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ABSTRACT The missions supported by the DSN include all of 

NASA’s deep space missions, such as the planetary 

exploration spacecraft at Mars (the Mars Exploration 

Rovers Spirit and Opportunity, Mars Odyssey, Mars 

Global Surveyor) and Saturn (Cassini-Huygens); 

cometary explorers such as Deep Impact and Stardust; 

and missions such as Voyagers 1 and 2 that are leaving 

the solar system entirely. Other missions supported 

include observatories such as Chandra (X-ray) and 

Spitzer (Infrared), in Earth orbit or near Earth orbit. A 

total of about 20 spacecraft are currently allocated 

resources in a typical near-term scheduling period, 

while at the writing of this paper, 61 missions are being 

scheduled over the ~10 year horizon. 

 

The Deep Space Network (DSN) is a central part of 

NASA’s infrastructure for communicating with active 

space missions, from earth orbit to beyond the solar 

system. Consisting of more than a dozen major ground 

antennas at three sites spaced around the globe, it must 

be carefully scheduled to satisfy the requirements of 

the various mission users, subject to many constraints. 

We describe our recent work in modeling the 

complexities of user requirements, and then scheduling 

and resolving conflicts on that basis. We emphasize 

our innovative use of background “intelligent 

assistants” that carry out search asynchronously while 

the user is focusing on various aspects of the schedule. 

These assistants can provide guidance to the user about 

feasible and optimal solutions to the problem they are 

working on. 

 

 

 

1. INTRODUCTION 

 

The NASA Deep Space Network (DSN) is an 

international network of antennas that supports 

interplanetary spacecraft missions and radio and radar 

astronomy observations for the exploration of the solar 

system and the universe. The network also supports 

selected Earth-orbiting missions. The DSN consists of 

three deep-space communications facilities placed 

approximately 120 degrees apart around the world: at 

Goldstone, in California’s Mojave Desert; near Madrid, 

Spain; and near Canberra, Australia. This geographic 

placement permits constant observation of spacecraft 

as the Earth rotates.  

 Fig. 1: The 70m antenna at the Deep Space Network 

Goldstone complex in the California Mojave desert. At 

the right can be seen one of the 34m antennas. 

Each of the DSN sites supports antennas of sizes 26m, 

34m, and 70m, along with a variety of receivers and 

other equipment that can be configured to support all 

the different kinds of communications requests that 

must be handled. Fig. 1 shows a picture of one of the 

largest antennas, the 70m antenna at Goldstone, 

California, along with one of the 34m antennas at this 

same complex. 

 

In this paper we will describe the nature of the DSN 

scheduling problems, i.e. the allocation of DSN 

resources to the missions that request them. We will 

discuss our progress in modeling the requirements of 

the missions, and in generating schedules that meet 

these requirements. We will discuss the process of 

conflict resolution and our approach to automating 
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what is currently a manual and iterative process. Key 

elements of our approach include tools for visualizing 

the schedule in various ways, and “intelligent 

assistants” that can asynchronously examine the 

schedule and search for possible solutions to conflicts 

that it contains. We conclude with a discussion of 

future research and implementation directions. 

 

2. THE DEEP SPACE NETWORK 

SCHEDULING PROBLEM 

 

Currently, DSN schedules are manually generated out 

one year in the future. The nearer term portion of the 

schedule (up to 8 weeks out) considers the specific 

equipment and personnel to be allocated to a 

communications event. Beyond this interval, the 

schedule is concerned primarily with scheduling 

tracks, each of which is an allocation of an antenna to a 

mission over a specific time period. Tracks are 

typically one to eight hours in duration and must be 

placed within a viewperiod for that particular mission, 

i.e. when the spacecraft is visible (within specified 

geometric limits) from that antenna. A typical week 

will contain about 370 scheduled tracks. In this paper 

we are concerned with mid-range (8-week to 6-month) 

and long-term (beyond 6-months) schedules. 

 

2.1 Constraints 

 

Among the constraints that come into play when 

generating the DSN schedule are the following: 

• A spacecraft can only be scheduled to use an 

antenna when it is within view: this is primarily a 

geometric constraint and can be pre-computed 

ahead of time into a set of usable viewperiods for 

each mission/antenna pair 

• No two spacecraft can use the same antenna at the 

same time, with the exception that multiple 

spacecraft in view can downlink at the same time, 

but only one can uplink. Thus, for example, the 

multiple missions currently at Mars can share 

antennas for some activities. 

