
AUTOMATING DEEP SPACE NETWORK SCHEDULING

AND CONFLICT RESOLUTION

Mark D. Johnston

and Bradley J. Clement

Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA 91109 USA

{mark.johnston, bclement}@jpl.nasa.gov

ABSTRACT The missions supported by the DSN include all of

NASA’s deep space missions, such as the planetary

exploration spacecraft at Mars (the Mars Exploration

Rovers Spirit and Opportunity, Mars Odyssey, Mars

Global Surveyor) and Saturn (Cassini-Huygens);

cometary explorers such as Deep Impact and Stardust;

and missions such as Voyagers 1 and 2 that are leaving

the solar system entirely. Other missions supported

include observatories such as Chandra (X-ray) and

Spitzer (Infrared), in Earth orbit or near Earth orbit. A

total of about 20 spacecraft are currently allocated

resources in a typical near-term scheduling period,

while at the writing of this paper, 61 missions are being

scheduled over the ~10 year horizon.

The Deep Space Network (DSN) is a central part of

NASA’s infrastructure for communicating with active

space missions, from earth orbit to beyond the solar

system. Consisting of more than a dozen major ground

antennas at three sites spaced around the globe, it must

be carefully scheduled to satisfy the requirements of

the various mission users, subject to many constraints.

We describe our recent work in modeling the

complexities of user requirements, and then scheduling

and resolving conflicts on that basis. We emphasize

our innovative use of background “intelligent

assistants” that carry out search asynchronously while

the user is focusing on various aspects of the schedule.

These assistants can provide guidance to the user about

feasible and optimal solutions to the problem they are

working on.

1. INTRODUCTION

The NASA Deep Space Network (DSN) is an

international network of antennas that supports

interplanetary spacecraft missions and radio and radar

astronomy observations for the exploration of the solar

system and the universe. The network also supports

selected Earth-orbiting missions. The DSN consists of

three deep-space communications facilities placed

approximately 120 degrees apart around the world: at

Goldstone, in California’s Mojave Desert; near Madrid,

Spain; and near Canberra, Australia. This geographic

placement permits constant observation of spacecraft

as the Earth rotates.

 Fig. 1: The 70m antenna at the Deep Space Network

Goldstone complex in the California Mojave desert. At

the right can be seen one of the 34m antennas.

Each of the DSN sites supports antennas of sizes 26m,

34m, and 70m, along with a variety of receivers and

other equipment that can be configured to support all

the different kinds of communications requests that

must be handled. Fig. 1 shows a picture of one of the

largest antennas, the 70m antenna at Goldstone,

California, along with one of the 34m antennas at this

same complex.

In this paper we will describe the nature of the DSN

scheduling problems, i.e. the allocation of DSN

resources to the missions that request them. We will

discuss our progress in modeling the requirements of

the missions, and in generating schedules that meet

these requirements. We will discuss the process of

conflict resolution and our approach to automating

Proc. ‘ISAIRAS 2005 Conference’, Munich, Germany,

5-8 September 2005 (ESA SP-603, September 2005)

what is currently a manual and iterative process. Key

elements of our approach include tools for visualizing

the schedule in various ways, and “intelligent

assistants” that can asynchronously examine the

schedule and search for possible solutions to conflicts

that it contains. We conclude with a discussion of

future research and implementation directions.

2. THE DEEP SPACE NETWORK

SCHEDULING PROBLEM

Currently, DSN schedules are manually generated out

one year in the future. The nearer term portion of the

schedule (up to 8 weeks out) considers the specific

equipment and personnel to be allocated to a

communications event. Beyond this interval, the

schedule is concerned primarily with scheduling

tracks, each of which is an allocation of an antenna to a

mission over a specific time period. Tracks are

typically one to eight hours in duration and must be

placed within a viewperiod for that particular mission,

i.e. when the spacecraft is visible (within specified

geometric limits) from that antenna. A typical week

will contain about 370 scheduled tracks. In this paper

we are concerned with mid-range (8-week to 6-month)

and long-term (beyond 6-months) schedules.

2.1 Constraints

Among the constraints that come into play when

generating the DSN schedule are the following:

• A spacecraft can only be scheduled to use an

antenna when it is within view: this is primarily a

geometric constraint and can be pre-computed

ahead of time into a set of usable viewperiods for

each mission/antenna pair

• No two spacecraft can use the same antenna at the

same time, with the exception that multiple

spacecraft in view can downlink at the same time,

but only one can uplink. Thus, for example, the

multiple missions currently at Mars can share

antennas for some activities.

