOR MISSING VALUES (.mvdecode)

You may assign special numbers (e.g., 9999) for missing values. In the presence of such odd
numbers, statistical analyses are likely to mislead. Accordingly, you need to change the
particular values to Stata’s system missing. The .mvdecode command changes the odd
numbers to system missing. Only when at least one particular value is found in a variable, the
change is reported.

. mvdecode kidney lung, mv(27.27)
lung: 1 missing values generated

. mvdecode _all, mv(99 98 97 96 95)

The mv() option specifies the numbers assigned to missing values. You may list more than
one odd number in the option. Note that the system variable _all indicates all variables in the
current dataset.

The .mvencode command works in the opposite direction. That is, the command changes
system missing to particular numbers. The following command assigns 9999 to the variable
“income” if it encounters system missing in the variable.

. mvencode income, mv(9999)
income: 17 missing values recoded

Note that both .mvencode and .mvencode ignore string variables.

7.3 GROUPING OBSERVATIONS

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 32

Sometimes you need to categorize observations into several groups. Among useful functions
are the group(#), autocode(), and recode().

7.3.1 The group(#) Function

You may wish to categorize observations into several groups. The .recode command may
work, but the command needs to be repeated several times to do that. The easiest way is to
use the group(#) function, which conduct grouping on the basis of order of observations. So a
dataset needs to be sorted on the key variable in advance.

. sort cigar
. gen gl _cigar=group(5)

You need to specify the number of groups in the parenthesis. The above commands classify
observations into five groups according to cigarette consumption. The new variable g_cigar
has values from 1 through 5.

7.3.2 The autocode() Function

The autocode(variable, #, min, max) function partitions the interval of a variable from
minimum to maximum into several equal length intervals. The function returns the upper
bound of each interval instead of serial numbers (e.g., 1 through 5). Unlike the group(#), you
do not need to sort the current dataset.

. gen g2_cigar=autocode(cigar, 5, 14, 42.4)

The arguments of the autocode() are a variable name, the number of groups, minimum, and
maximum. The interval of each group in this case is 5.68 (=25.36-19.68). You may compare
the results of the two functions.

. tab g1_cigar g2_cigar

| g2_cigar
gl _cigar | 19.68 25.36 31.04 36.72 42.4 | Total
___________ +___+__________
1| 5 4 0 0 o | 9
2 | 0 9 0 0 0 | 9
3 | 0 6 2 0 o | 8
4 |] 0 9 0 o | 9
5 | 0 0 5 2 2 | 9
___________ +___+__________
Total | 5 19 16 2 2 | 44

Note that the .zab (or .tabulate) command constructs one-way or two-way tables of
frequencies. See Chapter 14 for the details.

7.3.3 The recode() Function

Another function for grouping observations is the .recode(variable, nl, n2, n3...). Note that
the recode() function differs from the .recode command mentioned in the previous section.

. gen g3_cigar=recode(cigar, 10, 20, 30, 40, 50)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 33

If a value of a variable is less than or equal to nl, the function returns nl; n2, if nl < variable

<=n2; n3, if n2 < variable <= n3; and so on."”
tab gl_cigar g3_cigar
| g3_cigar

gl _cigar | 20 30 40 50 | Total
___________ +__+__________
1| 6 3) o | 9
2 | 0 9 0 0 | 9
3 | 2 8 0 o | 8
4 | 0 9 0 o | 9
5 | 0 4 3 2 | 9
___________ +__+__________
Total | 6 33 3 2 | 44

Compare this cross-table with the previous one to know the difference between the autocode()
and recode() functions. Note that 10 is ignored because the minimum value of the variable
“cigar” is 14.

7.3.4 Generating a Dummy Variable

There are several ways of creating dummy variables. The easiest one is to use .generate
and .replace. You must check if a dummy variable is correctly generated in particular when
missing values are involved.

. gen heavy = cigar > 25

This command assigns 1 to a new variable heavy if the value of cigar is greater than 25 and
0 otherwise.

7.4 SEPARATING VARIABLE

You may need to separate a variable into several variables. The following the .separate
command creates four variables “areal” though “area4.”