• Tracks have setup and teardown durations that 

typically range from 10 minutes to an hour. (The 

combined setup, track and teardown is called an 

activity.) These setups and teardowns can be 

scheduled outside of the spacecraft viewperiod but 

generally cannot overlap other activities on the 

same antenna. 

 

2.1 Requirements 

 

The missions that use the DSN initially specify their 

requirements in high-level terms of hours/week per 

antenna, with more detailed specifications 

communicated informally (verbally or email) by the 

missions to the schedulers. One of the challenges faced 

in automating the DSN scheduling problem is that of 

defining a representation that can capture the details 

and subtleties of the individual mission’s requirements. 

The representation must be highly expressive, since 

mission requirements can incorporate any of the 

following elements: 

 

• And/Or groupings and alternatives. Missions must 

be able to specify conjunctions of requirements 

(such as multiple antennas at the same or different 

times). Such a conjunction means that all of the 

subrequirements must be satisfied at the same time 

in order for the requirement to be satisfied. In 

addition, disjunctive requirements may be 

specified, such that at most one requirement of a 

set of alternatives must be satisfied. In general, 

these requirements can be organized into an 

AND/OR tree, which is an ideal way to capture the 

combination of groupings (and) and alternatives 

(or) that arise when specifying a mission’s 

requirements in detail. 

• Timing. Tracks may have specified start times and 

durations, both of which may have allowable 

ranges. 

• Antennas. Missions may specify one or more 

alternative antennas on which a track may be 

scheduled. They may specify groups of antennas, 

any one of which is acceptable for a particular type 

of track. 

• Repetitions. Track repetitions may be specified in 

general as requirements, over some time period, on 

the number of tracks, their durations, overlap, and 

time gaps to neighboring tracks. All of these 

quantities may have ranges on them. So, for 

example, a mission might specify repetition 

requirements such as “seven tracks/week, of 

duration 5 to 8 hours with no gap longer than 20 

hours between adjacent tracks”.  

• Overrides. In some cases, missions need to 

override a general requirement with a more 

specific one based on knowledge of ongoing 

activities. For example, a general requirement for a 

telemetry downlink every 10 hours may be 

superceded around the time of a maneuver with a 

requirement for continuous coverage. 

• Activity start and end times for most missions 

must be scheduled on five-minute boundaries. 

There have been a number of previous investigations of 

DSN scheduling automation. The Operation Mission 

Planner (OMP-26) used heuristic search to allocate 

26m antennas to missions and linear programming to 

adjust track time intervals [1]. Other automation 



projects were research efforts and were never 

deployed. LR-26 was a customisable heuristic 

scheduler that utilized Lagrangian relaxation [2], while 

the Demand Access Network Scheduler (DANS) 

employed an iterative repair technique [3]. Other 

graphical planning tools that have been used for 

forecasting, analysis, and interactive scheduling 

include TIGRAS [4] and FASTER [5]. Our approach 

combines some of the strengths of these systems, as 

well as incorporating innovative elements in both 

scheduling search and in schedule visualization. 
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Other scheduling domains pose problems that have 

similar characteristics to the DSN mid- and long-term 

scheduling problem. The Air Force Satellite Control 

Network (AFSCN) also schedules large numbers of 

satellites and ground stations but is limited to one day 

at a time. For this oversubscribed problem, there 

appear to be significant “plateaus” in the search space, 

that make strategies that take larger search steps more 

effective [6, 7]. Another related problem is that of 

fleets of Earth observing satellites with onboard 

resource limitations as well as tight viewperiod 

constraints [8]. In these problems, where the requests 

are prioritized, the goal of finding a best subset to fit on 

a schedule has been addressed by a greedy approach 

with texture-based heuristics [9]. 

Fig. 2. Architectural overview of automated DSN 

scheduling 

 

 

The Scheduling Server, shown in the lower right of 

Fig. 2, incorporates two major approaches to schedule 

generation and repair: a local heuristic search 

technique and a set of systematic backtrack algorithms.  
 Automated sequence generation for spacecraft is 

different in that the horizon of interest is smaller (e.g. 

one week for an orbiter, one day for a rover) and the 

model of the spacecraft is very intricate.  Safety is the 

highest priority in sequence scheduling, but efficiency 

is the goal of DSN resource allocation.  Thus, the 

scheduling problem is very different. 

