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Zero%Inflated Models in Statistical Process Control 

 

 

 

 

 

 

 

 

 

6.0 Introduction 

In statistical process control Poisson distribution and binomial 

distribution play important role. There are situations wherein the process 

leads to zero inflation in its output.  Traditional process in monitoring 

manufacturing and biological studies usually involve selecting random 

samples at regular intervals. Due to technological advancement and 

automation of manufacturing processes, a well designed process could have 

more count of zeros than are expected under chance variation of its 

underlying Poisson or binomial distribution. One such process is the thermo 

sonic wire bonding process of an integrated circuit assembly (Chang and Gan 

2001). The bonding machine has a closed loop controlled system to detect and 

rectify any non conformity generated during the bonding process.  

The excess number of zeros in binomial count can also be found in the 

biological control of pests. The Shewhart c  chart and np  chart are widely 
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used to monitor processes with Poisson and binomial counts. However, as 

both the Poisson and binomial distributions tend to underestimate the mean 

and variability of the zero inflated count, the resulting attribute charts have 

tighter control limits which subsequently lead to a higher false alarm rate in 

detecting out of control signals.  

When the model is used in statistical process control, control limits can 

then be derived based on the zero inflated Poisson model and zero inflated 

binomial model. The classical Shewhart c  chart and np  chart constructed 

based on the Poisson and binomial distributions are inappropriate in 

monitoring zero inflated counts. They tend to underestimate the dispersion of 

zero inflated counts and subsequently lead to higher false alarm rate in 

detecting out of control signals (Sim and Lim (2008)).  

Another drawback of these charts is that their 3 sigma control limits, 

evaluated based on the asymptotic normality assumption of the attribute 

counts; fail to provide the required false alarm rate for the parameter under 

study. To overcome these drawbacks, Sim and Lim (2008) proposed the zero 

inflated models which will take the account of the excess number of zeros. 

They have provided attribute charts for zero inflated processes and estimated 

the Poisson parameter θ  from zero inflated Poisson model. Further they have 

used the model to construct a one sided c   chart with its upper control limit 

constructed based on the Jeffreys prior interval or Blyth   Still interval of the 

binomial proportion θ . However in the study of performance of the one sided  

c  chart using average run length (ARL) criterion Sim and Lim (2008) have 

not used ZIP model. ARL values are evaluated using classical Poisson model. 

Additionally, a simple two of two control rule is also recommended to 

improve further on the performance of these two proposed charts. Xie et al. 

(2001) proposed ZIP model instead of conventional Poisson model in 

statistical process control.  

In the following the zero inflated models for attribute counts with 

excess number of zeros are discussed.   
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6.1 Control Charts for Poisson and Binomial Processes  

In any production process there exist certain amounts of inherent or 

natural variability. This natural variability or “background noise” is the 

cumulative effect of many small, essentially unavoidable causes. In the frame 

work of statistical quality control, this natural variability is often called a 

stable system of chance causes. A process that is operating with only chance 

causes of variation alone is said to be in statistical control. In other words, the 

chance causes are an inherent part of the process. The other kind of variability 

may be present in the process output is an unnatural variation which is known 

as assignable causes of variation. Such variability is generally large when 

compared to the back ground noise. A process operating in the presence of 

assignable causes is said to be out of control. 

In recent years due to advanced technologies there is a competitive 

environment in manufacturing industries. Therefore, manufacturer has to 

produce products of very high quality. However, it is not an easy task to 

maintain such a high quality of product. The main reason behind this is the 

inherent variability in the quality of the product. This product may be 

components require for automobiles, various equipments like power 

generating sets, electric motor etc. If the variability can only be described in 

statistical terms, the statistical methods play an important role in the quality 

improvement. The technique comprising these statistical methods is named as 

‘Statistical Quality Control’ (SQC). The SQC techniques are used for the 

process control, the product control and to design scientific experiments. 

A General Model for Control Charts: 

Let W   be a statistic that measures a quality characteristic of interest. 

Suppose that the mean of W is W"  and the standard deviation of W  is Wσ . 

The control limits become  

WW LUCL σ" +=  

WCL "=  
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          WW LLCL σ" −= ,                                           …(6.1.1) 

where L  is the distance of the control limits from the centre line, expressed in 

standard deviation units. It is customary to choose 3L = . The control limits 

taking 3L =  are called Shewhart’s control limits. The concept of control 

charts was first proposed by Dr. Walter A. Shewhart and control chart 

developed according to these principles are often called Shewhart control 

charts. 