. separate area, by(area)

storage display value
variable name type format label variable label
areal byte %12 .0g area, area == 1
area2 byte %12.0g area, area == 2
area3 byte %12.0g area, area == 3
aread byte %12 .0g area, area == 4
list area?
B e +

uphwnNneRE

'7 This function is similar to a SAS statement of “g3_cigar= (cigar >10) + (cigar >20) + (cigar >30) + (cigar
>40);” In SAS, however, the new variable is coded as 0 through 5 rather than 10 through 50 in this case.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 34

This .separate command is useful when you create an interaction term of an independent
variable and a dummy variable for regression analysis. The following example creates two
variables “cig_dum0” and “cig_duml.” If “cigar” is greater than 20, the variable “cig _dum1”
is copied from the “cigar.” Otherwise “cig_duml” has missing values. By contrast,
“cig_dum0” has the values of “cigar” only if the condition does not meet.

. separate cigar, by(cigar>20) generate(cig_dum)
. replace cig_duml=0 if cig_duml==.

7.5 CONVERTING BETWEEN STRING AND NUMERIC VARIABLES

You may need to convert string variables to numeric variables and vice versa. This section
discusses the string() and real() functions as well as the .destring, .decode, and .encode
commands.

7.5.1 The string() and real() Functions

The string() command converts a numeric variable to a string variable, while the real()
function do the opposite way. A string variable in the real() function should have only
numbers.

. gen num_educ = real(education)
. replace point=num_educ*grade if num_educ!=.

. gen str_grade = string(grade)
7.5.2 The .destring Command

The .destring command has very flexible ways of converting string variables into numeric
ones. Suppose you have three string variables “score,” “rate,” and “income” that need to be
converted to “score2,” “income?2,” and “rate2,” respectively.

L L LR L Ll L b LT +
| score rate income score2 income2 rate2 |
| oo |

1. | 557.84 4.5% $45000 557.84 45000 4.5 |

2. | 977.50 10.4% $105000 977.5 105000 10.4 |

3. | 348.87 3.7% $76000 348.87 76000 3.7 |
L L L L L EEEEELEE LR +

Let us first convert variable “score” to a numeric variable “score2.”

. destring score, generate(score2) float
score has all characters numeric; score2 generated as float

The generate() option create a new variable “score2.” You may use the replace option to
overwrite the existing variable. The float option explicitly declares the float type instead of
the default double. When a variable contains a decimal point, the new variable will be float.
Otherwise, the new variable will be integer type.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 35

Now, let us convert string variables that include special characters, such as % and $. The
ignore() option lists special characters to be ignored in the variables. Accordingly, the first
command below does not work.

. destring income rate , generate(income2 rate2) float
income contains non-numeric characters; no generate
rate contains non-numeric characters; no generate

Let us include the ignore() option and run the .destring command again. Note that the
number of variables in the generate() option should be equal to the number of variable to be
converted.

. destring income rate , generate(income2 rate2) ignore("$, %") float
income: characters $ removed; income2 generated as float
rate: characters % removed; rate2 generated as float

Now, compare the original variables with converted ones. Note that “income2” is a float type
variable because 105,000 is out of the range of integer.

7.5.3 The .decode Command

You may wish to create a string variable on the basis of the value labels of a numeric variable
rather than actual numeric values. The .decode command converts a labeled numeric variable
to a string variable using the value labels.

. decode area, gen(str_area)

. tab area str_area, nolabel

| str_area

area | East Midwest South West | Total
___________ U S
1| 8 0 0 o | 8

2 | 0 12) o | 12

3 | 0 2} 15 o | 15

4 | 0 0 0 9 | 9
___________ +__+__________
Total | 8 12 15 9 | 44

Note that the gen() option specifies the name of new string variable. Thusm, the new variable
“str_area” has four string values (i.c., East, Midwest, South, and West) instead of four
numeric values from 1 through 4.

7.5.4 The .encode Command

Now, you may wish to convert in the opposite direction. The .encode command creates a
numeric variable from a string variable. The new variable has unique numbers assigned to
corresponding categories of the string variable. In addition, the new variable is labeled with
the values of the string variables.

