ComponentBee v. 1.0beta

ComponentBee

Example

Reliability testing of a client-server application
Draft 30.10.2008

1 The client-server example

The client-server example package contains a small example that illustrates how the ComponentBee can be
utilised in reliability evaluation of a client-server application. The usage of Web services requires
utilization of network connections and a Web server. Network requests may take several seconds and cause
delays, decreasing the usability of the application. Thus, these requests should be executed asynchronously
in threads, in order to prevent them from blocking the usage of the UI of the application. Unfortunately, the
utilization of threads and Web connections increases the complexity and may decrease the reliability of the
SW system.

Figure 1 shows execution paths for a client-server application. The asynchronous content delivery is an
execution path where the client requests the server to deliver a correct or failure response for the client. The
response is finally shown in the refreshed view for the user. In an ignored request use case the server-side
does not deliver a response for the request. In the ignored response use case the received response is not
shown for the user.

Client Server View

seq AsyncContentDelivery)

1 : request()

3 : update()

\\ =2: response() -J

seq lngoredRequest)

4 : request() _

seq lngoredResponse)

5 :request() _

6 : response()

Figure 1. Execution paths for a client-server application.

The archive file ClientServerExample.zip contains a client-server application and a ready-made test bed for
it. The probabilities for different execution paths are configured with the attributes that are defined in the
fivit.smallclientserverexample. TestingAttributes interface. Thus, by changing these attributes it is easy to
effect to the “reliability” of the client-server application.

2 Creation of a unit-level reliability test

2.1 Import the client-server project to the Eclipse workspace

The client-server project is imported to the Eclipse workspace in the following steps:
Start the Eclipse.
Select File->Import... and then choose “import existing projects into Workspace "-item (Figure 2).
Select the archive file ClientServerExample.zip and select “fi.vtt.smallclientserverexample” project.
Click “Finish” that will finally import the project to the Eclipse workspace (Figure 2).
Select the imported “fi.vtt.smallclientserverexample” project’s properties (Figure 3).

a. Include common.runner.jar and java.runner.jar libraries to the Java build path (Figure 3).

The commonrunner.jar and java.runner.jar packages exist in the path:

Nk =

INSTALL PATH/eclipse/plugins/org.eclipse.hyades.test.tools.core_4.4.100.v200710300400

b. Include componentbeetoolkit.jar libraries to the Java build path (Figure 3). The
componentbeetoolkit.jar exists in the path:

INSTALL PATH/eclipse/plugins/ComponentBee_1.0.0/componentbeetoolkit.jar

6. Check that the Java classes are in the root folder of the Java project as shown in Figure 3. The probes
are used in raw log data recording. The utilisation of probes requires that the Java classes are in
the root folder of the java project (not in projectname/src folder). By default the Eclipse creates a
source (src/) folder and adds source files to the folder. In order to prevent this, go to the source tab in
the Java Build Path view (Figure 3), select the default src/ folder, and click remove. Push the “Add
Folder”-button now and select the project root to be the source folder. Finally, (if needed) copy the
Java packages under src/ folder to the root of the Java project.

& Import _ ol x| £ Import =lol x|
Import Projects r
Select g P] i‘
Select a directory to search for existing Eclipse projects.
Create new projects from an archive flle or directory. H =
" Select root directory:: | Browse...
Select an import source:
@ Select archive file: F\EclipseworkSpacelfi.vit smalclientser verexample.zi
|type filter text I \Eclp pace P2k
P s
E-{= General -~ e
. [E, Archive Fle fivtt.smalclentserverexample Select Al
lj Existing Projects into Workspace Daselact Al
.+, File System
. ElPreferences Refresh
- CHS ﬂ
[¥ | Copy priojects inte workspace
) = Back I Mext > I Firish | Cancel | @ < Back | [t = | Finish Cancel

Figure 2. Importing the client-server example to the Eclipse workspace.

& properties for fivtt.smallclientserverexample

Itype filter text

]
[

Resource

--BeanInfo Path
- Buiders

--Java Bulld Path
- Java Code Style

Java Compiler

- Java Editor
- Javadoc Location

Project References

- Refactoring History
- RLn/Deblug Settings
- Server

- Service Policies

Task Tags

- TPTP JUnit Test
- Walidation

Java Build Path

=1ol x|

(# Solrce |B Projectsl B Libraries | “ Order and Exportl

Source folders on build path:

B = fivtt smalcientserverexample
=¥ Inciuded: (AN

% Excluded: (Mone)

£ Native lbrary location: (Norne)

[~ Allow output folders for source folders
DiefaLlt output folder:

| fi.vtt.smalclientserverexample

Add Folder... |
Link Source. ., |

Edlits.. |
Remove |

Browse. ., |

o]

Cancel |

Figure 3. The project properties dialog of Eclipse.

