
Network Working Group                                   Arnt Gulbrandsen

Request for Comments: DRAFT                       Oryx Mail Systems GmbH

draft-ietf-lemonade-compress-01.txt                            June 2006

                  The IMAP COMPRESS=DEFLATE Extension

Status of this Memo

    By submitting this Internet-Draft, each author represents that any

    applicable patent or other IPR claims of which he or she is aware

    have been or will be disclosed, and any of which he or she becomes

    aware will be disclosed, in accordance with Section 6 of BCP 79.

    Internet-Drafts are working documents of the Internet Engineering

    Task Force (IETF), its areas, and its working groups.  Note that

    other groups may also distribute working documents as Internet-

    Drafts.

    Internet-Drafts are draft documents valid for a maximum of six

    months and may be updated, replaced, or obsoleted by other documents

    at any time.  It is inappropriate to use Internet-Drafts as

    reference material or to cite them other than as "work in progress".

    The list of current Internet-Drafts can be accessed at

    http://www.ietf.org/ietf/1id-abstracts.txt.  The list of Internet-

    Draft Shadow Directories can be accessed at

    http://www.ietf.org/shadow.html.

Copyright Notice

    Copyright (C) The Internet Society 2006.

Abstract

    The COMPRESS=DEFLATE extension allows an IMAP connection to be

    compressed using the DEFLATE algorithm, such that effective

    compression is available even when TLS is used.

Conventions Used in This Document

    The key words "REQUIRED", "MUST", "MUST NOT", "SHOULD", "SHOULD

    NOT", and "MAY" in this document are to be interpreted as described

    in "Key words for use in RFCs to Indicate Requirement Levels"

Gulbrandsen               Expires December 2006                 [Page 1]



 

Internet-draft                                                 June 2006

    [KEYWORDS]. Formal syntax is defined by [ABNF] as modified by

    [IMAP].

    In the example, "C:" and "S:" indicate lines sent by the client and

    server respectively.

Introduction and Overview

    An IMAP server that supports this extension announces

    "COMPRESS=DEFLATE" as one of its capabilities.

    The goal of COMPRESS=DEFLATE is to reduce the bandwidth usage of

    IMAP.  On regular IMAP connections, the PPP or MNP compression used

    with many low-bandwidth links compresses IMAP well. However, when

    TLS is used, PPP/MNP compression is ineffective. TLS too may provide

    compression, but few or no implementations do so in practice.

    In order to increase interoperation, it is desirable to have as few

    different compression algorithms as possible, so this document

    specifies only one.  The DEFLATE algorithm is standard, widely

    available, unencumbered by patents and fairly efficient.  Hopefully

    it will not be necessary to define additional algorithms.

    The extension adds one new command (COMPRESS) and no new responses.

The COMPRESS Command

    Arguments: Name of compression mechanism: "DEFLATE".

               Direction: "UP", "DOWN" or "BOTH".

    Responses: None

    Result: OK The server will compress its responses (if the direction

               is DOWN or BOTH) and expects the client to compress its

               commands (if the direction is UP or BOTH).

            NO The connection already is compressed, or the server

               doesn’t support the requested mechanism, or the direction

               specified is unknown.

           BAD Command unknown or invalid argument.

    The COMPRESS command instructs the server to use the named

    compression mechanism ("DEFLATE" is the only one defined) for future

    commands and/or responses. If the direction specified is "UP", only

    commands are compressed. If the direction specified is "DOWN", only

Gulbrandsen               Expires December 2006                 [Page 2]



 

Internet-draft                                                 June 2006

    For DEFLATE (as for many other compression mechanisms), the

    compressor can trade speed against quality.  When decompressing

    there isn’t much of a tradeoff.  Consequently, the client and server

    are both free to pick the best reasonable rate of compression for

    the data they send.

    The client MUST NOT send additional commands until it has seen the

    result of COMPRESS.

