\qquad
\qquad Period: \qquad
Trigonometry - from the Greek language. It means "triangle measurement."
trigonometric ratio - ratio of the lengths of two sides of a right triangle

SOH CAH TOA

$$
\begin{aligned}
& \sin A=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos A=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan A=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Example \#1: Find the sine, cosine, and tangent of the indicated angle ($\Varangle \mathrm{D} \& \Varangle \mathrm{E}$).

Example \#2: Find the sine, cosine, and tangent of the indicated angle ($\Varangle A \& \not \subset B$)

Trigonometric Ratios for Special Right Triangles

$\sin 45^{\circ}=$ \qquad
$\cos 45^{\circ}=$ \qquad $\cos 30^{\circ}=$ \qquad
$\tan 30^{\circ}=$ \qquad $\tan 60^{\circ}=$ \qquad
\qquad
Guided Notes
Trigonometric Ratios
Date: \qquad Period: \qquad
Finding trigonometric ratios for triangles that are not $45^{\circ}-45^{\circ}-90^{\circ}$ or $30^{\circ}-60^{\circ}-90^{\circ}$

YOU MUST USE A CALCULATOR!

1. Place the calculator in degree mode.
2. Find the sin, cos and tan buttons.

Example \#3: Use a calculator to approximate the given value to four decimal places.
\qquad

1. $\sin 35^{\circ}=$
2. $\cos 10^{\circ}=$ \qquad
3. $\tan 74^{\circ}=$ \qquad

Using trigonometric functions to find a side

Example \#4: Solve for the variable(s). Round the final answer(s) to one decimal place. Do not round until the final answer.

Angle of Elevation

Example \#5: You are measuring the height of a building. You stand 100 feet from the base of the building. You measure the angle of elevation from a point on the ground to the top of the building to be 48°. Estimate the height of the building.