The Classical −C Control Chart for Poisson Count  

Poisson distribution is a natural choice for modeling the occurrence of 

random event or the number of nonconformities )(X  found in a subgroup of 

size n . The classical Shewhart c  chart has been widely used to monitor 

processes with Poisson count. The 3 sigma control limits of a classical two 

sided c  chart when standards are known, in monitoring a Poisson process 

with mean θ   are given by 

   θθ α 2/zUCLc +=     

  θ=cCL     

),0max( 2/ θθ αzLCLc −=                   …(6.1.2) 

When standards are unknown the parameter θ   is replaced by X            

(i.e.  mean), where ∑
=

=
n

i

i

n

x
X

1

 and the corresponding control limits are  

XzXUCLc 2/α+=  

XCLc =  

),0max( 2/ XzXLCLc α−=                              ...(6.1.3)                                    

The np %Control Chart 

The np  control chart has been widely used in industry to monitor the 

number of nonconforming units in sample of n  units inspected.  A 

nonconforming unit )(d is the number of units that fails to meet at least one 
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specified requirement in a subgroup of size n . The control limits  using 

binomial distribution are as follows 

                 )1(3 pnpnpUCL −+=  

  npCL =  

                         )1(3 pnpnpLCL −−=                       …(6.1.4) 

Suppose, we have m  subgroups samples each of size n . And if a standard 

value of p  is unknown, then p  can be used to estimate p ,  where 
mn

d

p

m

i

i∑
== 1 . 

Then the centre line and control limits are as follows: 

                 )1(3 ppnpnUCL −+=  

pnCL =  

                         )1(3 ppnpnLCL −−=                         …(6.1.5) 

Now, we introduce the concept of run length, average run length and 

expression for average run length. 

Run Length 

The run length of control chart is the number of samples required to  

detect the out of control state. Clearly run length is a positive integer valued 

random variable with support 1, 2, 3…. 

Average Run Length (ARL) 

  Average run length is defined as the average number of points that 

must be plotted before a point indicates an out of control condition. The 

performances of the control chart are often described in terms of their run 

length distribution. When the process is in control we expect that ARL should 

be as large as possible and when process goes out of control, ARL should be 

as small as possible. Comparison of one control chart with the other is usually 

done through ARL.  

�

�
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����	
���� Control Rule 

 In this rule, a process is declared to be out of control if single point 

falls outside the control limits.  

��	�	
���	��ontrol Rule 

 In this rule, a process is declared to be out of control if two successive 

points fall outside the control limits.  It is found that two of two control rule 

are more sensitive than one of one control rules, in the sense that, the former 

detect out of control state early.  

6.2 Control Chart for Zero%Inflated Poisson Count  

The excess number of zero counts causes reduction in the value of 

mean. Consequently, this reduces the natural variability within control limits. 

As a result of this, there will be many false alarms. Therefore, we implement 

zero inflated models to construct control limits. Further to assess the 

performance of the proposed control charts we have used confidence interval 

that provides good coverage probability. 

First, consider the control limits based on ZIP model. Note that the 

Poisson parameter θ   is replaced by its maximum likelihood estimator )ˆ(θ . 

The control limits based on this mle are given by, 

θθ α
ˆˆ

2/zUCLc +=  

θ̂=cCL  

)ˆˆ,0max( 2/ θθ αzLCLc −=                               …(6.2.1) 

Control Chart Based On ��	���
����	 Control Rule  

To improve further the performance of the control chart a simple two<

of< two control rule is used and the control limits are set so that rule gives 

desired in control ARL. These limits are obtained by using simulation. R 

program has been developed for the same (Appendix 3). 
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The Control Chart for Zero% Inflated Binomial Count  

When an excess numbers of zero counts are present then the control 

limits are evaluated based on a process fraction nonconforming p  estimated 

from ZIB model. This p is denoted by p̂  and it is the solution of the 

following equation,  

                                   0
)ˆ1(1(

)(ˆ

1

0 =
−−

−
−∑

=

n

i
ni

p

nnpn
x .  

The control limits then are given by  

)ˆ1(ˆˆ
2/ ppnzpnUCLnp −+= α  

  pnCLnp
ˆ=  

            )ˆ1(ˆˆ
2/ ppnzpnLCLnp −−= α                      …(6.2.2) 

Performance of the ZIP Control Chart 

              Now, we shall consider the performance of the one sided c   chart 

using its average run length ARL(5 ). It denotes the number of inspection 

units required to inspect until one is able to detect an upward shift of the 

Poisson process mean from 0θ   to 0,01 ≥55+=θθ . The in control average 

run length ARL ( 0=5 ), is denoted by ARL
0
. It is the average number of 

inspection units required to inspect before the c   chart falsely detect an out 

of control signal when the process is actually in control. The out of control 

average run length ARL )0( ≠5 , namely ARL
1
, is the average number of 

inspection units that should be inspected to correctly detect an out of control 

signal when the process is actually out of control. In general we require a 

reasonably large ARL
0
 value in order to have a low false alarm rate, and 

small ARL
1
 values to enable rapid detection of shifts in process mean. The 

average run length of the c  chart is given by 

   ARL 
)(

1
)(

5
=5

cP
, 

in which ))(()( 10 θθθ =>=5 cc UCLXpP  
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∞
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cUCLx

x

x

e
.                                               …(6.2.3) 

)(5cP  is the probability that the Poisson count of a given inspection unit is 

plotted above the control limit )( 0θcUCL . Sim and Lim (2008) reported ARL 

values for zero inflated Poisson process. However it is found that ARL 

calculation are based on classical Poisson model and hence are incorrect. 