2.2 Creation of a visual diagram for the test model

In order to test the reliability we must have a test model for the client-server application. The
ComponentBee offers a visual editor for test models defining expected behaviours (named message
sequences) for the components under tests and adaptor elements to adapt the behaviour model for the actual
SW components. The project provides a ready-made test model
(test_model for client server example.dynamictestdsl) for the client-server application. Initialise a visual
diagram for the test model in the following steps:

1. Select File->Initialise Test Model Diagram file,

2. Choose the test model for client server example.dynamictestdsl file that exist in the root of the
“fi.vtt.smallclientserverexample” project and push the “Open”-button in the select domain model
dialog, and

3. Finally push the “Finish”-button in the “Initialise New DynamicTestDSL...” dialog.

4. The test model is now presented in the visual test editor (Figure 4). The test model presents use
cases for the message sequences that are presented in Figure 1.

Select domain model B ili[

Look in: IC’?fi.vﬂ.smallcliemseNerexample ﬂ Q b

[7] project:

|71 ProbekitForsmalClientServerExample.probe

|71 ProbekitForsmalClentServerExample.probeinfo

4] ProbekitForsmalClentServerExample.probescript

ProbekitForSmallClientServerExample_probedProbe 0.class

ProbekitForSmallClientServerExample_probedProbe 1.class

ProbekitForsmallClientServerExample_probe.class

ProbekitForsmalClientServerExample_probe java

|2 RAWLOG_ProbekitForsmalClientServerExample. xml

< RAWLOG_ProbekitForsmalCientServerExample_1.xml

RAWLOG_ProbekitForsmalClientServerExample_2.xml

RAWLOG_ProbekitForsmalClientServerExample_3.xml

RAWLOG_ProbekitForsmalClientServerExample_4.xml

| RAWLOG_ProbekitForsmalClientServerExample_S.xml

| RAWLOG_ProbekitForsmalClientServerExample_g.xml

SmalClientserverExample.gtest
test_mo ent_¢

File name Itest_mndel_fnr_r:lienl_server_example dynamictestds] :I Open |
Files ot type I’““ ;I Cancel
%

& Initialize new DynamicTestDSL diagram file (=] 53

Diagram file

Create new diagram based on CynamicTestDSL model content:

File:

| F\runtime-EclipseApplication'fi. vit.smallcientserverexampletest_model_for_client_server_example dynamictestdsl_diagram Browse

@ = Back Next > | Firish I Cancel |

F ire 4. Creation 0 visual iagram file for the test model.

2.3 Test model adaptation

The behaviour test editor of the ComponentBee is capable of importing a test model, refining it for the
target software components (it adds adaptor elements to the test model), and finally recording raw log data
about dynamic behaviour of the components. The behaviour test editor provides a tree view for the
available software components and their methods. The tester can select methods, attach them to the
messages of the test model, and by this way add new adaptor elements to the test model. The adaptors view
shows the methods of available software interfaces and components.
The size of the raw log can be large, if all the (e.g. state) information of the dynamic behaviour of SW
components is recorded to the log. Raw log writers are defined in the adaptor elements of a test model. It is
possible to decrease the size of the raw log by selecting those raw log writers that will add the needed data
to the raw log. The ComponentBee provides the following ready-made raw log writers:

1) the state data writer records the state data of a component,

2) the input data writer records data about the input parameters of a method,

3) the output data writer records data about the return values or thrown exception of a method,

4) the default writer records state data of a component and input parameters and a return value or a

thrown exception of a method, and

5) the trace data writer records the trace data to the raw log.

A message classifier defines identifiers for data that it needs in message classification. The input elements
can define data sources for the data identifiers and thus configure message classifiers to classify messages
delivered between different kinds of software components.

The test model is adapted for the implementation components in the following steps:

1. Click the “SmallClientServerExample.qtest” file in the navigator view of Eclipse that will now
open the behaviour test editor of the ComponentBee.

2. Push the “Load Test Model”-button in the test model tab of the behaviour test editor.

3. Load the “test model for client server_example.dynamictestdsl”-file.

4. [OPTIONAL STEP] Go to the adaptors tab and click right mouse button and select a popup item
“Fetch available Java interfaces and classes...” popup menu item.

