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Abstract Variance of parameter estimate in Cox’s proportional hazards model is based on asymp-

totic variance. When sample size is small, variance can be estimated by bootstrap method. However,

if censoring rate in a survival data set is high, bootstrap method may fail to work properly. This is

because bootstrap samples may be even more heavily censored due to repeated sampling of the censored

observations. This paper proposes a random weighting method for variance estimation and confidence

interval estimation for proportional hazards model. This method, unlike the bootstrap method, does

not lead to more severe censoring than the original sample does. Its large sample properties are studied

and the consistency and asymptotic normality are proved under mild conditions. Simulation studies

show that the random weighting method is not as sensitive to heavy censoring as bootstrap method is

and can produce good variance estimates or confidence intervals.
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normality
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1 Introduction

The Cox regression model and the partial likelihood approach[1,2] have been studied exten-

sively in literature. It is well known that the maximum partial likelihood estimators of the

regression parameters are consistent, asymptotically normal distributed and semiparametrically

efficient[3, 4]. Statistical inferences are mainly based on the large sample properties. However,

when sample size is small or survival data are heavily censored, the asymptotic results may fail

to work properly. Alternative approaches such as bootstrap methods as well as its various mod-

ifications have been proposed[5−7]. However, if the event times are heavily censored, bootstrap

methods may also fail to work properly since censored times could be repeatedly resampled. In

this paper we introduce a random weighting method, which can be used to construct an ap-

proximation of the distribution of the maximum partial likelihood estimators of the regression

parameters in the proportional hazards model.

Let Ti, 1 � i � n, be the possibly right censored survival times for the i-th subject, with

the corresponding indicators δi of uncensoring and the possibly time-dependent p-dimensional
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covariate vector Zi = (Zi1, . . . , Zip)
T, where AT denotes the transpose of A. The Cox’s pro-

portional hazards model[1] assumes that the hazard function for Ti, given Zi, has the form

λi(t|Zi) = λ0(t) exp(βTZi(t)), where β is a p-dimensional unknown regression parameter vec-

tor, and λ0(t) is a completely unspecified baseline hazard function. The corresponding partial

likelihood[2] is given by

L(β) =

n
∏

i=1

(

exp(βTZi(Ti))
∑

l∈R(Ti)
exp(βTZl(Tl))

)δi

,

where R(t) = {i : Ti � t} is the risk set at t > 0. Let τ = sup{t : Pr(T > t) > 0}, the terminal

time of the study, and 0 < τ < ∞. The maximum partial likelihood estimate β̂n is a solution

to the following equation:

U(β) =
∂ log L(β)

∂β
=

n
∑

i=1

∫ τ

0

(Zi(t) − Z̄(β, t))dNi(t) = 0, (1.1)

where Ni(t) = I{Ti � t, δi = 1}, t ∈ [0, τ ],

Z̄(β, t) =

n
∑

i=1

Zi(t)Yi(t) exp(βTZi(t))

/ n
∑

i=1

Yi(t) exp(βTZi(t)),

Yi(t) = I{Ti � t} is the at-risk process at t > 0 and I(·) is the indicator function. It was

shown in literature that β̂n is consistent and asymptotically normally distributed. Variance of

β̂n can be obtained by using the asymptotic variance. Alternative methods for estimating the

variance of β̂n can be found in literature, including the bootstrap method by Efron[8] and the

conditional bootstrap method by Hjort[9].

It is noted that when a bootstrap method is used, the original observations are sampled

repeatedly. When censoring is heavy, censored observations may become overwhelmingly dom-

inant in the resampled data and the partial likelihood approach may fail to give a converged

solution. If survival data have a high censoring rate, the resampled data may possibly pro-

duce the regression coefficient estimation with large variances and therefore result in incorrect

estimation of the empirical distribution of the regression parameter estimators. This is be-

cause some of the bootstrap samples may be more heavily censored than the original sample

does, and consequently, the corresponding bootstrap estimates of the interested parameters

display large variabilities. To avoid resampling censored survival times repeatedly, we propose

using the random weighting method[10, 11] as an alternative to bootstrap methods. Formally,

let wi, i = 1, 2, . . . , n be independently and identically distributed (i.i.d.) non-negative random

variables with E(wi) = 1 and var(wi) = 1, the random weighting estimation equation is a

weighted version of (1.1)

U∗(β) �

n
∑

i=1

wi

∫ τ

0

(Zi(t) − Z̄∗(β, t))dNi(t) = 0, (1.2)

with

Z̄∗(β, t) =

n
∑

i=1

wiZi(t)Yi(t) exp(βTZi(t))

/ n
∑

i=1

wiYi(t) exp(βTZi(t)).

