Name: _____ Hour: ____ Date: _____

Chemistry: Real Life Chemistry (for the Business World)

You work for Gateway as a purchasing agent. You are responsible for ordering certain parts for the newest model system. The following information is necessary for your order:

one system requires 12 widgets and 48 watzits a watzit weighs 0.50 lbs. one system takes up 2 ft³ of space a widget weighs 0.25 lbs.

Solve the following problems. Show your work and use units for full credit.

- 1. You are making 150 000 systems for next year.
 - a. How many widgets must you order?
 - b. How many watzits must you order?
- 2. a. How much will the widgets weigh?
 - b. How much will the watzits weigh?
- 3. Your warehouse has a volume of 1 000 000 ft³. How many systems can you place there?
- 4. You place your original order, but the factory producing watzits can only provide 2500 watzits. How many systems can you produce?
- If the factory producing watzits can only provide 2500 watzits...
 a. How many widgets will do you need to order now?
 - b. What will the total weight of these widgets be?
- It costs \$0.30 per widget and \$0.50 per watzit, what is the cost of...
 a. 1 system?
 - b. 150 000 systems?

7. If each system sells for \$250, how many systems must you sell to earn \$1 000 000 dollars profit?

Name:		
Hour:	 Date:	

Chemistry: Real Life Chemistry

Imagine you are working as a chemist at Dow Chemicals. You are responsible for ordering chemicals for a new fertilizer that Dow will be producing next year. The following information is necessary for your order...

1 mole contains 6.02 x 10^{23} molecules 1 mole of gas takes up 22.4 L (or 22.4 dm³) of space 1 mole of fertilizer requires 2 moles of NH₃ and 3 moles of CH₄

Use the above information to solve the following problems. Show your work.

1. You are making 150 000 moles of fertilizer.

- a. How many moles of NH₃ do you need?
- b. How many moles of CH₄ do you need?
- 2. a. How much will the NH_3 weigh?
 - b. How much will the CH₄ weigh?
- 3. Your storage tank holds 1 000 000 dm³. How many moles of gas would it hold?
- 4. You place your order, but the company that provides CH₄ can only obtain 15 000 moles of CH₄. How many moles of NH₃ will you be able to use with this quantity of CH₄?
- 5. Using your information from question #4...
 - a. How many molecules of NH₃ will you order?
 - b. How much space will it take up?
 - c. How much will it weigh?
- 6. If it costs \$1.75 per mole of fertilizer produced, how much will it cost to make 150 000 moles?

Chemistry: Real Life Chemistry (for the Business World)

You work for Gateway as a purchasing agent. You are responsible for ordering certain parts for the newest model system. The following information is necessary for your order:

one system requires 12 widgets and 48 watzits a watzit weighs 0.50 lbs. one system takes up 2 ft³ of space a widget weighs 0.25 lbs.

Solve the following problems. Show your work and use units for full credit.

- 2. You are making 150 000 systems for next year.
 - a. How many widgets must you order?

x widgets = 150,000 systems
$$\left(\frac{12 \text{ widgets}}{1 \text{ system}}\right)$$
 = 1,800,000 widgets

b. How many watzits must you order?

x watzits = 150,000 systems
$$\left(\frac{48 \text{ watzits}}{1 \text{ system}}\right)$$
 = 7,200,000 watzits

2. a. How much will the widgets weigh?

x lbs = 1,800,000 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 450,000 lbs

b. How much will the watzits weigh?

x lbs = 7,200,000 watzits
$$\left(\frac{0.5 \text{ lbs}}{1 \text{ watzit}}\right)$$
 = 3,600,000 lbs

3. Your warehouse has a volume of 1 000 000 ft³. How many systems can you place there?

x systems = 1,000,000 ft³
$$\left(\frac{1 \text{ system}}{2 \text{ ft}^3}\right)$$
 = 500,000 systems

4. You place your original order, but the factory producing watzits can only provide 2500 watzits. How many systems can you produce?

x systems = 2500 watzits
$$\left(\frac{1 \text{ system}}{48 \text{ watzits}}\right)$$
 = 52 systems & (4 watzits left over)

If the factory producing watzits can only provide 2500 watzits...
 a. How many widgets will do you need to order now?

x widgets = 2500 watzits
$$\left(\frac{12 \text{ widgets}}{48 \text{ watzits}}\right)$$
 = 625 widgets
or
x widgets = 52 systems $\left(\frac{12 \text{ widgets}}{1 \text{ system}}\right)$ = 624 widgets

Chemistry: Real Life Chemistry (for the Business World)

b. What will the total weight of these widgets be?

x lbs = 635 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 156.25 lbs
or
x lbs = 624 widgets $\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$ = 156 lbs