• Tracks have setup and teardown durations that

typically range from 10 minutes to an hour. (The

combined setup, track and teardown is called an

activity.) These setups and teardowns can be

scheduled outside of the spacecraft viewperiod but

generally cannot overlap other activities on the

same antenna.

2.1 Requirements

The missions that use the DSN initially specify their

requirements in high-level terms of hours/week per

antenna, with more detailed specifications

communicated informally (verbally or email) by the

missions to the schedulers. One of the challenges faced

in automating the DSN scheduling problem is that of

defining a representation that can capture the details

and subtleties of the individual mission’s requirements.

The representation must be highly expressive, since

mission requirements can incorporate any of the

following elements:

• And/Or groupings and alternatives. Missions must

be able to specify conjunctions of requirements

(such as multiple antennas at the same or different

times). Such a conjunction means that all of the

subrequirements must be satisfied at the same time

in order for the requirement to be satisfied. In

addition, disjunctive requirements may be

specified, such that at most one requirement of a

set of alternatives must be satisfied. In general,

these requirements can be organized into an

AND/OR tree, which is an ideal way to capture the

combination of groupings (and) and alternatives

(or) that arise when specifying a mission’s

requirements in detail.

• Timing. Tracks may have specified start times and

durations, both of which may have allowable

ranges.

• Antennas. Missions may specify one or more

alternative antennas on which a track may be

scheduled. They may specify groups of antennas,

any one of which is acceptable for a particular type

of track.

• Repetitions. Track repetitions may be specified in

general as requirements, over some time period, on

the number of tracks, their durations, overlap, and

time gaps to neighboring tracks. All of these

quantities may have ranges on them. So, for

example, a mission might specify repetition

requirements such as “seven tracks/week, of

duration 5 to 8 hours with no gap longer than 20

hours between adjacent tracks”.

• Overrides. In some cases, missions need to

override a general requirement with a more

specific one based on knowledge of ongoing

activities. For example, a general requirement for a

telemetry downlink every 10 hours may be

superceded around the time of a maneuver with a

requirement for continuous coverage.

• Activity start and end times for most missions

must be scheduled on five-minute boundaries.

There have been a number of previous investigations of

DSN scheduling automation. The Operation Mission

Planner (OMP-26) used heuristic search to allocate

26m antennas to missions and linear programming to

adjust track time intervals [1]. Other automation

projects were research efforts and were never

deployed. LR-26 was a customisable heuristic

scheduler that utilized Lagrangian relaxation [2], while

the Demand Access Network Scheduler (DANS)

employed an iterative repair technique [3]. Other

graphical planning tools that have been used for

forecasting, analysis, and interactive scheduling

include TIGRAS [4] and FASTER [5]. Our approach

combines some of the strengths of these systems, as

well as incorporating innovative elements in both

scheduling search and in schedule visualization.

DSN data

sources

saved

req'ts

Interactive User

Environment

Scheduling

Server

intelligent

assistants

Requirements

Editor

Timeline

Display

viewperiods schedules

Local

Heuristic

Search

Engine

Systematic

Backtrack

Search

Engine

S
c
h
e
d
u
le

r
A
P
I

Other scheduling domains pose problems that have

similar characteristics to the DSN mid- and long-term

scheduling problem. The Air Force Satellite Control

Network (AFSCN) also schedules large numbers of

satellites and ground stations but is limited to one day

at a time. For this oversubscribed problem, there

appear to be significant “plateaus” in the search space,

that make strategies that take larger search steps more

effective [6, 7]. Another related problem is that of

fleets of Earth observing satellites with onboard

resource limitations as well as tight viewperiod

constraints [8]. In these problems, where the requests

are prioritized, the goal of finding a best subset to fit on

a schedule has been addressed by a greedy approach

with texture-based heuristics [9].

Fig. 2. Architectural overview of automated DSN

scheduling

The Scheduling Server, shown in the lower right of

Fig. 2, incorporates two major approaches to schedule

generation and repair: a local heuristic search

technique and a set of systematic backtrack algorithms.
 Automated sequence generation for spacecraft is

different in that the horizon of interest is smaller (e.g.

one week for an orbiter, one day for a rover) and the

model of the spacecraft is very intricate. Safety is the

highest priority in sequence scheduling, but efficiency

is the goal of DSN resource allocation. Thus, the

scheduling problem is very different.

In the following we describe each of these elements in

more detail.

3.1 Interactive User Environment

The variety and complexity of the requirements

described above provide a challenge for users. To help

create and modify mission requirements, we have

developed a graphical requirements editor that handles

the full expressiveness of the requirements

specification for the DSN. Fig. 3 shows a screen

snapshot of this editor: on the left is a tree that

represents the AND/OR tree of requirements and sub-

requirements. As a node is selected, all of its attributes

are displayed on the right side of the panel where they

may be edited by the user, including the selection of

antennas, timing, segmentation, and repetition.

