
From Scripts Towards Provenance Inference

Mohammad Rezwanul Huq, Peter M.G. Apers, Andreas Wombacher

Department of Computer Science, University of Twente

7522NB, Enschede, The Netherlands

Email: {m.r.huq and p.m.g.apers and a.wombacher}@utwente.nl

Yoshihide Wada, Ludovicus P. H. van Beek

Department of Physical Geography, Utrecht University

3584CS, Utrecht, The Netherlands

Email: {y.wada and r.vanbeek}@uu.nl

Abstract—Scientists require provenance information either to
validate their model or to investigate the origin of an unexpected
value. However, they do not maintain any provenance information
and even designing the processing workflow is rare in practice.
Therefore, in this paper, we propose a solution that can build
the workflow provenance graph by interpreting the scripts used
for actual processing. Further, scientists can request fine-grained
provenance information facilitating the inferred workflow prove-
nance. We also provide a guideline to customize the workflow
provenance graph based on user preferences. Our evaluation
shows that the proposed approach is relevant and suitable for
scientists to manage provenance.

Keywords-Data provenance, Inference, Workflow, Hydrology.

I. INTRODUCTION

Scientists from different domains facilitate data intensive e-

Science applications to study and better understand complex

systems like physical, geological, environmental, biological

etc. [1]. In most e-Science applications, scientists might often

go to the field to collect in-situ data. They might also get

sensor readings. Scientists use this data fitting into their

model describing processes in the physical world. During the

execution of the model, they might get occasionally imprecise

or unexpected values due to the anomalies either in their data

or in the model. To investigate the origin of the unexpected

value, scientists need to debug through their scripts used for

actual processing as well as to trace back values of the input

data sources. Maintaining data provenance could help them in

such a situation.

Data provenance refers to the derivation history of data

starting from its input sources [2]. Provenance can be defined

at different levels of granularity [3]. Fine-grained data prove-

nance is defined at the value-level documenting the relation-

ship among the input values, the output value and associated

processes. Coarse-grained or workflow provenance is defined

at the more higher level of granularity. Workflow provenance

only captures association among different processes within the

model.

Existing literatures discussing maintenance of fine-grained

provenance, explicitly document the relationship among input

values, associated processes and output values [4], [5]. Since

e-Science applications involve massive amount of data, both

sampled and streaming, it takes a considerable amount of

storage to store fine-grained provenance data. Sometimes, the

size of provenance data might become a multiple of the actual

data. Since provenance data is ’just’ metadata and less often

used by the end users, this approach seems to be infeasible

and too expensive [6].

Recently, a provenance inference mechanism has been pro-

posed which can generate provenance information without

explicitly documenting them based on a given workflow

provenance [7]. In [8], authors extended the approach to infer

provenance data for a complete processing workflow assuming

that the workflow had been specified before executing the

system.

However, in practice, scientists from other domains rarely

design any processing workflow before executing their model.

Usually, they write scripts and execute these scripts to process

the collected data and to generate the output value. In such

a situation, neither of the aforementioned techniques can be

applied instantly because of the unavailability of workflow

provenance information. It is possible to make a workflow

provenance by analyzing the scripts used for processing.

However, it demands in-depth understanding of the processes

and the underlying domain in cases of complex models.

Furthermore, creating workflow provenance manually requires

a lot of time to handle each script in the model separately.

We propose to infer the workflow provenance information

based on a given script which is used for actual processing.

Later, this workflow provenance could be facilitated to infer

fine-grained provenance information. Since there are many

programming and scripting languages and each has its own

set of programming constructs and syntax, we showcase our

approach using python scripts. Python1 is widely-used to

handle spatial and temporal data in the scientific community

as well as commercial products such as ArcGIS2 which has

inspired us to make this choice.

Our main contribution is to infer workflow provenance

information based on a given script which is used for ac-

tual processing. Moreover, we provide a guideline to further

customize the workflow provenance graph based on user

preferences. Users can also request fine-grained provenance

information based on the achieved workflow provenance. We

evaluate our proposed approach in a use case that estimates

global water demand. Our evaluation demonstrates that the

proposed approach can handle varieties of python scripts as

well as it is relevant and suitable for scientists validating and

investigating their model.