    If both SASL/TLS and COMPRESS are in use, the data should be

    compressed before it is encrypted (and decrypted before it is

    decompressed), independent of the order in which the client issues

    COMPRESS, AUTHENTICATE and STARTTLS.

Example

    This example shows a simple login sequence. The client uses TLS for

    privacy and [DEFLATE] for compression.

         S: * OK [CAPABILITY IMAP4REV1 STARTTLS COMPRESS=DEFLATE]

         C: a starttls

         S: a OK

         C: b compress deflate

         S: b OK

         C: c login arnt tnra

         S: c OK

Compression Efficiency

    IMAP poses some unusual problems for a compression layer.

    Upstream is fairly simple. Most IMAP clients send the same few

    commands again and again, so any compression algorith which can

    exploit quotes works efficiently. The APPEND command is an

    exception; clients which send many APPEND commands may want to take

    special care.

    Downstream has the unusual property that 3-4 kinds of data are sent,

    confusing all dictionary-based compression algorithms.

    The first type is IMAP responses. These are highly compressible;

    zlib using its least CPU-intensive setting compresses typical

    responses to 25-40% of their original size.

    The second is email headers. These are equally compressible, and

    benefit from using the same dictionary as the IMAP responses.

Gulbrandsen               Expires December 2006                 [Page 3]



 

Internet-draft                                                 June 2006

    The third is email body text. Text is usually fairly short and

    includes much ASCII, so the same compression dictionary will do a

    good job here, too. When multiple messages in the same thread are

    read at the same time, quoted lines etc. can often be compressed

    almost to zero.

    Finally, attachments (non-text email bodies) are transmitted, either

    in [BINARY] form or encoded with base-64.

    When attachments are retrieved in [BINARY] form, DEFLATE may be able

    to compress them, but the format of the attachment is usually not

    IMAP-like, so the dictionary built while compressing IMAP does not

    help. The compressor has to adapt from IMAP to the attachment’s

    format, and then back.

    When attachments are retrieved in base-64 form, the same problems

    apply, but the base-64 encoding adds another problem. 8-bit

    compression algorithms such as deflate work well on 8-bit file

    formats, however base-64 turns a file into something resembling a

    6-bit bytes in an 8-bit format.

    A few file formats aren’t compressible using deflate, e.g. .gz, .zip

    and .jpg files.

    According to the author’s measurements, the compression level used

    makes little difference. zlib’s level 1 compresses IMAP almost as

    well as level 9, and for the receiver, level 1 seems to require

    (just a tiny bit) pmore CPU than level 9. Independent verification

    is strongly desired.

Implementation Notes

    When using the zlib library (see [DEFLATE]), the functions

    deflateInit(), deflate(), inflateInit() and inflate() suffice to

    implement this extension.

    Note that when using TLS, compression may actually decrease the CPU

    usage, depending on which algorithms are used in TLS. This is

    because fewer bytes need to be encrypted, and encryption is

    generally more expensive than compression.

    A client can improve downstream compression by implementing [BINARY]

    and using FETCH BINARY instead of FETCH BODY.

    A server can improve downstream compression if it hints to the

    compressor that the data type is about to change strongly, e.g. by

    sending a Z_FULL_FLUSH at the start and end of large non-text

Gulbrandsen               Expires December 2006                 [Page 4]



 

Internet-draft                                                 June 2006

    literals (before and after ’*CHAR8’ in the definition of literal in

    RFC 3501, page 86).

    A server can improve the CPU efficiency both of the server and the

    client if it adjusts the compression level (e.g. using the

    deflateParams() function in zlib) at these points. A very simple

    strategy is to change the level 0 to at the start of a literal

    provided the first two bytes are either 0x1F 0x8B (as in deflate-

    compressed files) or 0xFF 0xD8 (JPEG), and to keep it at 1-5 the

    rest of the time.

Formal Syntax

    The following syntax specification uses the Augmented Backus-Naur

    Form (ABNF) notation as specified in [ABNF]. Non-terminals

    referenced but not defined below are as defined by [ABNF] (SP, CRLF)

    or [IMAP] (all others).