. encode str_area, gen(area2) label(area_lab)
Note that the above command generates a new variable “area2,” which is identical to the
original variable “area.” The label option specifies the name of the value label; if omitted, the

variable name is also used as the value label name.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 36

This .encode command will be useful when you conduct an ANOVA analysis with string
right-hand side variables. Unlike SAS, Stata .anova command does not allow string variables
as righ-hand side variables.

Suppose you wish to compare the mean of annual income by gender and education level. The
variable “gender” is coded as “Male” and “Female,” while “education” is as “B.A.” “M.A.”
and “Ph.D.” The follow command does not work, giving an error message.

. anova income gender education
no observations
r(2000);

This .encode command enables you to run the ANOVA by converting the string variables.
Note that the variable “sex” has 1 for “Male” and 2 for “Female.” Similarly, the numeric
values of 1 though 3 of “degree” correspond to the three education levels.

. encode gender, gen(sex) label(gender)
. encode education, gen(degree)
. anova income sex degree

Input Output Conversion
string() Numeric variable String variable Numeric value
Real () String variable w/o characters ~Numeric Variable String value
.destring String variable Numeric Variable String value
-decode Numeric variable w/ label String variable Value label
-encode String variable w/ characters ~ Numeric Variable String value (label)

The above table summarizes these functions and commanded mentioned so far. The string()
function differs from the .decode command in that the former converts numeric values only,
whereas the latter converts the value label of a numeric variable to a string variable. The
real() function also differs from the .destring and .encode command in that the former does
not allow any character (e.g., %, $, Male) in a string variable.

7.6 SPLITTING AND CONCATENATING
7.6.1 Splitting Variables: .split

You may wish to parse a string variable to several string variables. Like PHP and PERL,
Stata supports such functionality through the .split command. Suppose you need to take the
email account out of a whole email address. That is, take “kucc625” out from the
“kucc625@indiana.edu.”

. split email, parse(@)

This command parses the string of variable “email” using @, divides the string into two parts,
and then store each part to “emaill” and “email2.” Thus, “emaill” has email account only.

If you wish to use more than one character for parsing, each character needs to be double
quoted.

. split email, parse(";" "." "=char(64)") notrim

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 37

Note that the char() function returns an ASCII character corresponding to the ASCII code
number. The “=char964)” is equivalent to @. The notrim option does not trim leading and
trailing spaces of the original variable before parsing.

Suppose you want to take year out of a variable “due date” containing date. The variable
needs to have fixed format, such as mm/dd/yyyy. We may use the .split command to get
“due_date3” for year information.

. split due_date, parse(/)
7.6.2 Substring Variables: . substr()

However, the substr() function provides more efficient way of taking a substring of a string
variable. The three arguments of the function are a sting variable, a starting position, and the
length of substring, respectively.

. gen due_year=substr(due_date, 7, 4)
7.6.3 Useful Sting Functions

The above function takes four characters starting at the seventh character from the variable
“due_date.” You may combine other string functions, such as the trim(), upper(), lower(),
reverse(), length(), and word(). See the Chapter 2.5 for the details.

. gen cap_name=substr(upper(trim(last_name)), 1, 3)

The above function first removes leading and tailing blanks of the variable “last name”;
makes the variable uppercased; and then returns the first three characters.

7.6.4 Concatenation
When you need to put strings together, use the concatenation operator +. Note that the

lower() function returns a lowercased string, and that the ltrim(rtrim()) is equivalent to the
trim() function.

. gen url="http://"+lower(home)
. gen email=1ltrim(rtrim(account))+"@"+trim(domain)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 38

8. Handling Datasets

This chapter addresses how to manipulate datasets: removing observations and variables,
appending, merging, sorting, transposing, reshaping, and collapsing.

8.1 NOTING A DATASET (.note)

You can add notes to the dataset. This command is followed by a colon (:) and a note. If you
want to take a look at all notes added to the dataset, simply run .note.

. note: This dataset was manipulated from GSS1972-2012 in 2013
. note

8.2 COMPARING DATASETS (.¢f)

This command compares two datasets. You may specify the variables to be compared. a11
indicates all variables in the current dataset, while verbose displays detailed information of
comparison.