1http://www.python.org/
2http://www.esri.com/software/arcgis



Fig. 1. Different types of data used in the use case

II. USE CASE: ESTIMATING GLOBAL WATER DEMAND

Freshwater is one of the most important resources for

various human activities and food production. During the past

decades, use of water has been increased rapidly, yet available

freshwater resources are finite. Therefore, estimating water

demand and availability on a global level is necessary to assess

the current situation as well as to make policies for future.

In this use case, we focus on the script that estimates the

total water demand from the year 1960 to 2000 at a monthly

resolution.

A. Model Inputs

Source data are collected from different existing datasets.

Irrigated areas are prescribed by the MIRCA2000 dataset [9]

and the FAOSTAT database3. Crop factors, growing season

lengths, and rooting depth are obtained from GCWM [10]. The

irrigated areas are representative for the period 1960-2000 at

a yearly temporal resolution, i.e. remains constant over each

year, while the crop-related data sets are representative for the

year 2000 at a monthly temporal resolution. A map of country-

specific irrigation efficiency factors is also obtained from [11].

In addition, daily potential and actual bare soil evaporation

and transpiration are prescribed from the simulation results

from the global hydrological and water resources model PCR-

GLOBWB [12]. Fig. 1 shows the input and output data

and the dependences between them. The rectangles represent

input data collected from various sources and the shaded

ones represent output data. The edges from source to target

rectangles represent dependences of target data on source data.

All the data are PCRaster4 maps containing 360×720 cells.

B. Computing Processes

The process begins with reading the annual and monthly

input maps described above. First, using irrigated areas, crop

factors, growing season lengths and potential transpiration,

we calculate potential crop transpiration. Then, we calculate

actual crop transpiration and determine the difference between

potential and actual crop transpiration. In addition, we com-

pute the difference between potential and actual bare soil

evaporation for the top soil layer. Net irrigation water demand

thus equals the sum of the differences between the potential

3http://faostat.fao.org/
4http://pcraster.geo.uu.nl/

and actual crop transpiration and between the potential and

actual bare soil evaporation [13]. However, much of this water

is lost to evaporation and percolation during the transport and

application. Therefore, we calculate irrigation loss and add

this to the net irrigation demand. At last, we use country-

specific irrigation efficiency factors and multiply these with

the net irrigation water demand to yield gross irrigation water

demand.

The estimated gross irrigation water demand is then added

to other sectoral water demands, i.e. industrial, domestic and

livestock water demand, that are directly read from maps.

Furthermore, we use gross irrigation water demand to calculate

return flow to groundwater.

C. Model Outputs

Finally, the resulted total water demand, gross irrigation

water demand, and irrigation return flow are reported as output

maps (shaded boxes in Fig. 1) for each year from 1960 to 2000

at a monthly temporal resolution.

III. BASIC CONCEPTS

Fig. 2. Properties of different nodes

After introducing the use case, we describe the model to

represent the output we are aiming to achieve, i.e. workflow

provenance. Workflow provenance could be represented as a

graph, known as workflow provenance graph. A workflow

provenance graph Gwp is a set of (V,E) where V denotes

the set of vertices or nodes and E denotes the set of directed

edges. We introduce a graph model to distinguish different

types of nodes. In our graph model, there are four different

types of nodes. These are:

• Constant: represents any constant value taking part in an

operation.

• Source Process: represents any operation that either

assigns a constant or reads data from the disk.

• Computing Process: represents any operation that either

computes a value based on its parameters or writes data

into the disk.

• View: represents either any variable defined in the script

or intermediate result generated by a process.

A directed edge connecting two nodes represents the data

flow. In our provenance model, every source and computing

process generates a view. Further, a view or constant node

can be used as an input for multiple source and computing

processes.

Each type of nodes has different properties. Fig.2 shows

them. A constant node has an id starting with ’C’, a value,



the type of the value (e.g. integer, string etc.) and a line#

referring to the line number in the code where it is defined.

All the nodes also have this line# property. Since source and

computing processes could be defined over multiple lines, they

have start and end line#.

A view node has an id prefixed with ’V’ and a name

(variable name). It has also two important boolean properties:

i) isPersistent and ii) isIntermediate. When isPersistent=true, it

means that the variable which corresponds to this view is read

from the disk or is written into the disk and hence, persistent.

