
Proceedings of InSTIL/ICALL2004 – NLP and Speech Technologies in Advanced Language Learning Systems – Venice 17-19 June, 2004

Text generators, error analysis and feedback
Juan Rafael Zamorano Mansilla

Department of Anglistik, Universität Bremen, Bremen

juanrafaelz@terra.es

Abstract

The purpose of this paper is to show how the

linguistic resources contained in the multilingual

text generator KPML can be used for detecting

errors in fill-in-the-blank exercises of English and

Spanish and providing relevant feedback. This

constitutes the first step in the creation of a module

that will detect errors in full sentences in future. In

this paper I describe the algorithm employed to

diagnose the cause of an error and some examples

of the results obtained in initial tests. The algorithm

has two important advantages: a) it was easy to

create because it consists mainly of operations

already present in the KPML environment, and b)

it does not contain lists of anticipated errors or

malrules. The final outcome of the algorithm is a

collection of grammatical features that explain the

difference between the user’s input and the right

solution. Although no list of anticipated errors or

malrules were included, the features obtained

seemed useful material for the production of

feedback text and the algorithm turned out to be

able to handle a wide range of grammar-based

errors.

1. Introduction

The detection of errors and the production of

adequate feedback has been regarded as one of the

areas of CALL which could benefit most from the

advances provided by natural language processing

systems [1],[4],[7],[8],[9],[11],[12].

In the wake of these studies and as part of my

dissertation thesis I am exploring how the

multilingual generator KPML ([2],[3],[5],[10]) can

be used to detect errors in language learning

exercises, make a diagnosis and produce relevant

feedback.

What I describe in this paper is the algorithm

designed for the recognition of errors in simple

exercises, mainly of the fill-in-the-blank type.

These exercises were automatically generated from

previously stored sentences by a module, the

Exercise Manager, currently being developed also

as part of my dissertation thesis.

At present the algorithm is still at a developing

stage, and the results presented here were obtained

in simple tests in which different inputs were type

in to see how they were handled by the algorithm.

Besides what the algorithm returns at present is a

collection of grammatical features that hint at the

cause of the error, not a full message. These

features however will be used in future for

producing feedback messages.

In spite of these factors, the results of the initial

tests have been rather promising. The main

advantages we have found over other CALL

programs that make use of natural language

technology are:

a) the amount of effort and time spent on

programming to obtain acceptable results. All the

operations that make up the algorithm described

here can be implemented with KPML at present.

Only the comparison between strings or lists and

the decisions derived from the comparisons are

completely new.

b) the algorithm defined for the Exercise Manager

intends to be “universal”. I have tried to avoid the

necessity of including lists of malrules or

anticipated mistakes by using a single algorithm

that copes with as wide a range as possible of

errors related to the grammar or the lexicon.

2. An overview of the KPML system

In order to understand how the algorithm for the

analysis of errors works it is essential to know

something about the architecture of KPML first.

The two components that are relevant for the

purposes of this paper are the grammar and the

lexicon.

2.1 The grammar

KPML has been developed in the systemic-

functional tradition, which means that the

grammatical descriptions it contains are based on

the theories of systemic-functional linguistics

(SFL). This is not the place to enter into the details

of this approach to language, but there are two

important characteristics that should be mentioned:

first, language is regarded as “resource for

expressing and making meaning” [2]; second,

language is considered to be structured as a

semiotic system, where “the process of language

use is a process of making meanings by choosing.”

[6]. As a consequence systemic-functional

grammars are essentially an attempt to specify the

potential meanings or communicative intentions

speakers may wish to express. Those potential

meanings or communicative intentions are called

features and are grouped in so-called systems. The

choice of one feature or another within a system is

guided by the communicative intentions, and each

choice leads to a new system with further choices

between features. These choices become more and

more specific as we move deeper into the grammar.

A good example of this is provided by the region of

mood in English. Here we find an initial choice

between two features: Indicative and Imperative.

The feature Indicative leads to a new system

containing the features Interrogative and

Declarative. And the feature Interrogative leads in

turn to a new system with the features Wh- and

Yes/no.