. cf all using cancer, verbose
. cf cigar lung using cancer, verbose

8.3 REMOVING OBSERVATIONS (.keep and .drop)

The .keep and .drop commands are used to remove observations or variables. The .keep
command removes observations that do not meet the conditions, while the .drop removes
observations that meet the conditions.

. keep if gender==

. drop in 5

. keep in -2/1

. drop if gender==1 in 1/100

Note that “I” in the third command is equivalent to “-1,” representing the last observation.
8.4. REMOVING VARIABLES (.keep and .drop)

The .keep command removes variables that are not listed, while the .drop erases variables
listed. Once variables are listed, the if and in qualifiers are not allowed in both commands.

. keep gender grade korean math english
. drop templ-temp5

. drop temp? pro*

. drop _all

The last is an example of using the system variable _all. Since the system variable indicates
all variables in the current dataset, you need to be very careful when using it.

8.5 ADDING OBSERVATIONS TO A DATASET (.set obs and .append)

The .set obs command changes the number of observation by adding blank observations. The
number specified should be greater than the current number of observations. For instance, if a

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 39

dataset has 90 observations, the following command append 10 observations with all missing
values to make 100 observations in the dataset.

. set obs 100
8.6 COMBINING DATASETS

8.6.1 Appending Datasets (.append)

The .append (or .app) command appends a Stata data file to a current dataset. If you wish to
append other types, such as Excel and ASCII text, first import them into Stata. The two data
files need to have the same data structure. Otherwise, mismatched variables will be filled
with missing values.

. append using c:\stata\data\cancer2
. app using c:\stata\data\cancer2, keep (state cigar 1* area)

Note that the keep option limits the variables to be appended. You may not use “-*“ operator
to specify the range of variables in the option; however, you can still use wildcards of * and ?.

Under some circumstances, you may need to duplicate current observations. The
following .expand command duplicates all observations twice and append them to the current
dataset.

. list
L L R L L e L L L L L L L Ly atalale +
| state cigar bladder lung kidney leukemi area |
R Ot CE e L LEE LR LU LI EE R IR EE R |
1. | AK 30.34 3.46 25.88 4.32 4.9 3 |
2. | AL 18.2 2.9 17.05 1.59 6.15 3|
L e e L L] +
. expand 3
(4 observations created)
. list
L e e L L] +
| state cigar bladder lung kidney leukemi area |
R L LT LR L LR LR LR EEECEEURRE LR R |
1. | AK 30.34 3.46 25.88 4.32 4.9 3 |
2. | AL 18.2 2.9 17.05 1.59 6.15 3 |
3. | AK 30.34 3.46 25.88 4.32 4.9 3 |
4. | AK 30.34 3.46 25.88 4.32 4.9 3 |
5. | AL 18.2 2.9 17.05 1.59 6.15 3 |
6. | AL 18.2 2.9 17.05 1.59 6.15 3 |
L e +

You may specify a subset to be duplicated using the if and in qualifiers.

. expand 2 if state=="IN" | state=="IL"
. expand 5 in -10/-1

8.6.2 Adding Variables or Updating a Dataset (.merge)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 40

The .merge (or .mer) command adds variables to the current dataset from the using dataset.
The unmatched variables of the using dataset are added to the master dataset (the current
dataset), while the matched replaces corresponding variables in the master dataset.

This section ignores the one-to-one merge to focus on the match merge.'®

You need a key variable that exist in both datasets. The key variable must have the same
name and the same data type, and should be sorted in advance. In the following example,
“state” is the key variable by which observations are matched.

. sort state
. merge 1:1 state using cancer2

The command creates and adds a new variable called “ merge” that indicates the data sources
of observations. When data of an observation are from the master dataset, the merge is set 1.
The 2 indicates that the observation came from the using dataset. For observations from the
both dataset, 3 is assigned to the merge.

The .merger command by default does not change information in the master dataset even
when the using dataset has updated information. If you wish to update information, add the
update and replace options. The replace option cannot be used individually, but should be
use with the update option.