Otherwise, the view is not persistent and thus isPersistent

becomes false. The property isIntermediate is true when the

view is produced by a process and contains an intermediate

result. Otherwise, isIntermediate becomes false and it indicates

that the view is created because of defining the corresponding

variable in the script.

The set of properties of both source and computing pro-

cesses are almost similar except one property, hasOutput.

This property belongs to a computing process which indicates

whether a computing process produces a result that is per-

sistent, i.e. written into the disk. Since source processes only

read data from the disk, hasOutput is not applicable for a

source process node. Among the other properties, both source

and computing processes have an id prefixed with ’SP’ and

’P’ respectively, a name and type of operation (e.g. binary,

function call etc.).

IV. OVERVIEW OF THE APPROACH

First, we parse a given python script based on a combined

grammar, containing parser and lexer rules. After parsing the

script, it returns an abstract syntax tree (AST) for the given

python script. Then, we traverse through this AST based on

a tree grammar and for each node in the AST, an object of

the appropriate class based on the object model is created.

Then, we build the initial workflow provenance graph based

on our provenance graph model (see Sec.III). Since the initial

provenance graph captures all syntactical details of the code,

the size of this graph becomes quite large. Therefore, we apply

a set of graph re-write rules on the initial graph to reduce the

number of nodes and edges and thus achieve our workflow

provenance graph. We also provide options to customize the

workflow provenance graph to further reduce the graph com-

plexity. Eventually, we infer fine-grained provenance based on

the workflow provenance graph.

We have used an off-the-shelf grammar5 as a starting point

and extend it according to our requirements. In this paper, we

focus on the mechanism of creating an initial graph, building a

workflow provenance graph from the initial graph, customizing

it and inferring fine-grained provenance eventually.

V. GENERATING INITIAL WORKFLOW PROVENANCE

GRAPH

Fig. 3 shows a sample code snippet from the actual script.

Since the complete script is bigger having 120 lines of code,

5http://www.antlr.org/grammar/1200715779785/Python.g

Fig. 3. Code snippet from the use case

Fig. 4. Different sub-graphs in the initial workflow provenance graph

we use this code snippet as our running example. The code

facilitates several functions from the PCRaster library to

calculate irrigation loss for each year from 1960 to 2000 at

a monthly resolution. The functions scalar and readmap are

used to read input data from the disk. The report function

writes the result into the disk. Another function max returns

the maximum value among its parameters.

We generate the initial workflow provenance graph main-

taining the flow of the program code of the script shown in

Fig.3 by facilitating attributed graph grammar (AGG)6 which

is a graph writing engine.

We start by reading the first line where the PCRaster library

is imported and is referenced as pcr through out the code. We

maintain the mapping between library name and referenced

name so that we can retrieve and use the actual library name

to avoid any ambiguity.

Fig.4.a shows the sub-graph created for line#2 in the script

where the value 100 has been assigned to the variable conv1.

We create the following nodes: C1 for the value 100 which

is a constant node, SP1 for the assign symbol which is a

source process node since it assigns constant and V1, the view

node for the variable conv1. These nodes are also connected

accordingly.

Fig.4.b shows the sub-graph created for line#3-4. In line

3-4, for each year starting from 1960 to 2000, data holding

the irrigated areas value is read using the scalar function and

is assigned into a variable, known as irrArea. We consider

the loop as a computing process node (P17) which takes the

6http://user.cs.tu-berlin.de/∼gragra/agg/



range of 1960 − 2001 as input and produces a loop control

variable year represented as a view (V2). The year variable is

used as an argument for the scalar function to read irrigated

area data of that corresponding year. Since the scalar function

reads data from the disk, we represent this function as a source

process node (SP2) that takes the file name (C5) and other

arguments as input and produces a view (V4), holding the

intermediate result. Next, this intermediate result is assigned

into the variable irrArea, represented as a view (V3). The

outgoing edge from irrArea node (V3) to the node created

for the loop (P17) indicates that irrArea is defined within the

scope of the loop.