5. [OPTIONAL STEP] By selecting a method and by clicking a right mouse button it is possible to
open a popup menu and create new adaptor element for a message defined in a test model (Figure
5). This step is already made in the loaded test model that defines ready-made adaptors for request,
response, and update messages.

6. [OPTIONAL STEP] The right-side of the view displays the adaptor elements. By selecting an
adaptor element it is possible to open a popup menu that shows the raw log writer or message
classifier plug-ins that are available in the Eclipse workspace and to insert a raw log writer or a
message classifier to the adaptor element (Figure 6). These plug-ins are used later when the raw
log is recorder and evaluated.

7. [OPTIONAL STEP] In the adaptor view it is possible to insert new input elements to the message
classifiers. This step is already made in the loaded test model that defines all the required raw log
writer plug-ins for the selected methods.

P EX Mavgue Sawch Promct Bun Wndos b .
> b |SEEIE e PIE) WG] i
.

Evslaton
R Test Evalastor o ClertServer Appacaton
= I Preprocessor Fpe

=l

|e@+

Figure 5. Adding an adaptor element for a message.

E
!

it
5

|
E

) ot

] ITES

Figure 6. Adding a raw log writer or message classifier plug-in for an adaptor element.

3 Recording raw log data about the dynamic behaviour
of SW components

The profiler tool of the Eclipse inserts the ProbeKit’s probes at the entry and exit of the selected methods of
the components and then runs the instrumented Java program. The probes will now monitor the execution
of the program execution and call the raw log writers to add data to the raw log file.

The profiling of a Java application is done in the following steps:

1.
2.
3.

4,

10.
11.

12.

Generate a ProbeKit for the test model in the ProbeKit tab of the behaviour test editor (Figure 7).
Push “Profile Configurations”-button (Figure 8) that will open the profile dialog of Eclipse.
Create a new profile configuration for a Java application in the profile view (Figure 9) and then
define a project and a main class for the test bed that you are going to use in profiling.

Insert the commonrunner.jar, java.runner.jar, and componentbeetoolkit.jar packages must be
added to the class path before profiling (Figure 10).

[Optional Step] If you use your own raw log writer plug-ins in profiling, you must add these plug-
ins to a JAR package and insert the JAR package to the class path in the profiling view of Eclipse
(see Figure 10).

Select the monitor tab (Figure 11), click the “Java profiling” item, and create new filter set for the
application to be profiled (Figure 12). Insert the following rows to the beginning of the filter set:

CLASS METHODNAME RULE
a. * start INCLUDE
b. java.lang.Thread start INCLUDE
c. java.lang.Object * INCLUDE

The filter set must be like in the Figure 13, in order to ensure that the method calls related to
thread starting (stzart method calls) and synchronization (wait, notify, and notifyAll method calls)
are recorded to the raw log.

Select the monitor tab (Figure 11) and double click the “probe insertion” item. Select the
ProbeKit that you have generated with the ComponentBee and push the “Finish”-button (Figure
13).

Try to connect to the server that is used in profiling by pushing the “Test Availability”-button of
the monitor tab. If the connection opening is failed to the server, you must start the server (see,
troubleshooting section in the usage instructions of the ComponentBee).

Push the “Profile”-button. The Eclipse will show the profiling monitor view now.

Push the “Stop”-button in the profiling monitor view after the test sequence is executed (Figure
14).

Select the “Package Explorer” view in the Eclipse, select the ‘fi.vet.smallclientserverexample”
project and press F5 key that will now refresh the project view. The raw log file should now exist
in the project path.

5] | G e
i T

! Gorerats Probasit.
R Lo
kg B W‘ bR A ATC R P NNL D PY RS BB A AN B gt 1 i mwmil
=l
Frobetit Qereration.
a ot et S aodd.
e 5 el ity
2 H & R WL CpTer » A
Flaw kogg wree <k £ added
kg 1 i #P L ogiter s ackded.
' . acdded
) acdded
Facice it S e Chertim § ket
J kst
A muccershily created.
Frobe Sarpt < flesFunn " Aacesshly creaed.
o Indo <fieF suscessiuly created.

Tt Mo ks ot Evikionon|

fida I =iEay

Figure 7. A ProbeKit is generated with the ComponentBee.

| £ v sl & | QunTockit action1 Jtvoi&vﬁ-mmmmajewm - SRR PO AR ER i

TP Testied (1) [51)/#% Compenentaes 11 oy Gonerocibormal

. . T2 Teont
;?:samrpm:m'ﬁ b e oy

Ly o

G- yadd rrop= P B e
91 43 Messane! iy At 5
it et 15 ookt

| |r||.wu i B T G S E S S AR AR

Figure 8. A profile configuration must be defined before profiling.