The random weighting estimate β̂∗
n is defined to be a solution to the above equation.
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The random weighting method works through repeatedly re-weighting the estimation equa-

tion randomly to generate the copies of the original interested parameters or quantities. In

this spirit, the random weighting method is similar to bootstrap methods. In fact, the random

weighting method[10] was also referred to as the Bayesian bootstrap method[12−14]. This method

has been used in many applications as an alternative to bootstrap method. For example, Rao

and Zhao[11] used this method in the parameter estimation of a linear regression model. Large

sample studies show that the random weighting method has similarly asymptotic properties

as bootstrap methods (at least at the first order) (see [10, 11]). An advantage of the random

weighting method is that no observation is repeatedly used within each replicate of the random

weighting, though each observation may be weighted unequally. This property is especially

useful in the analysis of survival data, censored times are regarded as being less informative

and too many inclusions could lead to difficulties in obtaining good parameter estimates.

In this paper, we study the applications of the random weighting method in survival analysis,

focusing on the large sample theory as well as the applications to survival data with small

sample sizes and high censoring rates. We conduct the simulation studies to compare the

random weighting method with bootstrap method. It is shown that the random weighting

is less sensitive to heavy censoring than bootstrap method does. The rest of this paper is

organized as follows. In Section 2, we present the random weighting methods and main results.

Simulation results and some discussions are provided in Section 3. The detailed proofs of the

theorems are given in Appendix.

2 Main results

For a column vector α, let α⊗0 = 1, α⊗1 = α, and α⊗2 = ααT. For a matrix A or a vector a,

‖A‖ = supi,j |aij | and ‖a‖ = supi |ai|. We introduce the following notations:

S(d)(β, t) =
1

n

n
∑

i=1

Yi(t)Zi(t)
⊗deβTZi(t), s(d)(β, t) = ES(d)(β, t), (d = 0, 1, 2),

Z̄(β, t) =
S(1)(β, t)

S(0)(β, t)
, µ(β, t) =

s(1)(β, t)

s(0)(β, t)
,

V (β, t) =
S(2)(β, t)

S(0)(β, t)
− Z̄(β, t)

⊗2
, v(β, t) =

s(2)(β, t)

s(0)(β, t)
− µ(β, t)

⊗2
,

S(d)∗(β, t) =
1

n

n
∑

i=1

wiYi(t)Zi(t)
⊗deβTZi(t),

Z̄∗(β, t) =
S(1)∗(β, t)

S(0)∗(β, t)
, V ∗(β, t) =

S(2)∗(β, t)

S(0)∗(β, t)
− Z̄∗(β, t)

⊗2
,

where “E” stands for the expectation.

For counting processes (Ni(t), t ∈ [0, τ ]), we have the following Doob-Meyer decomposition:

Ni(t) = Mi(t) +

∫ t

0

Yi(u)λ0(u)eβT

0
Zi(u)du,

where β0 is the true parameter, λ0(t) is the baseline hazard function. (Mi(t), t ∈ [0, τ ]) is a

martingale with respect to filtration {Ft,i, t ∈ [0, τ ]}, and Ft,i = σ(Ni(s), Yi(s), Zi(s) : 0 � s �

τ), the σ-algebra generated by {Ni(s), Yi(s), Zi(s) : 0 � s � τ}. They are square-integrable
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martingale sequences with

〈Mi, Mi〉(t) =

∫ t

0

Yi(u)eβT

0
Zi(u)λ0(u)du, 〈Mi, Mj〉 = 0, i �= j,

i.e. Mi and Mj are orthogonal when i �= j. For a given n, both Mi(t) and
∑n

i=1 Mi(t) are

martingales with respect to F (n)
t =

⋃n
i=1 Ft,i.