Line#5-7 in the code read other data from disk nested

around another loop. Since the mechanism of generating sub-

graph for these lines is similar to the approach described for

line#3-4, the sub-graph is not shown. Since the new loop in

line#5 is defined within the scope of the old loop in line#3, in

Fig.4.b, there is an outgoing edge from the computing process

node created for the new loop (P15) to the computing process

node created for the old loop (P17).

At last, we discuss the sub-graph generated for line#8-9.

It is shown in Fig.4.c. Line#8 shows the formula to calculate

irlCrop, the irrigation loss. We create a computing process

(P8), representing the max function, that takes its parameters

as input and produces a view (V15). Applying other operations

result into creation of more computing process nodes (P9, P10,

P11) and eventually the result is assigned into the variable

irlCrop, represented by the view V13. Line#9 shows the use

of the report function to write the values in irlCrop into the

disk. We create a computing process for the report function

(P13) and it is connected to its parameters accordingly.

VI. BUILDING WORKFLOW PROVENANCE GRAPH

Since the initial graph captures all the syntactical details

of the script, the number of nodes and edges are quite

high. Many of them are intermediate nodes which could be

deleted afterwards. Furthermore, identifying the process which

generates final output and transforming any control-flow (e.g.

loop) into data-flow dependences are also necessary to make

the provenance graph more understandable. Therefore, we

propose to use re-write rules to transform the initial workflow

provenance graph. Each re-write rule has two parts: left-hand

side (LHS) and right-hand side (RHS). Once a rule is defined

and is executed, it searches for the pattern mentioned in the

LHS of the rule. If the pattern is found, it is replaced by the

sub-graph in the RHS of the rule.

A. Re-write Rules

Re-write rules are executed one after another. Rule A makes

a view persistent (IsPersistent=true), if another persistent view

is assigned into it. The top portion of Fig.5(a) shows rule A.

The bottom part of Fig.5(a) shows a sub-graph found in the

initial graph which matches the pattern mentioned in LHS of

rule A. The view V4 is persistent and is assigned into the

view V3 via P2. Therefore, executing this rule changes the

IsPersistent property of V3 from false to true.

(a) Rule A. Making view persistent

(b) Rule B. Deleting intermediate views and assignment process nodes

(c) Rule C. Identifying the process generating persistent output

(d) Rule D. Identifying & eliminating ’forLoop’ process

Fig. 5. Re-write rules

Rule B deletes all intermediate views (IsIntermediate=true)

and subsequent assignment process nodes (name=’=’) if they

are followed by a variable, thus a non-intermediate view

(IsIntermediate=false). It has two variants depending on the

type of the node which produces the intermediate view (either

a source process, SP1 or a computing process, P1) shown in

the upper part of Fig.5(b). The lower part in Fig.5(b) shows



the patterns found in the initial workflow provenance graph

and its rewritten versions for both variants. Executing this rule

discards the shaded nodes from the initial graph and makes a

connection between SP2 and V3 as well as between P11 and

V13 for rules B.i and B.ii respectively.

Rule C identifies the computing process node which gen-

erates a persistent result, i.e. the result that is written into

the disk. The top part in Fig.5(c) explicates the rule. V2 is a

persistent but intermediate view produced by the computing

process P2 that writes persistent data in the disk. P2 has a non-

persistent input view V1 which is produced by the computing

process P1. Now, if this pattern matches to any of the sub-

graphs in the initial workflow provenance graph, we change

the value of a few properties of node P1 and V1 by following

the given reasoning: since P2 only writes data into the disk

and do not change the data itself, the input view of P2, V1, is

equivalent to the output view of P2, V2. Since V2 is persistent,

V1 also becomes persistent (IsPersistent=true). The aforesaid

change leads us to make another change. Since V1 is produced

by P1, P1 must be the computing process which produces

persistent and non-intermediate view V1, referring to a variable

defined in the script. Therefore, the value of hasOutput of P1

becomes true. One may argue that since P2 produces persistent

view V2, P2 should have hasOutput=true also. However, it is

not true since V2 is an intermediate view which does not refer

to any variable defined in the script unlike V1. The shaded

nodes in the bottom part of the Fig.5(c) show the nodes with

the changed properties.