In the following we describe each of these elements in 

more detail. 

 

3.1 Interactive User Environment 

 

The variety and complexity of the requirements 

described above provide a challenge for users. To help 

create and modify mission requirements, we have 

developed a graphical requirements editor that handles 

the full expressiveness of the requirements 

specification for the DSN. Fig. 3 shows a screen 

snapshot of this editor: on the left is a tree that 

represents the AND/OR tree of requirements and sub-

requirements. As a node is selected, all of its attributes 

are displayed on the right side of the panel where they 

may be edited by the user, including the selection of 

antennas, timing, segmentation, and repetition. 

Requirements may be saved for further editing, or sent 

on to the scheduler as described below. 

 

3. AUTOMATING DSN SCHEDULING 

 

Our approach to automating the DSN scheduling 

problem is illustrated in the architecture diagram of 

Fig. 2. At the top are shown schematically the DSN 

data sources such as viewperiods and current schedules 

in various stages of completion and conflict resolution. 

This information is available via web services and 

network databases. 

 

The Interactive User Environment, depicted in the 

lower left of Fig. 2, consists of several interacting 

components, including a graphical requirements editor, 

a timeline display function, and intelligent assistants 

that provide information to the user about possible 

scheduling decisions. 

 

The timeline display provides the user with visual 

insight into the evolving schedule. We have adapted a 

standard Gantt-chart view and added additional 

features to make it easier to navigate and drill down for 

more information. These features include: 

•  activity start and end times, as well as setup and 

teardown times indicated by faint gray bars 



 

 

Fig. 6: Example of metric shaded background in the 

Gantt view 

 

3.2 Local Heuristic Search 

 

We have adapted the Aspen scheduler [10] to schedule 

all of the requirement types described above. This 

adaptation consists of two major components: 

 

(1) a mapping from mission requirements (as 

described above) into Aspen’s native modeling 

language [10]. A large portion of this mapping 

makes straightforward use of Aspen’s built-in 

modeling features, including tasks and their 

hierarchical expansion into subtasks; temporal 

relationships; states; resources (consumable and 

nonconsumable); and parameters and their 

relationships. In some cases we have exploited 

Aspen’s extension point mechanism to define 

external functions that can be invoked by Aspen. 

Details are provided in [11]. 

Fig. 3: The graphical requirements editor. 

 

• conflict indicators where tracks are claiming the 

same resources at the same time 

• a mouse-over table display of the attributes of any 

displayed track 

 

 (2) a set of heuristics to drive Aspen’s iterative repair-

based search. These heuristics are based on 

“conflicts” in the schedule, such as state, resource, 

or temporal constraint violations, un-expanded 

hierarchical tasks, or un-propagated parameter 

dependencies. Part of the conflict selection and 

repair process incorporates randomness to help 

ensure a broad exploration of the search space. For 

a further description of the heuristics, see [11]. 

Fig. 4: Gantt view with annotations and conflict 

indicators 

• a schedule difference display that visually 

highlights tracks added, tracks deleted, and tracks 

changed. Changed tracks can be clicked with the 

mouse to reveal a table display of the track 

attributes before and after, color encoded to show 

exactly which attributes have changed 

 

We have conducted experiments to gauge the 

performance of Aspen in this domain, with satisfactory 

results. In one experiment, we generated a full artificial 

schedule of 1861 tracks from periodic track requests in 

39 CPU minutes. Modifications to this schedule were 

much faster: emergency antenna downtime or 

additional tracks were scheduled in 0.2 CPU seconds. 

• a metric-shaded background, to help visually spot 

regions of interest in the schedule. In the example 

shown, the shading is by gap duration in a 24h 

period, such that the bright shades of red indicate 

times with a scarcity of contacts.   

While the stochastic heuristic search technique 

embodied in Aspen has many advantages in this 

domain, it also has some disadvantages. The most 

important of these is that Aspen’s search is not 

complete: it may fail to find a solution even if one 

exists. If solutions are sparse, the local search process 

may simply fail to find any in the time allotted (the 

“needle in a haystack” situation). To address this, we 

have complemented Aspen’s search approach with 

several systematic search algorithms, as described in 

the next section. 