Notice that these features represent semantic

choices: the selection of the feature Imperative

indicates that the speaker wishes to modify the

addressee’s behaviour rather than provide or ask

for information. Of course these choices have a

realization in the language, which are indicated in

the grammar by means of realization statement

associated to the features. The realization statement

associated to the feature Declarative, for instance,

is Subject^Finite, which indicates that the function

Subject precedes the function Finite. There are

different types of realization statements to cover all

the needs of the grammar; some of them indicate

that a function such as Subject or Attribute must be

inserted; others regulate the order of the functions

within the sentence; some realization statements

inform about the specific lexical item that will

realize a function, while others inform about the

inflection of lexical items.

2.2 The lexicon

Lexical items are stored in KPML as shown in

figure 1:

(LEXICAL-ITEM

 :NAME FACTORY

 :SPELLING "factory"

 :FEATURES (NOUN ES COMMON-NOUN

COUNTABLE)

Figure 1. A lexical item in KPML

There are three basic slots where different types of

information are stored: under :name we include the

label by which the word is known to the grammar.

Under :spelling we include the basic spelling of the

word. And finally the slot :features contains

important information such as the word-class the

item belongs to (noun, in this case), the type of

plural ending it takes (es) and other strictly

lexically conditioned features with syntactic or

morphological relevance, such as common-noun or

countable.

In the case of words with irregular inflection, there

is an additional slot, :properties, where the various

inflected forms of the word are kept. Figure 2

shows the specification of the Spanish definite

article:

(LEXICAL-ITEM

:NAME definite-article

:SPELLING "el/la"

:FEATURES (definite)

:PROPERTIES ((singularmasculine "el")

(singularfeminine "la") (pluralmasculine "los")

(pluralfeminine "las")))

Figure 2. A lexical item with irregular inflection in

KPML

3. Using the linguistic resources of KPML for error

diagnosis

In this section I briefly describe in human terms the

algorithm that makes use of the KPML linguistic

resources in order to detect errors and diagnose its

cause. But before starting with the description of

the algorithm, it is important to realize that every

grammar exercise implemented with Exercise

Manager automatically generates the right answer.

This does not only consist of a string of characters,

but also includes a significant amount of

information about the parts of the grammar

activated in the process of generation. For example,

in the sentence He got married ____ 1985, the

constituent from which the preposition has been

removed contains the following collection of

grammatical fea tures : (groups-phrases

prepositional-phrase nonwh-phrase prepositional-

phrase-simplex minirange-thing spatio-temporal-

process location-process temporal-process

unordered strong-inclusive).

The algorithm is activated when the program finds

a mismatch between the user’s input and the

solution. Then the program first determines if the

mismatch is due to a wrong lexical choice or a

wrong inflection of the right lexical item. This is

done by checking if the stem of the word that

constitutes the right answer is part of the user’s

input. If the result is negative, the program tries

comparing other stems of the word included in the

:properties slot of the lexicon. If the result is still

negative, this means that the user has chosen a

different word. If any of the two comparisons

described above is positive, the program concludes

that the word is the right one, and the mismatch is

due to the inflexion applied by the user.

The next step is roughly the same in both cases: the

program calculates the path in the grammar that

would generate the user’s input and compares it

with the path that generates the right answer. The

result of the comparison in all the tests carried out

was a couple of features that belonged to the same

system, one corresponding to the right solution and

the other to the user’s input. The fact that these

features belong to the same system means that

there is a meaningful opposition between them; and

since these two features mark the precise point of

divergence between the user’s input and the right

answer, the information they convey is in all cases

a very accurate diagnosis of the cause of the

mistake. But before considering some examples, I

would like to say something about the process of

“calculating the path in the grammar that would

generate the user’s input” mentioned above.

Natural language generators have in principle all

the resources necessary to recognize any structure

by the simple process of generating all the

alternatives their linguistic resources can predict

and comparing the results with the input. But as has

been pointed out [9], the number of combinations

an average grammar can predict is so high that the

process is in reality not feasible.