In any programming language, loops could be used for

various purposes. In our example, shown in Fig.4.b, the

computing process pointing to the loop in line#3 is P17 and it

produces the view V2 which refers to the loop control variable

year. Later, V2 is used to form the parameter for the source

process SP2 that reads files from disk. Furthermore, the year

variable represented as V2 is not used as an input to any other

operations within the script. Therefore, we conclude that the

loop is used to iterate over data and does not manipulate any

data structures (e.g. variable, array, list etc.). In this case, the

computing processes referring to the loop are eliminated from

the initial workflow provenance graph.

Rule D identifies and eliminates the loop mentioned in

line#3 and 5 in the running example. The upper part in Fig.5(d)

shows the LHS and RHS of the rule. The nodes P17, V2

and SP2 found in the initial workflow provenance graph (see

Fig.4.b) correspond to the nodes P2, V2 and SP4 in the LHS

of the rule. After getting the match to the pattern shown in

the LHS, the nodes P17 and V2 are deleted from the initial

graph. The resulting sub-graph is shown in the lower part in

Fig.5(d).

B. Graph Model Modification Rules

In the provenance graph model described in Sec.III, both

source and computing processes have a view as an output.

Therefore, the initial workflow provenance graph based on this

model could be further reduced by discarding the views and

also constants read by a source process. To ensure that no

Fig. 6. Model modification rules and patterns found in the graph

Fig. 7. Workflow provenance graph

information is lost, we copy the value of a few distinguishing

properties of the nodes to be deleted to the corresponding

source or computing process nodes before the actual deletion

takes place. Therefore, to apply these rules, we change our

provenance graph model described in Sec.III. The new model

has three types of nodes, except view nodes in the old

model. The new model includes a few more properties for

a source and a computing process. For a source process, we

include the following properties with the existing ones: i)

Constant ID, ii) Constant Name, iii) View ID, iv) View Name

v) IsViewPersistent and vi) IsViewIntermediate. On the other

hand, for a computing process, only the properties relevant

to views are included. These are: i) View ID, ii) View Name,

iii)IsViewPersistent and iv) IsViewIntermediate.

Left side of Fig.6 shows all three model modification rules.

Rule MA unifies a constant node with the following source

process node and deletes the constant node. If a match is

found, the rule MA copies the value of ID and value of

constant node C1 to the property Constant ID and Constant

Value of the source process node SP1 and delete the constant

node C1 eventually. The dotted line in SP1 refers to the source

process node based on new modified model.

The other two rules, MB and MC, unifies a view node

with the preceding computing process and source process node

respectively and discard the view node. Rule MB and MC

also ensure that the outgoing edges from the view node, i.e.

e1, ..., en, are now connecting from the computing process and



(a) Customized Workflow: Grouping intermediate computing processes

(b) Customized Workflow: Discarding constants

(c) Customized Workflow: Slicing process P11

Fig. 8. Customized workflows

the source process node respectively. The right hand side of

Fig.6 shows patterns for all three rules described above found

in the initial graph and the sub-graphs which replace these

found patterns.

After applying all these re-write rules and model modifica-

tion rules, we achieve our workflow provenance graph. Fig.7

shows the workflow provenance graph for the running example

(see Fig.3). The graph consists of three types of nodes: i)

constant that is connected to a computing process only, ii)

source process and iii) computing process. However, several

source and computing processes are highlighted with light

shade which means that the views produced by these processes

are persistent (IsViewPersistent=true) and refer to the variables

defined in the script (IsViewIntermediate=false).

VII. CUSTOMIZING WORKFLOW PROVENANCE GRAPH

The workflow provenance graph can be used to satisfy

users with different level of understanding and objectives. To

allow users to have more insight to the workflow provenance

graph based on their choice, we provide a handful options to

customize the workflow provenance graph.

We have observed that there might be several processing

steps involved to produce a persistent view. As for example,

line#8 in the running example involves several operations and

eventually assign the result into a view that is persistent.

Fig. 9. Fine-grained provenance graph

Based on this observation, we decide to group intermediate

computing processes together until we reach a computing

process that produces a persistent view. This method of

customization is termed as grouping process. The resultant

customized workflow provenance graph is shown in Fig.8(a).