. sort state
. merge 1:1 state using cancer2, update replace

Under the update option, missing values of the master dataset are replaced with nonmissing
values of the using dataset. The update replace options replace nonmissing values of the
master dataset with new information in the using dataset. But in any case, nonmissing values
are not replaced with missing values of the using dataset.

Values of the Master Unspecified Update Update & Replace
Nonmissing Unchanged Unchanged Replaced
Missing Unchanged Replaced Replaced

When the update option is specified, the code 3 of the merge (i.e., observation from both
datasets) is broken into three categories. New code 3 indicates that both datasets have the
same information; 4 is set when missing values of the master are replaced with nonmissing
values. If nonmissing values of the master are replaced, the merge has 5.

You may use a different name instead of the default “ merge.” The following command
creates a variable “code.”

. merge 1:1 state using cancer2, update replace _merge(code)

This command supports one to many merge (1:m) and many to one merge (m:1), and many
to many merge (m:m). Suppose you are matching a homework records (multiple observations

' The one-to-one merge just mechanically put two datasets together. The first observation of the master dataset
is joined to the first one of the using dataset. The second is joined to the second of the using dataset. So this type
of merge does not need any key variable. In the match merge, by contrast, an observation is joined to
corresponding one only if their key variable is matched. In a practical sense, one-to-one merge is less useful
than the match merge.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets.: 41

per a student) with student registration file (unique). You can merge two files using .merge
m: 1 as follows.

. merge m:1 id using student, unmatched (both)

In old releases (before 11), .50inby conducts many to one merge as follows.

. joinby id using student, unmatched (both)
8.7. SORTING OBSERVATIONS AND VARIABLES
8.7.1 Sorting (.sort)

Some commands and functions require that a dataset is sorted in some ways. The .sort
(or.se) command arranges observations in ascending order with respect to variables listed.
You may use the in qualifier to limit the range of observations.

. sort grade
. sort grade name in 10/100

Note that “grade” and “name” in the second command are respectively used as primary and
secondary keys.

8.7.2 Descending Sorting (.gsort)
This command arranges data in ascending or descending order. In case of the descending
order, you need to add hyphen (—) before the variable name.

. gsort +cigar
. gsort -cigar

8.7.3 Sorting Variables (.order and .move)

Why are we bothered with the order of variables? We can benefit from well arranging
variables of a huge dataset. The most prominent advantage exists in the use of wildcard —
(e.g., cigar-kidney). The .stack command does not use the variable order listed in the
command, but the physical order of variables in a dataset.

The .order and .move commands are used to rearrange the order of variables. The former

rearrange variables as listed, while the latter moves the location of the first variable to the
next of the second variable, holding other variables unchanged.

. order firstName lastName grade
. move avg total

Note that the .move command can have only two variable names.
8.8. COMPRESSING DATASETS (.COMPRESS)

This command compresses the dataset to make its file size smaller. The types of some
variables may be changed in compression.

8.9. REMOVING DATASETS FROM MEMORY (.CLEAR)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 42
The .clear command removes current dataset, label, matrices, scalars, cluster, and constraints

from the memory.

. clear
. drop _all

Unlike the .clear, the .drop _all just removes the current dataset by erasing all variables and
observations, leaving labels, matrices and others unchanged.

8.10. DELETING DATASETS (.ERASE AND .RM)

If you wish to delete datasets from the disk, use the .erase or the .rm command. Note that
the .rm, a UNIX command to erase files, does not work in Stata for Windows.

. erase c:\stata\data\cancer_temp.dta

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets. 43

9. Reshaping Datasets

This chapter addresses various ways of reshaping a dataset. This feature is important
especially when handling panel data and dataset for ANOVA.

9.1 GETTING AGGREGATE STATISTICS
Often times it is necessary to compute aggregate statistics such as sum and mean of groups.
9.1.1 Getting a Dataset of Summary Statistics (.collapse)

You may wish to save aggregate statistics, such as mean and standard deviation, to a dataset.
Like SAS MEANS procedure, the .collapse command can do the job using the keywords of
statistics. The command replaces the current dataset with a new one containing aggregate
statistics. Frequently used keywords include mean, sum, sd (standard deviation), count (the
number of observation), max, min, and median (or p50). The default mean can be omitted.