We need the following assumptions before stating our main results.

Assumption A (Noninformativeness). Ti is independent of the corresponding censoring vari-

able conditionally on Zi.

Assumption B (Finite interval).
∫ τ

0
λ0(t)dt < ∞ and P (Yi(t) = 1, for all t ∈ [0, τ ]) > 0.

Assumption C (Asymptotic stability). For d = 0, 1, 2, there exists a neighborhood B of β0

such that

sup
β∈B,t∈[0,τ ]

‖S(d)(β, t) − s(d)(β, t)‖ = op(1).

Assumption D (Covariates). |Zij(0)|+
∫ t

0 |dZij(t)| < CZ , a.s., for all i, j, and some constant

CZ < ∞.

Assumption E (Asymptotic regularity). For all (β, t) ∈ B × [0, τ ],

s(1)(β, t) =
∂

∂β
s(0)(β, t), s(2)(β, t) =

∂2

∂β2
s(0)(β, t).

s(d)(β, t), d = 0, 1, 2, are continuous functions of β ∈ B uniformly in t ∈ [0, τ ] and are bounded

on B × [0, τ ]. s(0)(β, t) is also bounded away from 0 on B × [0, τ ]. The matrix

Σ =

∫ τ

0

v(β0, t)s
(0)(β0, t)λ0(t)dt

is positive definite.

Assumption F (Weighting variable). w1, w2, . . . are i.i.d. with P (w1 > 0) = 1, E(w1) = 1,

and Ew2
1 = π � 1. The sequences {wi} and {Ti, δi, Zi} are independent.

Note that the partial derivative conditions on s(d) are also satisfied by S(d)(d = 0, 1, 2). It

was shown in [4] that under the conditions similar to Assumptions A–E,

√
n(β̂n − β0)

L−→ N(0, Σ−1), (2.1)

where “
L−→” stands for convergence in distribution.

In the rest of this paper, notations L∗, P ∗ denote the corresponding probability calculations

conditionally on {Ti, δi,Zi}n
i=1. Our main results are as follows.

Theorem 1. Suppose that Assumptions A–F hold. We have

√
n(β̂∗

n − β0) = Σ−1 1√
n

n
∑

i=1

wi

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t) + op(1). (2.2)

In particular, if wi ≡ 1, we have

√
n(β̂n − β0) = Σ−1 1√

n

n
∑

i=1

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t) + op(1). (2.3)
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Obviously, it follows from (2.3) that we have the well-known result (2.1).

Theorem 2. Suppose that Assumptions A–F hold and π = 2. Then

L∗(
√

n(β̂∗
n − β̂n))→N(0, Σ−1) in probability, (2.4)

as n → ∞. Furthermore,

sup
u∈Rp

|P ∗(
√

n(β̂∗
n − β̂n) � u) − P (

√
n(β̂n − β0) � u)|→ 0, in probability, (2.5)

as n → ∞, where u runs over all p-vectors, and the inequality between vectors means coordinate-

wise inequality.

Note that when π = 1 the random weighting variables are constant 1, and the random

weighting estimate β̂∗
n = β̂n, a.s., the result of Theorem 1 reduces to the classical result of weak

consistency of maximum partial likelihood estimates. The requirement of E(w2
i ) = 2 in Theo-

rem 2 is to ensure the equality of the limiting variances of the random weighting estimator and

the original maximum partial likelihood estimator. Examples of distributions for the weighting

variables satisfying this condition include the exponential distribution with mean 1 and Poisson

distribution with mean 1, among others.

Theorem 2 has an important implication that, for a large sample size, the distribution of the

maximum partial likelihood estimator of β can be approximated by that of random weighting

estimates. In practical applications, this can be done by Monte Carlo method. Specifically, one

can generate random weights repeatedly for (1.2) and then solve the respective estimates of

the regression parameters. Then the empirical distribution of the produced estimates is used

as an approximation to the distribution of the maximum partial likelihood estimator of β. For

example, in deriving the (1 − α)100% confidence interval for the partial likelihood estimate,

β̂n, from a particular data set, one can implement the random weighting m times to obtain

the estimates β̂
∗(1)
n , β̂

∗(2)
n , . . . , β̂

∗(m)
n and hence use the lower and upper α/2 quantiles of these

quantities as the approximation of lower and upper limits of the confidence interval. The results

in Theorem 2 validate this procedure.