 

 
Fig. 5: Gantt view with schedule difference display 

  



3.3 Systematic Backtrack Search To investigate the performance of the systematic 

search algorithms, we ran a number of experiments on 

mid-range and short-term schedules. These first of 

these was on a 14 week period after the initial conflict 

resolution process. We considered each day in the 

schedule separately, and ran three different systematic 

search algorithms on each: 

 

We have implemented several systematic search 

algorithms based on constraint propagation and 

backtracking search. This approach, when 

appropriately limited in scope, can definitively answer 

the question of whether a solution exists and can 

additionally provide suggestions as to which 

requirements are overconstraining a problem, thus 

making it unsolvable. 

• BT1: standard depth-first backtrack search 

• BT2: same, but tracks were prohibited from 

changing their antenna assignments  

The systematic search algorithms we have 

implemented are based on the following: 
• A*: search for all “minimum change” schedules 

The results are illustrated in Fig. 7. Of the 98 days 

examined, 28 had track resource/timing conflicts, 

ranging from one to four per day. Of those 28 days, 

one had no feasible solution and would have to have 

requirements relaxed in some manner by the respective 

missions. The other 27 had solutions that were quickly 

found with BT1, in an average time of 10ms. The 

typical change was relatively small: an average 1.9±1.4 

tracks were changed, with a total time shift (summed 

over all tracks) of 6.8±11.5 hours. BT2 only found one 

improvement over the solutions found by BT1. Most of 

the solutions found by BT1 (16 out of 27) were optimal 

by the “minimum change” metric described above. In 5 

cases, the A* search found better solutions, and in 6 

cases A* was stopped at a 1000s run time limit before 

finding any optimal solutions. The computational cost 

of A* was both higher and more varied than BT1 or 

BT2: the mean run time was 18±52s.  

• search over time and resource assignments that 

start from the existing schedule (with or without 

constraint violations), so that alternatives “close” 

to the existing schedule are searched first 

• tracks to assign are selected using a most 

constrained first heuristic 

• backtracking is “fail fast”, such that whenever any 

track has all domain values (times and resources) 

in conflict, the search immediately backtracks 

• node and arc consistency is maintained based on 

track duration, view period windows, and resource 

availability 

In addition to a basic backtracking search algorithm, 

we have also implemented an A* optimizing search, 

based on an objective that is a function of the time and 

resource assignments for each track. For the purposes 

of this discussion, the objective we consider is a 

“minimum change” measure, i.e. we seek the schedule 

with the smallest possible shifts in track times and 

antenna assignments.  

 

98 days

(RAP weeks 13-26)

70 days show no

track resource

conflicts

28 days have track

resource conflicts

1 day has no

solution

27 days have

solutions found with

BT1

5 days: A* found

better solution than

BT1

16 days: A* found

same solution as

BT1

6 days: A* found no

solution after 1000s

- mean 1.6±0.8
- range 1-4

71%

29%

- 19 days have same
   ant. sol'ns
- BT2 found only one
   improvement
- runtime 0.01±0.02s
- # ant. chg 0.6±1.2
- Σ time chg 6.8±11.5h
- # track chg 1.9±1.4

- A* expanded ~7-10K
    search nodes

- queue contained >106

    nodes

- A* runtime 18±52s
- # ant. chg 0.3±0.6
- Σ time chg 2.3±5.5h
- # track chg 1.5±0.8

 

 

Systematic search can be exponentially costly even 

with these techniques, so we bound its application by 

considering the following: 

• limit to only a subset of the fully expressive 

requirements language 

• limit the time horizon of the schedule considered 

• limit the activities to consider, by locking a 

substrate of activities on the schedule and search 

only over a subset which is allowed to move 

• limit the CPU time expended in the search 

 

Our experience to date indicates that frequently there 

are “pockets” of conflicts that occur together, which 

have limited impact on the schedule as a whole. In this 

situation, systematic search can be bounded and yet 

still provide valuable insight into solution possibilities.  

 

Fig. 7: Experimental results on a 98-day schedule span 



As noted, this schedule represents the time after initial 

conflict resolution has been worked on by the 

schedulers and the mission users. We also selected a 2-

week schedule snapshot taken before this conflict 

resolution process and ran the same experiments. The 

results are shown in Fig. 8. In this case 13 of the 14 

days show conflicts, all of which were quickly resolved 

with BT1. The typical changes were much larger, 

however: an average 4.0±4.2 tracks were changed, with 

a total time shift of 19.7±26.9h. This reflects the 

smaller effort expended to resolve conflicts at this 

stage in the scheduling process. The A* algorithm 

found better solutions for 6 days, and no improvements 

for another 4 days. The A* runtime showed greater 

variability at 71±229s. 