. collapse cigar (sum) bladder (sd) lung (count) kidney (max) leukemia

The above command creates a dataset that has one observation with five variables. Variable
names are copied to the new dataset. Note that you cannot specify more than one keyword at
a time.

. collapse (mean) cigar (sum) cig_sum=cigar (sd) cig_sd=cigar lung

This command demonstrates how to get various statistics of a variable. Note that you need to
provide target variable names using the = operator; variable names should be unique in a
dataset. For example, standard deviation of the variable “cigar” is stored in a variable
“cig_sd.”

You may wish to get aggregate statistics arranged by group. Like the BY statement in SAS,
the by option computes statistics group by group.

. collapse cigar (max) bladder (p50) lung (p75) kidney, by(area)

. list
o e e e e e e e - - +
| area cigar bladder lung kidney |
| oo e oo |
1. | East 27.94625 5.98 22.435 3.195 |
2. | Middlewest 23.706667 5.27 18.57 3.04 |
3. | South 24.208667 5.6 19.45 3.13 |
4. | West 25.004444 6.54 19.5 2.78 |
o e e e e - - +

Thus, the above command produces four observations corresponding to four different areas.
Note that the variable “area” was added as the first variable in a new dataset.

9.1.2 Getting a Dataset of Summary Statistics (.contract)
Another useful command is the .contract, which creates a dataset of frequencies. Suppose

you want to count the frequencies of all possible combinations of “gender,” “degree,” and
“area”. This command is more flexible than the .tabulate.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 44

.contract gender degree area, freq(count) zero nomiss

. list
T e r T T TP +
| gender degree area count |
| oo |
1. | Female B.A Citizen 3 |
2. | Female B.A. International 9 |
3. | Female M.A. Citizen o |
4. | Female M.A International 5 |
5. | Male B.A Citizen 8 |
| e |
6. | Male B.A. International 4 |
| Male M.A. Citizen o |
8. | Male M.A International 7 |
e +

Note that the fireq option specifies variable name that store the frequency of each case; the
default variable name is “ freq.” The zero option includes cases even when their frequencies
are zero, while the nomiss excludes cases in which at least one of variables is missing.

9.2 STACKING UP A DATASET

Stata can put variables together by vertically stacking up them. The feature is handy in
handling multiple choice questions.

9.2.1 Reshaping (.reshape)

Suppose you have multiple choice questions that asked subjects to pick three out of 10
choices. This is called the wide format in Stata.

. list
B e +
| subject choicel <choice2 choice3 |
[==mmmmmm I
1. | 1 5 8 9 |
2. | 2 1 2 8 |
3. | 3 1 2 3 |
4. | 4 2 5 8 |
5. | 5 2 5 8 |
B e +

In order to analyze such questions, you need to stack up the three choices into one variable:
the long format in Stata. The .reshape and .stack commands are the case. Let us first consider
an example of the .reshape command.

. reshape long choice, i(subject) j(orders)
(note: j =1 2 3)

Data wide -> 1long
--- Number of obs.
5 -> 15

Number of variables 4 > 3

j variable (3 values) -> orders

xij variables:
choicel choice2 choice3 -> choice

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 45

The long option converts to the long format. The i and j respectively indicate the unique
variable and the number of variables to be stacked. You may specify particular values in the j
option like “j(weight 10 20 30)” or *“j(year 2000-2003).”

. list
oo +
| subject orders choice|
R L RGRCRTELELE |
1. | 1 1 5 |
2. | 1 2 8 |
3. | 1 3 9 |
4. | 2 1 1|
5. | 2 2 2 |
R GRCRCELELE |
6. | 2 3 8 |
7. | 3 1 1|
8. | 3 2 2 |
9. | 3 3 3 |
10. | 4 1 2 |
| -mmmm e |
11. | 4 2 5 |
12. | 4 3 8 |
13. | 5 1 2 |
14. | 5 2 5 |
15. | 5 3 8 |
e L +

Now you are ready to analyze the frequency of the variable “choice.” If you wish to convert
back to the wide format, run the following command.