    Except as noted otherwise, all alphabetic characters are case-

    insensitive.  The use of upper or lower case characters to define

    token strings is for editorial clarity only.  Implementations MUST

    accept these strings in a case-insensitive fashion.

        command-any =/ compress

        compress    = "COMPRESS" SP algorithm SP ( "UP" / "DOWN" /

                      "BOTH" )

        algorithm   = "DEFLATE"

Security considerations

    (As for [TLSCOMP] RFC 3749.)

IANA Considerations

    The IANA is requested to add COMPRESS=DEFLATE to the list of IMAP

    extensions.

Credits

    Quite a few people on the LEMONADE mailing list have offered

    comments, including Dave Cridland, Ned Freed and Tony Hansen. And

    various people in the rooms at meetings. Send me mail, I’ll add you.

Gulbrandsen               Expires December 2006                 [Page 5]



 

Internet-draft                                                 June 2006

Open Issues

    Both ends can already disable compression at any point by calling

    deflateParams(). The only missing feature is for the client to

    request that the server stop compressing - are there use-cases for

    that? It requires adding more server-side state, so I’m wary.

    What text and numbers are needed wrt. compression levels? A bit of

    solid information is not amiss.

Normative References

    [ABNF]     Crocker, Overell, "Augmented BNF for Syntax

               Specifications: ABNF", RFC 2234, Internet Mail

               Consortium, Demon Internet Ltd, November 1997.

    [IMAP]     Crispin, "Internet Message Access Protocol - Version

               4rev1", RFC 3501, University of Washington, June 2003.

    [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate

               Requirement Levels", RFC 2119, Harvard University, March

               1997.

    [DEFLATE]  Deutsch, "DEFLATE Compressed Data Format Specification

               version 1.3", RFC 1951, Aladdin Enterprises, May 1996.

    [STARTTLS] Newman, C. "Using TLS with IMAP, POP3 and ACAP", RFC

               2595, June 1999.

Informative References

    [TLSCOMP]  Hollenbeck, "Transport Layer Security Protocol

               Compression Methods", RFC 3749, VeriSign, May 2004.

Gulbrandsen               Expires December 2006                 [Page 6]



 

Internet-draft                                                 June 2006

Author’s Address

    Arnt Gulbrandsen

    Oryx Mail Systems GmbH

    Schweppermannstr. 8

    D-81671 Muenchen

    Germany

    Fax: +49 89 4502 9758

    Email: arnt@oryx.com

Intellectual Property Statement

    The IETF takes no position regarding the validity or scope of any

    Intellectual Property Rights or other rights that might be claimed to

    pertain to the implementation or use of the technology described in this

    document or the extent to which any license under such rights might or

    might not be available; nor does it represent that it has made any

    independent effort to identify any such rights.  Information on the

    procedures with respect to rights in RFC documents can be found in BCP 78

    and BCP 79.

    Copies of IPR disclosures made to the IETF Secretariat and any assurances

    of licenses to be made available, or the result of an attempt made to

    obtain a general license or permission for the use of such proprietary

    rights by implementers or users of this specification can be obtained from

    the IETF on-line IPR repository at http://www.ietf.org/ipr.

    The IETF invites any interested party to bring to its attention any

    copyrights, patents or patent applications, or other proprietary rights

    that may cover technology that may be required to implement this standard.

    Please address the information to the IETF at ietf-ipr@ietf.org.

Copyright Statement

    Copyright (C) The Internet Society (2006).

    This document is subject to the rights, licenses and restrictions

    contained in BCP 78, and except as set forth therein, the authors retain

    all their rights.

Gulbrandsen               Expires December 2006                 [Page 7]



 

Internet-draft                                                 June 2006

Disclaimer of Validity

    This document and the information contained herein are provided on an "AS

    IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS

    SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

    TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT

    LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT

    INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR

    FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

    Funding for the RFC Editor function is currently provided by the Internet

    Society.

Gulbrandsen               Expires December 2006                 [Page 8]