Requirements may be saved for further editing, or sent

on to the scheduler as described below.

3. AUTOMATING DSN SCHEDULING

Our approach to automating the DSN scheduling

problem is illustrated in the architecture diagram of

Fig. 2. At the top are shown schematically the DSN

data sources such as viewperiods and current schedules

in various stages of completion and conflict resolution.

This information is available via web services and

network databases.

The Interactive User Environment, depicted in the

lower left of Fig. 2, consists of several interacting

components, including a graphical requirements editor,

a timeline display function, and intelligent assistants

that provide information to the user about possible

scheduling decisions.

The timeline display provides the user with visual

insight into the evolving schedule. We have adapted a

standard Gantt-chart view and added additional

features to make it easier to navigate and drill down for

more information. These features include:

• activity start and end times, as well as setup and

teardown times indicated by faint gray bars

Fig. 6: Example of metric shaded background in the

Gantt view

3.2 Local Heuristic Search

We have adapted the Aspen scheduler [10] to schedule

all of the requirement types described above. This

adaptation consists of two major components:

(1) a mapping from mission requirements (as

described above) into Aspen’s native modeling

language [10]. A large portion of this mapping

makes straightforward use of Aspen’s built-in

modeling features, including tasks and their

hierarchical expansion into subtasks; temporal

relationships; states; resources (consumable and

nonconsumable); and parameters and their

relationships. In some cases we have exploited

Aspen’s extension point mechanism to define

external functions that can be invoked by Aspen.

Details are provided in [11].

Fig. 3: The graphical requirements editor.

• conflict indicators where tracks are claiming the

same resources at the same time

• a mouse-over table display of the attributes of any

displayed track

 (2) a set of heuristics to drive Aspen’s iterative repair-

based search. These heuristics are based on

“conflicts” in the schedule, such as state, resource,

or temporal constraint violations, un-expanded

hierarchical tasks, or un-propagated parameter

dependencies. Part of the conflict selection and

repair process incorporates randomness to help

ensure a broad exploration of the search space. For

a further description of the heuristics, see [11].

Fig. 4: Gantt view with annotations and conflict

indicators

• a schedule difference display that visually

highlights tracks added, tracks deleted, and tracks

changed. Changed tracks can be clicked with the

mouse to reveal a table display of the track

attributes before and after, color encoded to show

exactly which attributes have changed

We have conducted experiments to gauge the

performance of Aspen in this domain, with satisfactory

results. In one experiment, we generated a full artificial

schedule of 1861 tracks from periodic track requests in

39 CPU minutes. Modifications to this schedule were

much faster: emergency antenna downtime or

additional tracks were scheduled in 0.2 CPU seconds.

• a metric-shaded background, to help visually spot

regions of interest in the schedule. In the example

shown, the shading is by gap duration in a 24h

period, such that the bright shades of red indicate

times with a scarcity of contacts.

While the stochastic heuristic search technique

embodied in Aspen has many advantages in this

domain, it also has some disadvantages. The most

important of these is that Aspen’s search is not

complete: it may fail to find a solution even if one

exists. If solutions are sparse, the local search process

may simply fail to find any in the time allotted (the

“needle in a haystack” situation). To address this, we

have complemented Aspen’s search approach with

several systematic search algorithms, as described in

the next section.

Fig. 5: Gantt view with schedule difference display

3.3 Systematic Backtrack Search To investigate the performance of the systematic

search algorithms, we ran a number of experiments on

mid-range and short-term schedules. These first of

these was on a 14 week period after the initial conflict

resolution process. We considered each day in the

schedule separately, and ran three different systematic

search algorithms on each:

We have implemented several systematic search

algorithms based on constraint propagation and

backtracking search. This approach, when

appropriately limited in scope, can definitively answer

the question of whether a solution exists and can

additionally provide suggestions as to which

requirements are overconstraining a problem, thus

making it unsolvable.