The performance of the classical c  chart constructed with  standards 

known, standards unknown, ZIP model and two of two control rule in 

monitoring ZIP process with parameters =θ 4.0 (0.5) 5.5 is given in Table 

6.2.1.  Examination of Table 6.2.1 reveals that for a process with zero inflated 

parameter =π 0.6, and Poisson parameter =θ 4.0; (i) the classical c  chart 

(standards unknown), constructed without taking in to account of ZIP count, 

yields an unacceptably small  ARL
0
 of  15.0215 ; (ii) the c  chart constructed 

based on the ZIP model yields a bigger ARL
0
 of 205.2845; (iii) the classical 

c –chart (standards known) yields  203.5522; and (iv) the c  chart constructed 

based on two<of< two control rule yields a larger ARL
0
value of 243.8718.  

For the case =θ 4.5, (i) the classical c  chart (standards unknown), 

constructed without taking in to account of ZIP count, yields small  ARL
0
 of  

19.2018; (ii) the c  chart constructed based on the ZIP model yields much 

larger  ARL
0
 of 691.1483; (iii) the classical c –chart (standards known) 

yields  254.3254; and (iv) the c  chart constructed based on two<of< two 

control rule yields a ARL
0
value of 393.5261. 

The performance of the classical c  chart with inflation parameter =π 0.4 and 

Poisson parameter =θ 4.0 (0.5) 5.5 are given in Table 6.2.2.   
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    Table : 6.2.1 

ARL performance of attribute charts in monitoring ZIP processes  

( =π 0.6, and =θ 4.0 (0.5) 5.5) 

  ARL of c  chart with    

θ  
1θ  standards 

known 

standards 

unknown 

ZIP 

model 

two of 

two 

control 

rule 1 

Adjusted 

ARL of 

c  chart 

ZIP 

Adjusted 

ARL for 

two of 

two chart  

Actual 

ARL for 

ZIP 

model 

 UCL 9 5 9 6 9 6  

4.00 

4.00 

4.80 

5.60 

6.40 

203.5522 

66.3461 

28.6513 

14.6707 

15.021 

7.9835 

5.1072 

3.6265 

205.2845 

68.2963 

28.0752 

14.6485 

243.8718 

72.3945 

31.5682 

17.9370 

203.5522 

67.7200 

27.8383 

14.5249 

203.5522 

60.4254 

26.3490 

14.9715 

204.9455 

66.2923 

28.1865 

14.5941 

 UCL 10 7 11 7 11 7  

4.50 

4.50 

5.40 

6.30 

7.20 

254.3254 

73.1962 

29.5977 

14.8110 

19.2018 

9.4581 

5.6060 

3.8222 

691.1483 

172.3299 

59.4104 

27.0266 

393.5261 

99.1555 

38.1287 

19.6156 

254.3254 

63.4131 

21.8616 

9.9451 

254.3254 

64.0815 

24.6416 

12.6770 

693.2072 

173.0409 

60.0943 

26.4946 

 UCL 11 7 11 8 11 8  

5.0 

5.00 

6.00 

7.00 

8.00 

306.0902 

83.0512 

31.6023 

14.7838 

12.7055 

6.5070 

4.1094 

3.0933 

308.2614 

82.5209 

31.5868 

15.1220 

626.0450 

131.2260 

44.8271 

21.7713 

306.0902 

81.9397 

31.3643 

15.0155 

306.0902 

64.1599 

21.9172 

10.6446 

305.6370 

82.9519 

31.2404 

14.8910 

 UCL 12 7 12 8 12 8  

5.50 

5.50 

6.60 

7.70 

8.80 

371.1953 

93.7234 

33.1591 

14.9822 

8.7306 

4.7974 

3.2647 

2.5845 

375.2733 

93.8611 

32.6317 

15.4726 

264.7746 

65.5033 

26.2859 

14.7322 

371.1953 

92.8411 

32.2771 

15.3045 

371.1953 

91.8310 

36.8510 

20.6535 

374.4576 

93.1684 

33.0512 

15.1292 
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                       Table:  6.2.2 