The next customization of the workflow provenance graph

is achieved by discarding the constant nodes from the graph,

known as discarding constants. This representation contains

no information about the constants. Fig.8(b) shows the cus-

tomized graph after eliminating all constant nodes.

We provide another option which allows users to put em-

phasize around a particular process node. We call this method

of customization as slicing process. In this technique, the user

can select a process to visualize the nodes connected to the

selected process with varying radius parameter. The radius

refers to the highest level of ancestors and successors displayed

around the selected process. Fig.8(c) shows the customized

graph for P11 with radius = 2. Here, P9 and C12 are 2nd

level ancestors of P11. There are no 2nd level successors of

P11. This customization method is analogous to the generic

zooming in/out feature.

VIII. INFERRING FINE-GRAINED PROVENANCE

Fine-grained provenance information could be inferred

based on the workflow provenance graph and timestamps of

contributed input values. In this use case, there are more

than 3000 PCRaster maps containing input data. We create a

SQLite7 database that contains tables for each persistent view

found in the workflow provenance graph and then populate

these tables with the values transformed from the map files.

Further, we attach a timestamp to every value based on the

data collection time. The size of the database for the use case

(see Sec.II) is around 40GB.

The inference phase is quite straightforward. First, users

choose a particular value for which they want to have fine-

grained provenance from any of the persistent output views.

Each value is characterized by it’s data collection time (year,

month) and cell position in the (x,y) co-ordinates. Having this

input from users, we apply the basic provenance inference

algorithm [14]. This inference method is applicable to static

7http://www.sqlite.org/



data which perfectly suits to our use case. The method infers

input values contributed to produce the chosen output value

based on the given characteristics.

Fig.9 shows the fine-grained provenance graph based on

the workflow provenance. The source computing processes are

highlighted with different shades based on their data collection

frequency. Suppose, both SP3 and SP4 read maps that vary

over each month in every year, i.e. yearly-monthly variable

map. The node SP2 is highlighted in a different shade than

those because it reads a map that varies only over the year,

i.e. yearly variable map. In the fine-grained provenance graph,

the actual data values are visible which help scientists to

understand the origin of an unexpected value.

IX. EVALUATION

We build a workflow provenance graph based on the python

script having 116 lines of code. There are 438 nodes in the

initial workflow provenance graph. After applying the re-

write rules and model modification rules (see Sec.VI), the

workflow provenance graph consists of 139 nodes which

shows a significant reduction in the graph size by more than

300%.

We had several meetings with two scientists who are work-

ing in this use case. In the first meeting, we presented our

approach of inferring provenance information and collected

related data and scripts. Later, we developed our prototype

and tested it with the given script as well as other python

scripts.

After finalizing the prototype, we had another interview with

the scientists to ask them several open-ended questions. We

evaluate the proposed approach on the basis of four features:

i) extensibility, ii) customization, iii) debugging-friendliness

and iv) reproducibility.

A. Extensibility

Extensibility refers to the ability to handle different python

scripts and building workflow provenance graph out of them.

Our prototype can handle varieties of python scripts using

different libraries. However, a user has to provide few basic

information on each method call at the very first run. These

includes whether the function reads persistent data or not (e.g.

true/false) and whether the function writes persistent data or

not (e.g. true/false).

Question: To what extent do you think that the extensibility

of the proposed approach is helpful?

Feedback: The proposed approach is generic in the sense

that it can handle varieties of python scripts and builds work-

flow provenance graph out of those. However, at the very first

run, the user has to enter method-specific information which

might be time-consuming and also requires some training for

users.

B. Customization

Customization refers to the ability to adapt the workflow

provenance graph based on user preferences. In Sec.VII, we

discuss different customization techniques on the workflow

provenance graph in detail.

Question: To what extent do you think that the customiza-

tion on the workflow provenance graph is important?

Feedback: It is an important feature provided to users where

users could customize the graph based on their objectives.

The few basic options chosen for customizations are relevant.

However, grouping process and discarding constants options

could be only useful for representation, not for the modeling

purpose. Moreover, it would be nice to add customization

feature in other dimensions of the graph as well (e.g. node

representation, graph layout etc.) to allow users to modify the

layout or color scheme of the graph.