• BT1: standard depth-first backtrack search

• BT2: same, but tracks were prohibited from

changing their antenna assignments

The systematic search algorithms we have

implemented are based on the following:
• A*: search for all “minimum change” schedules

The results are illustrated in Fig. 7. Of the 98 days

examined, 28 had track resource/timing conflicts,

ranging from one to four per day. Of those 28 days,

one had no feasible solution and would have to have

requirements relaxed in some manner by the respective

missions. The other 27 had solutions that were quickly

found with BT1, in an average time of 10ms. The

typical change was relatively small: an average 1.9±1.4

tracks were changed, with a total time shift (summed

over all tracks) of 6.8±11.5 hours. BT2 only found one

improvement over the solutions found by BT1. Most of

the solutions found by BT1 (16 out of 27) were optimal

by the “minimum change” metric described above. In 5

cases, the A* search found better solutions, and in 6

cases A* was stopped at a 1000s run time limit before

finding any optimal solutions. The computational cost

of A* was both higher and more varied than BT1 or

BT2: the mean run time was 18±52s.

• search over time and resource assignments that

start from the existing schedule (with or without

constraint violations), so that alternatives “close”

to the existing schedule are searched first

• tracks to assign are selected using a most

constrained first heuristic

• backtracking is “fail fast”, such that whenever any

track has all domain values (times and resources)

in conflict, the search immediately backtracks

• node and arc consistency is maintained based on

track duration, view period windows, and resource

availability

In addition to a basic backtracking search algorithm,

we have also implemented an A* optimizing search,

based on an objective that is a function of the time and

resource assignments for each track. For the purposes

of this discussion, the objective we consider is a

“minimum change” measure, i.e. we seek the schedule

with the smallest possible shifts in track times and

antenna assignments.

98 days

(RAP weeks 13-26)

70 days show no

track resource

conflicts

28 days have track

resource conflicts

1 day has no

solution

27 days have

solutions found with

BT1

5 days: A* found

better solution than

BT1

16 days: A* found

same solution as

BT1

6 days: A* found no

solution after 1000s

- mean 1.6±0.8
- range 1-4

71%

29%

- 19 days have same
 ant. sol'ns
- BT2 found only one
 improvement
- runtime 0.01±0.02s
- # ant. chg 0.6±1.2
- Σ time chg 6.8±11.5h
- # track chg 1.9±1.4

- A* expanded ~7-10K
 search nodes

- queue contained >106

 nodes

- A* runtime 18±52s
- # ant. chg 0.3±0.6
- Σ time chg 2.3±5.5h
- # track chg 1.5±0.8

Systematic search can be exponentially costly even

with these techniques, so we bound its application by

considering the following:

• limit to only a subset of the fully expressive

requirements language

• limit the time horizon of the schedule considered

• limit the activities to consider, by locking a

substrate of activities on the schedule and search

only over a subset which is allowed to move

• limit the CPU time expended in the search

Our experience to date indicates that frequently there

are “pockets” of conflicts that occur together, which

have limited impact on the schedule as a whole. In this

situation, systematic search can be bounded and yet

still provide valuable insight into solution possibilities.

Fig. 7: Experimental results on a 98-day schedule span

As noted, this schedule represents the time after initial

conflict resolution has been worked on by the

schedulers and the mission users. We also selected a 2-

week schedule snapshot taken before this conflict

resolution process and ran the same experiments. The

results are shown in Fig. 8. In this case 13 of the 14

days show conflicts, all of which were quickly resolved

with BT1. The typical changes were much larger,

however: an average 4.0±4.2 tracks were changed, with

a total time shift of 19.7±26.9h. This reflects the

smaller effort expended to resolve conflicts at this

stage in the scheduling process. The A* algorithm

found better solutions for 6 days, and no improvements

for another 4 days. The A* runtime showed greater

variability at 71±229s.

14 days

(preview weeks 31-32)

1 day shows no

track resource

conflicts

13 days have track

resource conflicts

all 13 days have

solutions found with

BT1

6 days: A* found

better solution than

BT1

4 days: A* found

same solution as

BT1

3 days: A* found no

solution after 1000s

- mean 3.0±2.0
- range 1-8

- 5 days have same
 ant. solutions
- BT2 found no
 improvements
- runtime 0.01±0.02s
- # ant. chg 1.8±2.5
- Σ time chg 19.7±26.9h
- # track chg 4.0±4.2

- A* runtime 71±229s
- # ant. chg 0.7±0.6
- Σ time chg 3.5±2.0h
- # track chg 2.4±1.7

Fig. 8: Experimental results on a 14-day schedule

before conflict resolution

3.4 Intelligent Assistants

The conclusion from these experiments is that

systematic search can help identify solution

possibilities when sufficiently bounded. We have

integrated this functionality into the user interface

elements described above by implementing intelligent

assistants, consisting of:

• a filtering mechanism, currently text-based, to

allow the user to focus attention on a subset of the

schedule: by time, mission, resource, etc.

• multiple background asynchronous search

processes that run on the filtered problem and

utilize the systematic search algorithms described

above.