 

14 days

(preview weeks 31-32)

1 day shows no

track resource

conflicts

13 days have track

resource conflicts

all 13 days have

solutions found with

BT1

6 days: A* found

better solution than

BT1

4 days: A* found

same solution as

BT1

3 days: A* found no

solution after 1000s

- mean 3.0±2.0
- range 1-8

- 5 days have same
   ant. solutions
- BT2 found no
   improvements
- runtime 0.01±0.02s
- # ant. chg 1.8±2.5
- Σ time chg 19.7±26.9h
- # track chg 4.0±4.2

- A* runtime 71±229s
- # ant. chg 0.7±0.6
- Σ time chg 3.5±2.0h
- # track chg 2.4±1.7

 
Fig. 8: Experimental results on a 14-day schedule 

before conflict resolution 

 

 

3.4 Intelligent Assistants 

 

The conclusion from these experiments is that 

systematic search can help identify solution 

possibilities when sufficiently bounded. We have 

integrated this functionality into the user interface 

elements described above by implementing intelligent 

assistants, consisting of: 

• a filtering mechanism, currently text-based, to 

allow the user to focus attention on a subset of the 

schedule: by time, mission, resource, etc. 

• multiple background asynchronous search 

processes that run on the filtered problem and 

utilize the systematic search algorithms described 

above. 

A snapshot of this interface is shown in Fig. 9. The 

intelligent assistant background processes run 

automatically, starting whenever the filter criteria are 

changed by the user. They may be canceled by the user 

at any time, and they display current status as they run, 

both in a progress bar and in a textual status message. 

The BT1 and BT2 algorithms complete so quickly in 

our experiments (<10ms) as to be essentially 

instantaneous. The A* algorithm is much slower and 

more variable in duration: the status displayed in the 

progress bar shows how many of the total tracks have 

been successfully scheduled so far. In each case, when 

complete, the user can mouse over the status display to 

see a popup window with more detail, and can then 

click the “More” button to open a Gantt chart view of 

the schedule generated by the algorithm, along with 

highlighted differences from the original schedule. 

 

 
Fig. 9: Intelligent assistant dialog and display 

 

By being unobtrusive, the intelligent assistants can 

provide the user with additional information at the 

precise time when the user is interested. Results are 

displayed immediately when they are calculated, and 

the user can cancel an ongoing search simply by 

revising the search criteria, which also automatically 

starts a new search using the new criteria. If the 

assistant generates an interesting schedule, the user can 

“drill down” into the details in a very straightforward 

manner. 

 

4. DISCUSSION 

 

We have developed and described a “hybrid” approach 

to automating DSN scheduling. An overall schedule for 

some time period can be generated based on the 

complex merged requirements from the different 

missions: for this phase, we make use of the ASPEN 

framework which implements an iterative repair-based 

search strategy. We have complemented this with a set 



of systematic search algorithms that work on an 

appropriately bounded region of the search space. We 

have embedded these algorithms in intelligent 

assistants that run unobtrusively to provide timely 

information to the user engaged in rescheduling and 

resolving schedule conflicts. The intelligent assistants 

can provide feedback immediately as they reach their 

conclusions. For example, it may be possible for an 

intelligent assistant to rapidly determine that there are 

no feasible solutions to a specific conflict situation, so 

a user can move on to consider changing the 

requirements or negotiating with another mission. 

Similarly, the assistants may identify an optimal set of 

choices to resolve a conflict so that the user’s time can 

be better spent in choosing among them rather than 

trying to find a solution by manual experimentation. 

We have found that, while systematic search does not 

always find timely solutions, it frequently does very 

quickly provide valuable help to the interactive user. 

 

Future research and implementation directions include 

the following: 

• further integration of the iteratative repair and 

systematic search engines, to best exploit the 

advantages of each in a broader range of 

circumstances 

• investigation of modelling and performance 

tradeoffs in mapping mission requirements into 

representational elements for the scheduler engines 

• incorporating additional optimization criteria into 

the systematic search algorithm, to provide users 

with more insight into potential schedule 

modifications 

_________________ 

 

The research described in this paper was carried out at 

the Jet Propulsion Laboratory, California Institute of 

Technology, under a contract with the National 

Aeronautics and Space Administration. 
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