. reshape wide
9.2.2 Stacking Up (.stack)

Another useful command is .stack, which stacks variables up vertically. In the following
example, variables “bestl” through “best3” are vertically stacked into variable “best,” while
“worst1” through “worst3” are stacked into “worst.”

. list
R e e T T +
| bestl best2 best3 worstl worst2 worst3 |
T SR |
1. | 1 2 3 4 5 6 |
2. | 7 8 9 10 11 12 |
B e it e T +

. list
L L L e L +
| _stack best worst |
[--omme e |
1. | 1 1 2 |
2. | 1 7 8 |
3. | 2 3 4 |
4. | 2 9 10 |
5. | 3 5 6 |
6. | 3 11 12 |
L L L L E +

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 46

Note that the number of variables to be stacked should be equal over output variables. In the
above example, the into option cannot have four or five variables. Similarly, the following
also does not work.

. stack abcdef gh, into(stackl-stack3) clear

You may alternatively use the group(#) option instead of the into as follow. Note that the
first two variable names (“best1” and “best2””) will be used in the new dataset.

. stack bestl-best3 worstl-worst3, group(2) clear

The .stack command uses the physical order of variables no matter how variables are listed in
the command. Accordingly, the following does not make any difference. See the section 6 for
details about how to change the physical order of variables.

. stack bestl worstl best2 worst3 best3 worst3, group(2) clear
9.2.3 Reshaping for Latin Square Design (.pkshape)

If you have a tabulated data for Latin Square design, use the .pkshape command that reshapes
the data set for ANOVA. Suppose your experiment data look like,

1% Test 2" Test 3" Test
Subject 1 74 (a) 57 (b) 50 (c)
Subject 2 6 (c) 94 (a) 78 (b)
Subject 3 40 (b) 29 (¢) 112 (a)

Source: Dowdy, Wearden, and Chilko (2004), p365.

You may enter the data in Stata as follows.

. list id row coll-col3, noobs

B et et e +
| id row coll col2 col3 |
|- \
| 100 1 74 57 50 |
| 101 2 6 94 78 |
| 102 3 40 29 112 |
o +

Now, run the .pkshape command to reshape the data set. The order () option specifies
treatments beginning from the top and left. Note that the outcome (), sequence (), treat (),
and period () options have their default values as their names.

. pkshape id row coll-col3, order (abc cab bca) ///
outcome (y) sequence (rows) treat(treat) period(columns)

The result looks like,

et et Dt +
| id rows y treat carry columns |
| \
| 100 1 74 1 0 1]
| 101 2 6 3 0 1]
| 102 3 40 2 0 1]
[100 1 57 2 1 2
| 101 2 94 1 3 2 |
| 102 3 29 3 2 2 |
| 100 1 50 3 2 3
| 101 2 78 2 1 3

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013)

Stata Datasets: 47

| 102 3 112 1 3 3
et i +
You are ready to conduct ANOVA as follows.
anova y rows columns treat
Number of obs = 9 R-squared
Root MSE = 2.64575 Adj R-squared
Source | Partial SS df MS F
___________ +__
Model | 8752 6 1458.66667 208.38
|
rows | 2 2 1 0.14
columns | 2400 2 1200 171.43
treat | 6350 2 3175 453.57
|
Residual | 14 2 7
___________ +__
Total | 8766 8 1095.75

9.3 RECTANGULARIZING DATASET (.FILLIN)

9.4 TRANSPOSING A DATASET (.xpose)

Sometimes you need to transpose a dataset. The .xpose, clear command switches
observations and variables. In other words, the command changes rows into columns and
columns into rows. The clear option is required in this command, since the current dataset is
removed out of the memory.

. Xpose, clear varname

. list
R L L L L L L L LR LY +
| vl v2 v3 v4 _varname |
R I aRIGELO e L LR EELE P EEEREE LR L, |
1. | 1 2 3 4 area |
2. | 27.94625 23.70667 24.20867 25.00444 cigar |
3. | 5.98 5.27 5.6 6.54 bladder |
4. | 22.435 18.57 19.45 19.5 lung |
5. | 3.195 3.04 3.13 2.78 kidney |
o e e e e e e e e - - +

The varname option adds a variable that contains variable names of the original dataset. The
option is recommended because it makes the dataset more readable. Note that the labels of
the original dataset are ignored; actual numeric values are copied to the new dataset instead.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 48

10. Advanced Topics

This chapter addresses advanced topics in which intermediate or sophisticated Stata users
may have interests.