3 Simulation studies

We conduct simulation studies to evaluate the performance of the random weighting method for

the Cox model. Survival data are generated from an exponential regression model with hazard

rate λ(t|X = x) = λ0(t) exp(βx) and baseline hazard rate λ0(t) = 1. We take β = 0. Covariates

are taken to be 0 and 1’s with one-half for each. The random weighting method is compared with

bootstrap method. For the random weighting method, we generate i.i.d. wi in (1.2) from the

exponential distribution (the exponential random weighting method) and Poisson distribution

(the Poisson random weighting method) with means 1 respectively. Two bootstrap methods

are compared with the random weighting method, namely, the case bootstrap method and the

conditional bootstrap method (see Sections 3.5 and 7.3 in [6] for details). These two methods

are frequently used in survival analysis. The former one is the well known resampling method

which simply resamples observations with replacement, while the latter simulates failure times

based on the estimated survival function.
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We randomly generate 50 survival times using the censoring rates 36.8%, 60.7% and 77.9%

respectively. Then we estimate β by the exponential random weighting method, the Poisson

random weighting method, the case bootstrap method and the conditional bootstrap method.

Simulation replicates is 500. Histograms of the random weighted estimates are given in Figures

1–3. From Figures 1–2, it can been seen that all histograms appear to be bell shaped. But

for censoring rate 77.9% (heavey censoring), only the histogram by the exponential random

weighting method appears to be bell shaped and other histograms are skewed in Figure 3. This

is because in the case of heavy censoring and small sample size, the censored data may be

repeatedly resampled and the information in failure times is not enough for producing a good

estimate of β. On the other hand, the Poisson random weighting method produces an average

0 weight of proportion 36.8% in {wi}. If there are too many zero weights on failure times,

similarly to bootstrap methods, the weighted partial likelihood equation with i.i.d. Poisson

weights does not produce a good estimate of β.

Figure 1 Histogram of the estimate of β by using the random weighting and bootstrap methods with sample

size n = 50 and 500 replications (β̂ = −0.0635, censoring rate= 36.8%)

To compare the random weighting method with bootstrap methods in confidence interval

estimation, we construct the confidence intervals based on the exponential random weight-

ing method (RW-exp), the Poisson random weighting method (RW-Poission), the asymptotic

normal distribution of maximum partial likelihood estimates (Asy-normal), the conditional

bootstrap method (BS-cond) and the case bootstrap method (BS-case). The sample sizes are

set to be 20, 40, 100, 200, 400, and 1,000 respectively, and as before, the number of replicates

is 500. Simulation results are given in Tables 1 for censoring rates 0.2 and 0.5. From Table 1,

it can be seen that the empirical coverage rates are reasonably close to the nominal ones for

all methods in all cases excluding the case with sample size 20 and censoring rate 0.5. Not
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Figure 2 Histogram of the estimate of β by using the random weighting and bootstrap methods with sample

size n = 50 and 500 replications (β̂ = 0.2162, censoring rate= 60.7%)

Figure 3 Histogram of the estimate of β by using the random weighting and bootstrap methods with sample

size n = 50 and 500 replications (β̂ = 0.1399, censoring rate= 77.9%)

unexpectedly, the length of confidence intervals decreases with sample sizes and increases with

the censoring rates. When the sample size is 40 and censoring rate is ρ = 0.2 or 0.5, the

exponential random weighting method produces the shortest confidence interval. It can also

be seen that the performance of the conditional bootstrap method is slightly better than that

of the case bootstrap method, though the difference is not significant. The Poisson random
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Table 1 Length of confidence intervals and empirical coverage rates (true parameter β = 0)

1 − α n ρ Asy-normal BS-cond BS-case RW-Exponential RW-Poisson

95% 20 0.2 2.024 (0.946) 2.627 (0.920) 2.800 (0.930) 1.967 (0.905) 3.091 (0.938)