A snapshot of this interface is shown in Fig. 9. The

intelligent assistant background processes run

automatically, starting whenever the filter criteria are

changed by the user. They may be canceled by the user

at any time, and they display current status as they run,

both in a progress bar and in a textual status message.

The BT1 and BT2 algorithms complete so quickly in

our experiments (<10ms) as to be essentially

instantaneous. The A* algorithm is much slower and

more variable in duration: the status displayed in the

progress bar shows how many of the total tracks have

been successfully scheduled so far. In each case, when

complete, the user can mouse over the status display to

see a popup window with more detail, and can then

click the “More” button to open a Gantt chart view of

the schedule generated by the algorithm, along with

highlighted differences from the original schedule.

Fig. 9: Intelligent assistant dialog and display

By being unobtrusive, the intelligent assistants can

provide the user with additional information at the

precise time when the user is interested. Results are

displayed immediately when they are calculated, and

the user can cancel an ongoing search simply by

revising the search criteria, which also automatically

starts a new search using the new criteria. If the

assistant generates an interesting schedule, the user can

“drill down” into the details in a very straightforward

manner.

4. DISCUSSION

We have developed and described a “hybrid” approach

to automating DSN scheduling. An overall schedule for

some time period can be generated based on the

complex merged requirements from the different

missions: for this phase, we make use of the ASPEN

framework which implements an iterative repair-based

search strategy. We have complemented this with a set

of systematic search algorithms that work on an

appropriately bounded region of the search space. We

have embedded these algorithms in intelligent

assistants that run unobtrusively to provide timely

information to the user engaged in rescheduling and

resolving schedule conflicts. The intelligent assistants

can provide feedback immediately as they reach their

conclusions. For example, it may be possible for an

intelligent assistant to rapidly determine that there are

no feasible solutions to a specific conflict situation, so

a user can move on to consider changing the

requirements or negotiating with another mission.

Similarly, the assistants may identify an optimal set of

choices to resolve a conflict so that the user’s time can

be better spent in choosing among them rather than

trying to find a solution by manual experimentation.

We have found that, while systematic search does not

always find timely solutions, it frequently does very

quickly provide valuable help to the interactive user.

Future research and implementation directions include

the following:

• further integration of the iteratative repair and

systematic search engines, to best exploit the

advantages of each in a broader range of

circumstances

• investigation of modelling and performance

tradeoffs in mapping mission requirements into

representational elements for the scheduler engines

• incorporating additional optimization criteria into

the systematic search algorithm, to provide users

with more insight into potential schedule

modifications

The research described in this paper was carried out at

the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National

Aeronautics and Space Administration.

REFERENCES

1. Kan, E.J., J. Rosas, and Q. Vu, Operations

Mission Planner - 26M User Guide Modified 1.0.

1996, JPL Technical Document D-10092.

2. Bell, C., Scheduling Deep Space Network Data

Transmissions: A Lagrangian Relaxation Approach.

1992, JPL Technical Report.

3. Chien, S.A., et al. A hierarchical architecture for

resource allocation, plan execution, and revision for

operation of a network of communications antennas. in

Proceedings IEEE International Conference on

Robotics and Automation. 1997. Albuquerque, NM.

4. Borden, C., Y. Yang, and G. Fox. Planning and

Scheduling User Services for NASA's Deep Space

Network. in 1997 International Conference on

Planning and Scheduling for Space Exploration and

Science. 1997.

5. Werntz, D., S. Loyola, and S. Zendejas. FASTER -

A tool for DSN forecasting and scheduling. in

Proceedings of 9th AIAA Computing in Aerospace

Conference. 1993. San Diego, CA.

6. Barbulescu, L., et al., Scheduling Space-Ground

Communications for the Air Force Satellite Control

Network. Journal of Scheduling, 2004. 7(1): p. 7-34.

7. Barbulescu, L., L.D. Whitley, and A.E. Howe.

Leap Before You Look: An Effective Strategy in an

Oversubscribed Scheduling Problem. in AAAI 2004.

2004.

8. Frank, J., et al. Planning and Scheduling for Fleets

of Earth Observing Satellites. in I-SAIRAS 2001. 2001.

9. Beck, J.C., et al. Texture-Based Heuristics for

Scheduling Revisited. in AAAI 1997. 1997.

10. Chien, S., et al., ASPEN - Automating Space

Mission Operations using Automated Planning and

Scheduling, in SpaceOps 2000. 2000: Toulouse,

France.

11. Clement, B.J. and M.D. Johnston. The Deep Space

Network Scheduling Problem. in IAAI. 2005.

Pittsburgh, PA: AAAI Press.