10.1 MISSING VALUES
10.1.1 Summarizing Missing Values (.misstable)

This command provides missing value information in the table form. The first command
below summarizes missing value information in the current dataset, while the second suggest
missing value patters.

misstable summarize
misstable patterns

10.1.2 Marking Missing Values (.mark and .markout)

The missing value of a numeric variable is conventionally denoted by a single period (.). In
string, missing value is expressed as “””. Any arithmetic operation on a missing value results
in a missing value.

Users may wish to exclude missing values using the if qualifier. You may ask whether a
variable is less than period (.).

sum cigar lung kidney if cigar<.
list cigar lung kidney if (cigar==.) | (lung>.) | (kidney>=.)

The first command above produces summary statistics of those observations whose variable
“cigar” is not missing. The second lists the values of three variables when any one of the
three is missing. Note that the three different usages of relational operators equally detect
missing values in each variable.

You may want to detect observations that have missing values in any variables specified.
The .mark and .markout commands are useful for marking observations with the missing.
The former command creates a dummy variable to be used by the latter. The .markout
command sets 0 in the marking variable created by the .markout command if an observation
has missing values.

. mark yn miss // to create a marking variable (dummy)

. mark yn miss cigar lung kidney

. tab yn miss, missing // to double-check flagging marks

. drop if yn miss==0 // to drop observations with missing values

10.1.3 From Missing to Numeric Values (.mvencode)

10.1.4 From Numeric Values to Missing (.mvdecode)

10.2 IMPUTATION (.IMPUTE)

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 49

10.3 DUPLICATES
10.3.1 Checking Unique Identifiers (.isid)

You may want to know whether there is any duplicate observation with respect to particular
variables. The .isid command checks whether specified variables identify observations
uniquely.

. isid name
variable name does not uniquely identify the observations
r(459);

If listed variables cannot identify observation uniquely, Stata will give you a warning
message. The result above indicates that there is at least one duplicate name in the variable
“name.” You may list more than one variable.

. isid gender degree area
10.3.2 Detecting Duplicates (.duplicates)

The .duplicates command detects, lists, tags, and drops duplicate observations. This
command is very useful especially for data cleaning.

The following command with the examples (or e) subcommand shows examples of duplicate
observations with respect to “gender,” degree,” and “area.”

. duplicates examples gender degree area

T L L TR +
| group # e.g. obs gender degree area |
e |
| 1 3 6 Female B.A. Citizen |
| 2 9 5 Male M.A. International |
B R R e e +

Stata identified two duplicate patterns. Three are three observations (including the sixth
observation) for the first pattern and nine observations for the second. Note its format is
similar to that of the .contract command in the previous section.

You may want to list the duplicate observations detected. Use the .list (or) or .browse (or b)
subcommand.

. duplicates list gender degree area

You may also tag duplicate observations by creating a variable storing the frequency of each
case. The tag (or £) subcommand assigns 1 to the tag variable “dup tag” if an observation is
unique.

. duplicates tag gender degree area, generate(dup_tag)

Note that the generate() option for specifying a variable name is required in the tag
subcommand.

http://www.sonsoo.org

© 2003-Present Hun Myoung Park (2/23/2013) Stata Datasets: 50

Finally, you may wish to drop duplicate observations to make the dataset unique in terms of
the variables listed. Use the drop subcommand to remove all duplicate observations except
the first one of the duplicate pattern.

. duplicates drop gender degree area, force

Note that the force option is required when variables are listed in the drop subcommand.
10.3.3 Duplicating Observation (.expand)

See append

10.3.4 Duplicating Clustered Observations (.expandcl)

10.4 WEIGHTING
10.5 RESAMPLING

10.6.1 Sampling (.sample)
10.6.2 Drawing from Normal Distribution (.drawnnorm)

10.6 RANDOM NUMBER GENERATION

http://www.sonsoo.org