0.5 —— —— —— 2.638 (0.906) ——

40 0.2 1.407 (0.951) 1.474 (0.937) 1.498 (0.938) 1.372 (0.933) 1.494 (0.945)

0.5 1.801 (0.962) 1.963 (0.943) 2.004 (0.946) 1.769 (0.934) 2.003 (0.946)

100 0.2 0.882 (0.947) 0.890 (0.940) 0.895 (0.940) 0.866 (0.936) 0.891 (0.939)

0.5 1.119 (0.946) 1.133 (0.937) 1.139 (0.939) 1.102 (0.938) 1.135 (0.940)

200 0.2 0.621 (0.958) 0.621 (0.951) 0.622 (0.952) 0.614 (0.955) 0.620 (0.956)

0.5 0.788 (0.949) 0.789 (0.944) 0.792 (0.942) 0.778 (0.942) 0.791 (0.947)

400 0.2 0.439 (0.947) 0.437 (0.942) 0.437 (0.941) 0.434 (0.942) 0.436 (0.942)

0.5 0.556 (0.952) 0.553 (0.947) 0.554 (0.948) 0.550 (0.949) 0.552 (0.945)

1000 0.2 0.277 (0.955) 0.275 (0.952) 0.275 (0.952) 0.274 (0.950) 0.274 (0.948)

0.5 0.351 (0.950) 0.348 (0.948) 0.349 (0.948) 0.348 (0.947) 0.348 (0.948)

99% 20 0.2 2.660 (0.991) 4.689 (0.971) 5.418 (0.976) 2.580 (0.961) 8.763 (0.983)

0.5 —— —— —— 3.509 (0.967) ——

40 0.2 1.849 (0.990) 1.957 (0.978) 2.001 (0.980) 1.790 (0.979) 2.018 (0.987)

0.5 2.367 (0.997) 2.821 (0.987) 2.970 (0.988) 2.313 (0.981) 3.241 (0.990)

100 0.2 1.159 (0.988) 1.158 (0.982) 1.164 (0.982) 1.122 (0.982) 1.165 (0.983)

0.5 1.471 (0.993) 1.479 (0.983) 1.491 (0.984) 1.430 (0.984) 1.489 (0.986)

200 0.2 0.817 (0.990) 0.804 (0.986) 0.807 (0.985) 0.795 (0.985) 0.804 (0.986)

0.5 1.036 (0.991) 1.023 (0.989) 1.028 (0.982) 1.007 (0.988) 1.029 (0.987)

400 0.2 0.576 (0.990) 0.566 (0.986) 0.565 (0.985) 0.561 (0.987) 0.565 (0.986)

0.5 0.730 (0.991) 0.715 (0.986) 0.719 (0.987) 0.712 (0.987) 0.716 (0.987)

1000 0.2 0.364 (0.990) 0.355 (0.985) 0.356 (0.986) 0.355 (0.986) 0.356 (0.984)

0.5 0.461 (0.991) 0.450 (0.987) 0.452 (0.989) 0.450 (0.986) 0.450 (0.988)

1 − α is the nominal coverage rate, ρ is the censoring rate. Data presentation: length of confidence interval

(empirical coverage rate).

weighting method has a similar performance as the bootstrap methods. It is noted that the

confidence interval constructed based on the asymptotic normal distribution of the maximum

partial likelihood estimator is only slightly worse than the one constructed based on the ex-

ponential random weighting method for the case of moderate sample sizes and low censoring

rate.

Consistent with the previous findings from Figures 1–3, by Table 1, the exponential random

weighting method produces more reliable results. In Table 1, some of the cells are left blank

if the corresponding confidence interval cannot be properly constructed. For a high censoring

rate (ρ = 0.5) and a small sample size n = 20, only the exponential random weighting method

can be used to construct a confidence interval. This is because with such a high censoring rate

and the small sample size, the resampled data may be censored very heavily and does not have

enough event-time information for obtaining a reasonable estimate of β.

4 Discussion

Bootstrap methods are widely used to approximate the empirical distribution of an estimator.