In the algorithm presented here this is not a

problem, because the calculation of the path that

leads to the user’s input is guided in a very precise

way. The first thing the program does is find out

how many features from the grammar can impose

the user’s word as a realization or the user’s

morphology, depending on the case. For example,

if the program asks what features impose the

realization of in as the preposition of a

prepositional phrase, the result is: In-extent,

Strong-inclusive and Containment-implicit.

This operation is very fast and simple and is

already available in the KPML environment as a

matter of fact. The tests revealed that in most cases

the result is a list of features rather than one

feature. So in most cases the program must decide

what feature from the list will offer more relevant

information. To do this we resort to another

function already present in KPML: Show path to.

This function shows the collection of features in

the grammar that lead to the specified feature. For

example, if we apply the function Show path to to

the feature In-extent, we obtain the following

result: (in-extent temporal-process extent-process

prepositional-phrase groups-phrases spatio-

temporal-process relative-extent-process).

The tests revealed that the most accurate results

were obtained when we chose the feature whose

path contained more points in common with the

collection of features activated during the

generation of the right answer, so this is the

strategy followed by the program.

After this process of selection the program ends up

with two lists of grammatical features: one for the

right solution and another for the hypothetical

generation of the user’s input.

At this point the program only has to compare both

lists to find the features that are not shared. Among

these, only two, one on each list, can belong to the

same system. As I mentioned above these two

features mark the precise point of divergence

between the user’s input and the right answer and

so convey very accurate information about the

origin of the error.

The following are some examples of the

grammatical features returned by the algorithm

with different exercises.

In the sentence Don’t put your feet ___ the table, a

clear case of exercise purely based on lexical

selection, the insertion of the preposition with

returned the features accompaniment-process for

the user’s input and spatio-temporal-process for the

right answer. The preposition in returned three-

dimensions as opposed to one-two-dimensions

corresponding to the right answer. And the

preposition onto returned the feature motion-

process for the user’s input and rest-process for the

right answer.

In the Spanish sentence Usted ____ (comer) mucho

[You-polite form (eat) a lot] the learner must

provide the right inflexion of the verb. The form

como returns the feature firstperson-form for the

user’s input and secondperson-form for the right

answer. The form comes returns the feature

informal-form for the user’s input and formal-form

for the right answer. The form comen returns the

features thirdperson-form and plural-form for the

user’s input and secondperson-form and singular-

form for the right answer.

Finally, there is also the possibility that both

mistakes, i.e. lexical and morphological, can be

present in the same exercise. In this case the

algorithm gives priority to the lexical choice. In the

sentence Who lives in ____ house?, intended for

the demonstrative that, the insertion of the

demonstrative these returns the feature near for the

user’s input and far for the right answer, ignoring

the fact that the choice of the plural form is also

incorrect. The article the returns the feature

nonselective for the user’s input and

demonstrative-selection for the right answer.

Finally, if the form inserted is those, the algorithm

returns the feature plural-form for the user’s input

and singular-form for the right answer.

In the Spanish sentence Juan ______ cansado [Juan

_____ tired], where the student must choose

between the verbs ser and estar, the form es returns

the feature permanent-property for the user’s input

and the feature temporary-property for the right

answer. The form estoy returns the feature

firstperson-form for the user’s input and

thirdperson-form for the right answer. The

flexibility and potential of the algorithm is revealed

when we introduce verbs that do not even belong to

set of possible answers in the exercise. The verb

tener [have], for instance, returned the feature

possessive for the user’s input and intensive for the

right answer. And the verb ver [see] returned the

feature mental for the user’s input and relational for

the right answer.

As I said above, I believe the features returned by

the algorithm are excellent material for the

automatic production of feedback text. They are

very accurate comments about the origin of the

learner’s error and they also offer the possibility of

producing different types of messages. If we take

the feature corresponding to the user’s input we can

produce negative messages of the type “The

preposition you need here does not express

motion”. If we take the feature corresponding to

the right answer the message generated would be

something like “The preposition you need here is

used with three dimensional objects”. Notice that

even in the case of messages relative to the right

answer the information offered is highly

personlized and not fixed at all. This is due to the

fact that the feature returned corresponding to the

right answer varies according to the user’s input, as

can be observed from the examples above.