& profile

1
Cr manage, and run configurations @
1.
—
mall Client Server Example
= Ly ~— s
1 Externel Java Appicaudil ,@:romﬁ‘,_ Arguments | -, Classpath| (1) Monitor | L Destination | & Source| ™
[Generic Server
B HTTP Preview vt smalickentserverexample 3. Browse... |
[J2EE Preview
] Java Applet

= 031 Java Appication <
[T Console Client Serve

i, vit smalicientserverexample.impl TestBed
e o 2 I™ include L M searching for a main class
4] Javarlamorm 2 o

I JavazPlatiorm (1) Fmpeﬂmmdmanmsemforammda@
71 QTookit Stop in main

31 Small Client Server £
[71 StyleBaseTestBed

7] TestComponent
E-Ju JUnit

JU JUnit Plug-in Test -
| | bi

Apply | Hevert |
Filter matched 26 of 26 items

Search... I

@ Pofle | dose |
Figure 9. The profile dialog of Eclipse.

1]

Create, manage, and 1un configurations

L Lt omdchereser e ampie (detaf ciwpas)

i] —_— ‘

& g Jor - o
& commonrre je - E\Edpedd TESTRESTALL

f_-m'fl' / e =

G Do

Figure 10. The commonrunner.jar, java.runner.jar, and componentbeetoolkit.jar packages must exist in
the class path.

LR

4| Mame: [JavaPiatform (1)

fype ittt

Gmwm;.l T AT

B Apache Tomeat
S atrach to Agent
@ Ecipoe Applcation
T, External Java Applcation
B Ganenc Server
G HTTP Preview
5 3IEE Frevew
9 Java Applet
=0 Java Appkcaton
1 JavaZPlatiorm
7 JavazPistiorm (1)
o7 QTockit
1 Testompanant
= Ju 3
Ju Mew_configuration
Ju TETRTstEed
J vt Phugrn Test
(1 Managed Resource
OSG Framework
o8 Run on Server
W Statisted
= b Test
& TPTPTested (1)

Test Avalabdty :

\ ¥ 4

| Fiter matched 23 of 23 iterns

]

Figure 11. The monitor tab of the profile dialog.

& Edit Profiling Options
Filter Set
Select and define the filter set that wil be used for profiing.

—lo| x|

oty || et |

Qs

Select a filter set:

[¥] =+ Defauic

[5+ webSphere J2EE

[5 webSphere Studio

1] |

| Method Name | Rule

@ * start INCLUDE

javalang Thread start INCLUDE

javalang.Object * INCLUDE

com.ibm* * EXCLU.,,

COM.SUP* * EXCLU...

COM.ibm* * EXCLU...

org* * EXCLU...

sun x EXCLU...

java¥ * EXCLU...

Note: By
Useaﬂua'settoﬂtera.stmmsmmtzepmﬂeddata
Supported widcard usage on a filter is: "', '<pattern>*', "<pattern>",

w{\| W]}m

() < Back

aS—
Figure 12. Edit profiling options dialog.

& Edit Profiling Options =]

Profiling Type

Edit the options of the profiing type
Probe Insertion
@ i Properties I
Probe
Name: ComponentBeeProbekit
[simpieprobe Pre-fitered: Yes
[talavoitestatatptpta o g b
ID: ComponentBeeProbekit
Version:
Refresh data Description:

:

Figure 13. Edit profiling options dialog.

) an X .nl)tl
P Gt Nedate Seach Propct R Widw B
hIDJIR | E | Frofgan. ™
e =
| # R

Figure 14. The profiling monitor view of Eclipse.

4 Evaluation of the raw log data

Unit-level reliability testing measures Probability of Failure values (the p; values) for SW components. The
pj; value is calculated for an implementation component i (/C;) and a use case j (UC;) with the following
formula:

ch Counth, _Failure_in_UC;

- UC_].Count

Py (1)

IC; _ Participates _in_UC;

where UC,;,Count e, pyye i yc, defines the total number of UC; in which the /C; has caused a failure.