They are especially useful if there is no explicit variance estimate or the variance estimate
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is not good in case that sample size is not large enough. The random weighting method is

similar to bootstrap method, which can also be used to approximate the empirical distribution

of the estimator. The main difference is that random weighting method does not resample the

observations with replacement. This characteristic of the random weighting method makes it

more appealing than other resampling methods when the sample size is small and the censoring

rate is high. This is because the resampling method can easily result in a data set with a high

censoring rate (consequently, the statistical inference becomes difficult) when the censoring rate

in the original data is relatively high.

In this paper, a random weighting method is proposed for analyzing event-time data when

a proportional hazard model is adopted. The consistency and asymptotic normality of the

regression coefficient estimator by the random weighting method are proved. We conduct the

simulation studies to investigate the properties of the proposed method and to compare it with

bootstrap methods. It was shown that the performance of the random weighting method is

generally similar to that of bootstrap methods but it is more favorable when the sample size is

small and the censoring rate is high. The simulation studies are also carried out for comparing

two choices of the weights in (1.2). All simulation studies confirm that the exponential random

weighing method has been performed superiorly over other methods.
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Appendix

For proving the theorems, we firstly give the following lemmas.

Lemma A1. Under Assumptions A–E holding, if β∗
n ∈ B converges to β0 in probability as

n → ∞, then we have

sup
t∈[0,τ ]

‖S(d)∗(β∗
n, t) − s(d)(β0, t)‖ = op(1), d = 0, 1, 2,

sup
t∈[0,τ ]

‖Z̄∗(β∗
n, t) − µ(β0, t)‖ = op(1),

sup
t∈[0,τ ]

‖V ∗(β∗
n, t) − v(β0, t)‖ = op(1).

The proof of Lemma A1 is rather standard and therefore is omitted.

Lemma A2. Suppose that Assumptions A–F hold, then, with probability one there exists a

unique solution to (1.2), β̂∗
n, such that

β̂∗
n→β0, inprobability.

Proof. Let fn(β) = 1√
n
U∗(β), where β satisfies

‖β − β0‖ = ρn, with ρn → 0 and
√

nρ2
n → ∞ as n → ∞. (A.1)

By Taylor expansion, there exists β∗ which is in the line segment of β and β0, such that

fn(β) = fn(β0) −
1√
n

n
∑

i=1

wi

∫ τ

0

V ∗(β∗, t)dNi(t)(β − β0). (A.2)

By Lemma A1 and 1
n

∑n
i=1 wi

∫ τ

0
v(β0, t)dNi(t) = Op(1), it can be shown that

1

n

n
∑

i=1

wi

∫ τ

0

V ∗(β∗, t)dNi(t) =
1

n

n
∑

i=1

wi

∫ τ

0

v(β0, t)dNi(t) + op(1)

P−→ E

(

w1

∫ τ

0

v(β0, t)dN1(t)

)

= E

(
∫ τ

0

v(β0, t)Y1(t)e
βT

0
Z1(t)λ0(t)d(t)

)

= Σ, (A.3)

where “
P−→” stands for the convergence in probability. By (A.1), (A.2), (A.3) and Assumption

E, it follows that

sup
‖β−β0‖=ρn

(β − β0)
Tfn(β) � Op(ρn) − (λmin(Σ) + op(1))

√
nρ2

n
P−→ −∞,

where λmin(Σ) is the minimum eigenvalue of Σ. Therefore,

lim
n→∞

P

(

sup
‖β−β0‖=ρn

(β − β0)
Tfn(β) < 0

)

= 1.

Therefore, based on the Leray-Schauder Theorem and its corollary[15], it follows that with

probability one there exists a unique solution to (1.2), β̂∗
n, which converges to β0 in probability.
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Proof of Theorem 1. By Taylor expansion, there exists β∗, which is in the line segment of β̂∗
n

and β0, such that

1√
n

U∗(β0) =

[

− 1

n

∂U∗(β)

∂βT

∣

∣

∣

∣

β=β∗

]√
n(β̂∗

n − β0)

=

[

1

n

n
∑

i=1

wi

∫ τ

0

V ∗(β∗, t)dNi(t)

]√
n(β̂∗

n − β0), (A.4)

since U∗(β̂∗
n) = 0 and ∂U∗(β)