As a third option one can take both features

returned by the algorithm and produce a complex

message of the type “You used the third person of

the verb, but the context requires the second

person”. Nevertheless the exact form and content

of the feedback messages is a matter that will be

resolved in the future, being the main problem that

these features are often highly specialized terms.

4. Conclusions and future work

In this paper I have shown how the linguistic

resources contained in the multilingual generator

KPML can be used to recognize errors in simple

grammar exercises and return information that can

be employed to generate a feedback message.

The results obtained in the initial tests have been

satisfactory, although the real usefulness of the

algorithm will be assessed in experiments with real

students to be carried out during the winter

semester of 2004 at the universities of Bremen and

Complutense of Madrid.

The main advantages of the algorithm described

here are:

a) it is universal. This means that the same

algorithm is used to handle all kinds of

grammatical and lexical errors. No list of

anticipated errors is necessary;

b) the diagnosis of the cause of the error is highly

accurate and personalized, increasing the quality of

the feedback text that can be generated.

Future lines of investigation include three chief

areas:

a) the possibilities offered by KPML in the

recognition of errors related to linguistic levels of

analysis different from the grammar and the

lexicon, such as punctuation, alternations in the

spelling of inflected forms (e.g. English sto p sto

pping) and phonological variations of inflected

forms (e.g. Spanish p oder p uedo).

b) the possibilities offered by KPML in the

recognition of errors in full sentences, not just

words.

c) the possibilities offered by KPML in the

recognition of errors caused by linguistic transfer.

References
[1] Allen J R (1996). The Ghost in the Machine:

Generating Error Messages in Computer Assisted

Language Learning Programs, CALICO Journal, 13/2-3:

87-103

[2] Bateman J A (1997). Enabling technology for

multilingual natural language generation: the KPML

development environment, Journal of Natural Language

Engineering, 3: 15—55

[3] Bateman J A (1998). Automated Discourse

Generation. In Kent A (ed.) Encycolpedia of Library and

Information Science, vol 62, supplement 25, Marcel

Dekker, Inc., New York: 1—54

[4] Chen J F (1997). Computer Generated Error

Feedback and Writing Process: A Link, TESL-EJ, 2/3.

[5] Dale R and Reiter E (2000). Building natural

language generation systems, Cambridge University

Press, Cambridge, 2000.

[6] Eggins S (1993). An Introduction to Systemic

Functional Linguistics, Pinter Publishers, London, 1993.

[7] Holland V M and Kaplan J D (1995). Natural

Language Processing Techniques in Computer Assisted

Language Learning: Status and Instructional Issues,

Instructional Science, 23: 351-380.

[8] Koller T (2003). Knowledge-based intelligent error

feedback in a Spanish, Proceedings of The 14th Irish

Conference on Artificial Intelligence & Cognitive

Science, 2003, Dublin, Trinity College, 117-121.

[9] Levison M, Lessard G, Walker D (1998). The

Intelligent Detection of Second Language Learner

Errors, ALLC/ACH Joint Annual Conference, 1998,

Lajos Kossuth University, Debrecen, Hungary.

[10] Matthiessen C M I M and Bateman J A (1991).

Text Generation and Systemic-Functional Linguistics.

Experiences from English and Japanese, Pinter

Publishers, London, 1991.

[11] Reuer V (2003). Error Recognition and Feedback

with Lexical Functional Grammar; CALICO Journal,

20(3):497-512

[12] Yang J C and Akahori K (1997). Development of

computer assisted language learning system for Japanese

writing using natural language processing techniques: A

study on passive voice Proceedings of the workshop

"Intelligent Educational Systems on the World Wide

Web", 8th World Conference of the AIED Society,

August 1997, Kobe, Japan, 18-22.