- 6. It costs \$0.30 per widget and \$0.50 per watzit, what is the cost of...
 - a. 1 system?

x \$ /system = 12 widgets
$$\left(\frac{\$0.30}{1 \text{ widget}}\right)$$
 + 48 watzits $\left(\frac{\$0.50}{1 \text{ watzit}}\right)$ = \$27.60 /system

b. 150 000 systems?

x \$ = 150,000 systems
$$\left(\frac{\$27.60}{1 \text{ system}}\right)$$
 = \$4,140,000

7. If each system sells for \$250, how many systems must you sell to earn \$1 000 000 dollars profit?

Sell \$250.00	4497
Cost - \$ 27.60	\$222.40)\$1,000,000
Profit \$222.40 / system	

Chemistry: Real Life Chemistry

Imagine you are working as a chemist at Dow Chemicals. You are responsible for ordering chemicals for a new fertilizer that Dow will be producing next year. The following information is necessary for your order...

1 mole contains 6.02 x 10^{23} molecules 1 mole of gas takes up 22.4 L (or 22.4 dm³) of space 1 mole of fertilizer requires 2 moles of NH₃ and 3 moles of CH₄

Use the above information to solve the following problems. Show your work.

- 1. You are making 150 000 moles of fertilizer.
 - a. How many moles of NH₃ do you need?

x mol NH₃ = 150,000 fertilizer
$$\left(\frac{2 \text{ mol NH}_3}{1 \text{ mol fertilizer}}\right)$$
 = 300,000 mol NH₃

b. How many moles of CH₄ do you need?

x mol CH₄ = 150,000 mol CH₄
$$\left(\frac{3 \text{ mol CH}_4}{1 \text{ mol fertilizer}}\right)$$
 = 450,000 mol CH₄

2. a. How much will the NH_3 weigh?

x g NH₃ = 300,000 mol NH₃
$$\left(\frac{17 \text{ g NH}_3}{1 \text{ mol NH}_3}\right)$$
 = 5,100,000 g NH₃ or 5100 kg NH₃

b. How much will the CH₄ weigh?

$$x g CH_4 = 450,000 mol CH_4 \left(\frac{16 g CH_4}{1 mol CH_4}\right) = 7,200,000 g CH_4 \text{ or } 7,200 \text{ kg CH}_4$$

3. Your storage tank holds 1 000 000 dm³. How many moles of gas would it hold?

x mol = 1,000,000 dm³
$$\left(\frac{1 \text{mol gas}}{22.4 \text{ dm}^3}\right)$$
 = 44,643 mol gas (@STP)

4. You place your order, but the company that provides CH₄ can only obtain 15 000 moles of CH₄. How many moles of NH₃ will you be able to use with this quantity of CH₄?

x mol NH₃ = 15,000 mol CH₄
$$\left(\frac{2 \text{ mol NH}_3}{3 \text{ mol CH}_4}\right)$$
 = 10,000 mol NH₃

- 5. Using your information from question #4...
 - a. How many molecules of NH3 will you order?

x molecules
$$NH_3 = 10,000 \text{ mol } NH_3 \left(\frac{6.02 \times 10^{23} \text{ molecules } NH_3}{1 \text{ mol } NH_3} \right) = 6.02 \times 10^{27} \text{ molecules } NH_3$$

Chemistry: Real Life Chemistry

- 5. Using your information from question #4...
 - a. How many molecules of NH₃ will you order?

x molecules $NH_3 = 10,000 \text{ mol} NH_3 \left(\frac{6.02 \times 10^{23} \text{ molecules } NH_3}{1 \text{ mol} NH_3}\right) = 6.02 \times 10^{27} \text{ molecules } NH_3$

b. How much space will it take up?

x dm³ = 10,000 mol NH₃ + 15,000 mol CH₄
x dm³ = 25,000 mol "gas"
$$\left(\frac{22.4 \text{ dm}^3}{1 \text{ mol gas}}\right)$$
 = 56,000 dm³

c. How much will it weigh?

$$x g = 10,000 \text{ mol } \text{NH}_{3} \left(\frac{17 \text{ g NH}_{3}}{1 \text{ mol } \text{NH}_{3}} \right) + 15,000 \text{ mol } \text{CH}_{4} \left(\frac{16 \text{ g CH}_{4}}{1 \text{ mol } \text{CH}_{4}} \right) = 257,000 \text{ g or } 257 \text{ kg}$$

$$x g = 17,000 \text{ g NH}_{3} + 240,000 \text{ g CH}_{4}$$

$$x g = 257,000 \text{ g " gas"} \left(\frac{1 \text{ kg " gas"}}{1000 \text{ g " gas"}} \right) = 257 \text{ kg}$$