∂βT =
∑n

i=1 wi

∫ τ

0 V ∗(β, t)dNi(t). By Lemma A1 together with the

Doob-Meyer decomposition for Ni(t) and the consistency of β̂∗
n, we have

1

n

n
∑

i=1

wi

∫ τ

0

v(β0, t)dNi(t)
P−→ E

(

w1

∫ τ

0

v(β0, t)Y1(t)e
βT

0
Z1(t)λ0(t)dt

)

= Σ (A.5)

and

∥

∥

∥

∥

1

n

n
∑

i=1

wi

∫ τ

0

(V ∗(β∗, t) − v(β0, t))dNi(t)

∥

∥

∥

∥

� sup
t∈[0,τ ]

‖V ∗(β∗, t) − v(β0, t)‖
1

n

n
∑

i=1

wiNi(τ) = op(1). (A.6)

Therefore in view of (A.5) and (A.6) it follows that

1

n

n
∑

i=1

wi

∫ τ

0

V ∗(β∗, t)dNi(t) = Σ + op(1). (A.7)

By (A.4) and (A.7), we have

√
n(β̂∗

n − β0) = (Σ + op(1))−1 1√
n

U∗(β0) = (Σ−1 + op(1))
1√
n

U∗(β0). (A.8)

Divide 1√
n
U∗(β0) into two parts as follows:

1√
n

U∗(β0) =
1√
n

n
∑

i=1

wi

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t)

− 1√
n

n
∑

i=1

wi

∫ τ

0

(Z̄∗(β0, t) − µ(β0, t))dMi(t). (A.9)

Since {wi

∫ τ

0 (Zi − µ(β0, t))dMi(t)}n�1 are i.i.d. with zero mean vector and

Var

(

w1

∫ τ

0

(Z1(t) − µ(β0, t))dM1(t)

)

= π

∫ τ

0

E(Z1(t) − µ(β0, t))
⊗2Y1(t)e

βT

0
Z1(t)λ0(t)d(t)

= πΣ,

by multivariate central limit theorem, it follows that

1√
n

n
∑

i=1

wi

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t)
L−→ N(0, πΣ).
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Note that, conditionally on w1, . . . , wn, wi

∫ t

0
(Z̄∗(β0, u)− µ(β0, u))dMi(u) is a martingale with

respect to {Ft, 0 � t � τ} with zero mean vector, which means that the expectation of the

second term of the right-hand side of (A.9) is zero vector. By Lemma A1, together with the

martingale property and 〈Mi, Mj〉 = 0 (i �= j), we have

∥

∥

∥

∥

E

[

1√
n

n
∑

i=1

wi

∫ τ

0

(Z̄∗(β0, t) − µ(β0, t))dMi(t)

]⊗2∥
∥

∥

∥

= o(1).

Thus, the second term of the right-hand side of (A.9) is asymptotically neglectable in probability.

Hence, in view of (A.9), it is obvious that

1√
n

U∗(β0) =
1√
n

n
∑

i=1

wi

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t) + op(1)
L−→ N(0, πΣ). (A.10)

Thus, by (A.8) and (A.10), we have (2.2) since

√
n(β̂∗

n − β0) = (Σ−1 + op(1))
1√
n

U∗(β0) = Σ−1 1√
n

n
∑

i=1

wi

∫ τ

0

(Zi − µ(β0, t))dMi(t) + op(1).

Proof of Theorem 2. By the result of Theorem 1, we have

√
n(β̂∗

n − β̂n) = Σ−1 1√
n

n
∑

i=1

(wi − 1)

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t) + op(1). (A.11)

From Lemma 2.9.5 of [16], it follows that conditionally on {Ti, δi, Zi(·)}i�1,

L∗
(

1√
n

n
∑

i=1

(wi − 1)

∫ τ

0

(Zi(t) − µ(β0, t))dMi(t)

)

→ N(0, Σ) (A.12)

for almost every sequence {Ti, δi, Zi(·)}i�1. Thus, by (A.11) and (A.12), it can be shown that

L∗(
√

n(β̂∗
n − β̂n))→N(0, Σ−1) in probability.

Similar to the discussion in [11], (2.5) can be shown to hold true. The proof is thus completed.