UC,Count 1€, _Faiwre_in_uc, defines the total number of UC; to which the /C; has participated in. Thus, the

calculation of the p; value requires the dynamic behaviour of the SW component to be evaluated: Firstly,
the UC; must be recognized from the execution paths. Secondly, it must be recognized when the IC;
participates in the UC;. Thirdly, it must be identified when the IC; causes failure in the UC;. The
ComponentBee tool helps in these tasks and calculates the measured p; values (PoF_M values).

The ComponentBee uses pre-processor components (actually a pipe of pre-processors) in raw log data
evaluation. In the ComponentBee there are used a BNF-based parser that extracts behaviour patterns from
the collected raw log file and evaluator plug-ins that are capable of recognizing the failed messages and to
define which SW components have caused failures in the executed use cases. Evaluators navigate in the
behaviour pattern tree, evaluate and add evaluation data to the behaviour patterns, and finally calculate
reliability values for the components and executed use cases. The abstract use case evaluator plug-in of the
ComponentBee is capable of calculating and finally recording p;; values to the test report. Before this plug-
in can be used, we must extending the abstract use case evaluator plug-in with methods that evaluate the
messages related to the use case and identifying the components that have participated in or caused failures
in the tested use cases (Figure 15).

package fi.vtt.smallclientserverexample.evaluators;

import fi.vtt.componentbee.behaviourlog.BehaviourPattern;

import fi.vtt.componentbee.behaviourlog.Evaluator;

import fi.vtt.componentbee.behaviourlog.Message;

import fi.vtt.componentbee.behaviourlog.ProcessingMonitor;

import fi.vtt.componentbee.behaviourlog.abstractevaluator.AbstractPatternEvaluator;
import fi.vtt.componentbee.behaviourlog.abstractevaluator.UseCaseEvaluationResult;

public class EvaluatorForSmallClientServerApplication
extends AbstractPatternEvaluator
implements Evaluator({

s that are provided in the me

is set to be a failure participant

3ehaviourPattern
useCaseEvaluationResults
pro

singMonitor

/

public boolean evaluatelInputValues (
final Message message,
final BehaviourPattern useCase,
final BehaviourPattern messageBehaviourPattern,
final UseCaseEvaluationResult useCaseEvaluationResults,
final ProcessingMonitor processingMonitor) {

if (message.getMessageName () .equals ("response")

{

// The server has ca send a failure res 1se.

String responseValue=(String) message.getInputAttribute(0);

boolean isFailureParticipant=responseValue.startsWith("failure_ response");

useCaseEvaluationResults.addParticipant (
"fi.vtt.smallclientserverexample.impl.ServerImpl",
isFailureParticipant) ;

ed a failure if it d

}
if (useCase.getName () .equals ("IngoredRequest"))
{
// The server is caused a failure if it does not deliver a
response.
useCaseEvaluationResults.addParticipant (
"fi.vtt.smallclientserverexample.impl.ServerImpl",
true) ;

}

return true;

Figure 15. An evaluator implementation for the client-server application.

The raw log data is evaluated in the Evaluation view of the ComponentBee (Figure 17). Raw log data is
evaluation is performed in the following steps:

L.
2.
3.

=~

Open the “Evaluation” tab of the behaviour test editor.

Select a Java project for the behaviour parser classes first.

Push the “Generate Parser Classes”-button (Figure 17) that will now create a behaviour parser for
the test model.

[Optional step] New Java classes for evaluator plug-ins can be created to the project path. This is not
needed to be done because the example package provides a ready made evaluator plug-in for the client-
server application. The plugin extends the abstract use case evaluator plug-in and recognizes the
components that have caused failures in the tested use cases (Figure 15).

[Optional step] Open the “Adaptors” tab and attach the evaluator plug-in implementation to the test
model (Figure 16). In the example this is already made and thus this step is not needed to be done.
Next, (if needed) select the parser class path (the generated parser class path is set automatically).
Select a raw log file to be evaluated.

Push the “Create Test Report”-button (Figure 17). If the analysis is successfully completed, the
measured evaluation results are shown and an analysis report file is finally written in an XML format
to the defined path.

Select the “Package Explorer” view in the Eclipse, select the “fi.vet.smaliclientserverexample” project
and press F5 key that will now refresh the project view. The analysis report file should now exist in the
project path.

Use case <AmyncContentDebvery> (Executed 4 times.)
L _M=0.0)

mpl(FoF_M=0.0)
piPoF_M=0.0)
(Fcact o 37 timas)
:_M=0.0)
ImpiFoF_M=1.0)
e case <ignoned_Response>(Executed 59 tmes.}
P ™

=0.0)

ook 30

Figure 17. The Evaluation view of the ComponentBee