C. Debugging-friendliness

Both workflow and fine-grained provenance graph could be

used for debugging purpose. The workflow provenance graph

shows the flow of the program thus could be used for code-

level debugging. On the contrary, fine-grained provenance

graph refers to the input values and hence, could be used for

value-level debugging.

Question: Have you ever experienced the need for a graph-

based debugging tool? To what extent do you think that the

provenance graphs are useful as a debugging tool?

Feedback: Usually, the scientists use the debugging tool

which comes with the development environment. However,

they appreciate the idea of debugging their code and the

model using provenance graphs. Code-level debugging could

be useful to determine the efficiency of the code, i.e. finding

out code repetition. It is also useful to compare two different

versions of the code expected to produce the same value. On

the contrary, value-level debugging provides easy access to

the actual data. It proves also beneficial when tracing back for

identifying missing values in the file.

D. Reproducibility

Reproducibility refers to the ability to produce the same

result using the same set of input values, irrespective of the

time of the execution of the involved operations.

Question: To what extent do you think that fine-grained

provenance graph is useful to achieve reproducibility? How

do you use your reproducible results?

Feedback: Fine-grained provenance graph shows original

data values contributed to produce the result which helps to

achieves reproducibility. In practice, reproducible results might

be useful to explain the mechanism of the model to one of the

other scientists from the same group.

E. Discussion

The different features of the proposed approach makes

it more practical for scientists to manage provenance data

with limited knowledge of scientific workflows and database.

The extensibility feature ensures that our solution can handle

python scripts using different libraries. However, the first time

entry of method-specific information must be done only once.

Since it requires only few information, training phase for users

should not be prolonged. The customization feature allows

users to tailor the workflow provenance graph based on their



choice which has been appreciated. However, one of our future

plans is to add further customization on different dimensions.

Scientists could also see the use of provenance graphs for

different levels of debugging. However, this feature provides

static debugging only and cannot be used for debugging at

each step execution. Eventually, scientists admit that the fine-

grained provenance can achieve reproducibility to validate

one’s own model. Overall, the prototype satisfies the scientists

with its simplicity and ease to use.

We demonstrate the mechanism of the proposed approach

by facilitating a use case that involves static data. In case of a

streaming scenario, the loop could be used to manipulate input

data (e.g. array, list etc.) by implicitly defining trigger rate, i.e.

how frequently the process should be executed and window

size, i.e. the boundary over input data considered in a process.

In this case, we could build workflow provenance graph by

adding few properties to a process in the graph model based

on [15].

X. RELATED WORK

There are several existing methods which maintain fine-

grained provenance data explicitly. LIVE [4] is a complete

DBMS which preserves explicitly the lineage of derived data

items in form of boolean algebra. In sensornet republishing [5],

authors used an annotation-based approach to represent data

provenance explicitly which is expensive in terms of storage.

These techniques work on the top of a relational database

system with a specific workflow. Therefore, neither of these

methods are applicable in our use case.

Recently, researchers have paid a lot of attention to make

provenance-aware workflow engine. A provenance model de-

scribed in [16] can collect provenance automatically during

runtime. This model is an extension of Kepler8 workflow

engine. A layered model to represent workflow provenance is

introduced in [17] which facilitates windows workflow founda-

tion9 as workflow engine. A relational DBMS has been used to

store captured provenance data. These techniques assume the

presence of workflow provenance before the execution starts

and thus applicable for a closed system. Since our focus is to

build the workflow provenance graph automatically from the

given script, these methods cannot offer any help to us.

In [18], authors proposed an approach that can reconstruct

provenance of the manipulations done over the data in an open

system like excel sheet or a programming tool like R. This

approach used a library of basic transformations to infer and

reconstruct provenance for a particular value. Since it requires

workflow of transformations prior to the reconstruction of

provenance, this approach is not extensible enough.

Another work is proposed in [19] to document provenance

by modifying the source code of a program automatically.

It provides fine-grained data provenance after executing the

script. However, one distinguishing factor is that our ap-

proach provides both high-level workflow provenance and

fine-grained data provenance.

8https://kepler-project.org/
9http://www.windowsworkflowfoundation.eu/

XI. CONCLUSION AND FUTURE WORK

Scientists feel the importance of provenance data. However,

provenance data have been rarely maintained due to the lack

of proper training to use workflow engines and other tools.