6. If it costs \$1.75 per mole of fertilizer produced, how much will it cost to make 150 000 moles?

x \$ =150,000 mol fertilizer
$$\left(\frac{\$1.75}{1 \text{ mol fertilizer}}\right)$$
 = \$2,625,000

Real Life Chemistry (for the Business World)

x widgets = 150,000 systems
$$\left(\frac{12 \text{ widgets}}{1 \text{ system}}\right)$$
 = 1,800,000 widgets

b

1a.

x watzits = 150,000 systems
$$\left(\frac{48 \text{ watzits}}{1 \text{ system}}\right)$$
 = 7,200,000 watzits

2a.

x lbs = 1,800,000 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 450,000 lbs

b.

x lbs = 7,200,000 watzits
$$\left(\frac{0.5 \text{ lbs}}{1 \text{ watzit}}\right)$$
 = 3,600,000 lbs

3.

x systems = 1,000,000 ft³
$$\left(\frac{1 \text{ system}}{2 \text{ ft}^3}\right)$$
 = 500,000 systems

4.

x systems = 2500 watzits
$$\left(\frac{1 \text{ system}}{48 \text{ watzits}}\right)$$
 = 52 systems & (4 watzits left over)

5a.

x widgets = 2500 watzits
$$\left(\frac{12 \text{ widgets}}{48 \text{ watzits}}\right)$$
 = 625 widgets

b.

x lbs = 635 widgets
$$\left(\frac{0.25 \text{ lbs}}{1 \text{ widget}}\right)$$
 = 156.25 lbs

6a.

x \$ /system = 12 widgets
$$\left(\frac{\$0.30}{1 \text{ widget}}\right)$$
 + 48 watzits $\left(\frac{\$0.50}{1 \text{ watzit}}\right)$ = \$27.60 /system

b.

x \$ = 150,000 systems
$$\left(\frac{27.60}{1 \text{ system}}\right)$$
 = \$4,140,000

7.

Real Life Chemistry

1a.

x mol NH₃ = 150,000 fertilizer
$$\left(\frac{2 \text{ mol NH}_3}{1 \text{ mol fertilizer}}\right)$$
 = 300,000 mol NH₃

b

x mol CH₄ = 150,000 mol CH₄
$$\left(\frac{3 \text{ mol CH}_4}{1 \text{ mol fertilizer}}\right)$$
 = 450,000 mol CH₄

2a.

$$x g NH_3 = 300,000 mol NH_3 \left(\frac{17 g NH_3}{1 mol NH_3}\right) = 5,100,000 g NH_3 or 5100 kg NH_3$$

b.

$$x \text{ g CH}_4 = 450,000 \text{ mol CH}_4 \left(\frac{16 \text{ g CH}_4}{1 \text{ mol CH}_4}\right) = 7,200,000 \text{ g CH}_4 \text{ or } 7,200 \text{ kg CH}_4$$

3.

x mol = 1,000,000 dm³
$$\left(\frac{1 \text{ mol gas}}{22.4 \text{ dm}^3}\right)$$
 = 44,643 mol gas (@STP)

4.

x mol NH₃ = 15,000 mol CH₄
$$\left(\frac{2 \text{ mol NH}_3}{3 \text{ mol CH}_4}\right)$$
 = 10,000 mol NH₃

5a.

x molecules
$$NH_3 = 10,000 \text{ mol } NH_3 \left(\frac{6.02 \times 10^{23} \text{ molecules } NH_3}{1 \text{ mol } NH_3}\right) = 6.02 \times 10^{27} \text{ molecules } NH_3$$

b.

$$x dm^{3} = 10,000 mol NH_{3} + 15,000 mol CH_{4}$$

 $x dm^{3} = 25,000 mol "gas" \left(\frac{22.4 dm^{3}}{1 mol gas}\right) = 56,000 dm^{3}$

c.

$$x g = 10,000 \text{ mol } \text{NH}_{3} \left(\frac{17 \text{ g } \text{NH}_{3}}{1 \text{ mol } \text{NH}_{3}} \right) + 15,000 \text{ mol } \text{CH}_{4} \left(\frac{16 \text{ g } \text{CH}_{4}}{1 \text{ mol } \text{CH}_{4}} \right) = 257,000 \text{ g or } 257 \text{ kg}$$

$$x g = 17,000 \text{ g } \text{NH}_{3} + 240,000 \text{ g } \text{CH}_{4}$$

$$x g = 257,000 \text{ g " gas"} \left(\frac{1 \text{kg " gas"}}{1000 \text{ g " gas"}} \right) = 257 \text{ kg}$$

6.

x
$$= 150,000 \text{ mol fertilizer}\left(\frac{\$1.75}{1 \text{ mol fertilizer}}\right) = \$2,625,000$$