Therefore, in this paper, we propose an approach which

can build workflow provenance graph automatically based on

a given python script and eventually can infer fine-grained

provenance information. The approach is generally applicable

to any procedural languages. We build a prototype of our

system and is demonstrated to the scientists working in the

use case. In future, we plan to improve user interface of the

prototype as well as to add new functionalities. Overall, our

proposed approach could help scientists to manage provenance

with minimal training.

REFERENCES

[1] H. B. Newman, M. H. Ellisman, and J. A. Orcutt, “Data-intensive
e-science frontier research,” Commun. ACM, vol. 46, no. 11, pp. 68–77.

[2] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” SIGMOD Rec., vol. 34, no. 3, pp. 31–36, 2005.

[3] P. Buneman and W. C. Tan, “Provenance in databases,” in SIGMOD

2007. New York, NY, USA: ACM, 2007, pp. 1171–1173.
[4] A. Sarma, M. Theobald, and J. Widom, “LIVE: A Lineage-Supported

Versioned DBMS,” in SSDBM 2010, LNCS, vol. 6187, pp. 416–433.
[5] U. Park and J. Heidemann, “Provenance in sensornet republishing,”

Provenance and Annotation of Data and Processes, pp. 280–292, 2008.
[6] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Facilitating fine grained

data provenance using temporal data model,” in DMSN 2010, ACM
International Conference Proceeding Series, pp. 8–13.

[7] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Adaptive inference of
fine-grained data provenance to achieve high accuracy at lower storage
costs,” in e-Science 2011, IEEE Computer Society Press, pp. 202–209.

[8] M. R. Huq, P. M. G. Apers, and A. Wombacher, “Fine-grained prove-
nance inference for a large processing chain with non-materialized
intermediate views,” in SSDBM 2012, LNCS, vol. 7338, pp. 397–405.

[9] F. Portmann, S. Siebert, C. Bauer, and P. Dll, “Mirca2000 - global
monthly irrigated and rainfed crop areas around the year 2000: a new
high-resolution data set for agricultural and hydrological modelling,”
Global Biogeo. Cyc, vol. 24, 2010.

[10] S. Siebert and P. Dll, “Quantifying blue and green virtual water contents
in global crop production as well as potential production losses without
irrigation,” Journal of Hydrology, vol. 384, pp. 198–217, 2010.

[11] J. Rohwer, D. Gerten, and W. Lucht, “Development of functional types
of irrigation for improved global crop modelling,” PIK Report 104,

Potsdam Institute for Climate Impact Research, 2007.
[12] L. P. H. van Beek, Y. Wada, and M. F. P. Bierkens, “Global monthly

water stress: I. water balance and water availability,” Water Resources

Research, vol. 47 2011.
[13] Y. Wada, L. P. H. van Beek, D. Viviroli, H. H. Drr, R. Weingartner, and

M. F. P. Bierkens, “Global monthly water stress: II. water demand and
severity of water,” Wtare Resources Research, vol. 47, 2011.

[14] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Inferring fine-grained
data provenance in stream data processing: Reduced storage cost, high
accuracy,” in DEXA 2011, LNCS, vol. 6861, pp. 118–127.

[15] A. Wombacher, “Data workflow - a workflow model for continuous data
processing,” CTIT, University of Twente, Enschede, Technical Report
TR-CTIT-10-12, 2010.

[16] S. Bowers, T. M. McPhillips, and B. Ludäscher, “Provenance
in collection-oriented scientific workflows,” Concurrency and

Computation: Practice and Experience, vol.20, no.5, pp. 519–529.
[17] R. Barga and L. Digiampietri, “Automatic capture and efficient storage

of e-science experiment provenance,” Concurrency and Computation:

Practice and Experience, vol.20, no.5, pp. 419–429.
[18] P. Groth, Y. Gil, and S. Magliacane, “Automatic metadata annotation

through reconstructing provenance,” in Semantic Web in Provenance

Management, CEUR Workshop Proceedings, vol. 856, 2012.
[19] S. Miles, “Automatically adapting source code to document provenance,”

in Provenance and Annotation of Data and Processes, LNCS, vol.
6378, pp. 102–110, 2010.