ARL performance of attribute charts in monitoring ZIP processes  

( =π 0.4, and =θ 4.0 (0.5) 5.5) 

  ARL of c  chart with 

θ  1θ  
standards 

known 

standards 

unknown 

ZIP 

model 

two of 

two 

control 

rule 1 

Adjusted 

ARL of 

c  chart 

ZIP 

Adjusted 

ARL for 

two of 

two chart 

Actual 

ARL for 

ZIP 

model 

 UCL 9 5 9 6 9 6 9 

4.00 4.00 

4.80 

5.60 

6.40 

314.6101 

100.0760 

42.4400 

22.1013 

11.6475 

7.2741 

5.1078 

3.9796 

307.2295 

97.5526 

41.8111 

22.0251 

534.6570 

156.1884 

65.4201 

36.0239 

314.6101 

99.8961 

42.8155 

22.5542 

314.6101 

91.9065 

38.4954 

21.1977 

307.4183 

99.4385 

42.2797 

21.8912 

 UCL 10 6 10 7 10 7 10 

4.50 4.50 

5.40 

6.30 

7.20 

371.4469 

113.4831 

44.2597 

22.1137 

14.7109 

8.3425 

5.6009 

4.2997 

372.2706 

111.4406 

44.8062 

22.0198 

850.3266 

208.5622 

80.0093 

40.4738 

371.4469 

111.1940 

44.7071 

21.9711 

371.4469 

91.1059 

34.9503 

17.6801 

374.8872 

111.0432 

44.4211 

22.0607 

 UCL 11 6 11 8 11 8 11 

5.00 5.00 

6.00 

7.00 

8.00 

464.2578 

125.4139 

47.8497 

22.2588 

10.4784 

6.3106 

4.4961 

3.6309 

466.0903 

124.0049 

46.4122 

22.226 

1373.5670 

289.1661 

93.9766 

44.9074 

464.2578 

123.5174 

46.2297 

22.1386 

464.2578 

97.7365 

31.7636 

15.1784 

458.4555 

124.4279 

46.8609 

22.3365 

 UCL 12 7 12 8 12 8 12 

5.50 5.50 

6.60 

7.70 

8.80 

558.9356 

140.0044 

49.5208 

22.6833 

13.2538 

7.2491 

4.9968 

3.8084 

559.2587 

141.3947 

49.5658 

22.7722 

583.7251 

137.9524 

53.8251 

29.1510 

558.9356 

141.3130 

49.5372 

22.7590 

558.9356 

132.0939 

51.5393 

27.9130 

561.6864 

139.7527 

49.5768 

22.6938 
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Performance of the np  Chart    

The average run length of the np  chart is detecting an upward shift of 

binomial parameter p  (such as proportion of nonconforming) from  p   to  

,0,1 >55+= pp  is given as     

   ARL 
)(

1
)(

5
=5

npP
 

in which ))(()( 10 pppUCLXpP npnp =>=5  

                          ( ) xn
n

pUCLx

x
pp

x

n

c

−

+=

−







= ∑ 1

1)(

1 1
0

                                       …(6.2.4) 

 We have conducted a comprehensive study on the performance of 

various np  charts. Table 6.2.3 reports only the ARLs of the np  chart with a 

two< of <two control rule in monitor ring the binomial processes with zero 

inflated parameter =π  0.6 and selected the classical np   charts constructed 

with and without using the ZIB model are given as well for comparison 

purposes. Table 6.2.3 shows that, for a ZIB model with parameters =π 0.6, 

=n  653, and p = 0.004 that result in a variance of 2.00(0.30)2.60: (i) the 

classical np  chart, (standards known) constructed without taking into account 

the excess number of zeros in the sample, yields  ARL0 of 300.650; (ii) the 

classical np  chart (standards unknown), constructed without taking into 

account the excess number of zeros in the sample, yields an undesirably small 

ARL0 of 33.108; (iii) the ARL0 of the np  chart increases to 321.406 when the 

ZIB model is used to fit the ZIB count; (iv) the np   chart yields ARL0 value 

of 193.157 when two of  two rule is applied; and (v) the actual ARL0 is 

310.273  

The performance of the np  chart with inflation parameter =π 0.4 and 

=p 0.004 (0.003) 0.010  are given in Table 6.2.4   
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Table : 6.2.3 

ARL performance of attribute charts in monitoring ZIB processes 

( =π 0.6, and =p 0.004 (0.003) 0.010) 

ARL of np   chart with 

p  
1

p  

Sample 

Size 

n  / 

Variance 

standards 

known 

standards 

unknown 

ZIB 

model 

two of 

two 

control 

rule 

Adjusted 

ARL of 

np  

chart ZIB 

model 

Adjusted 

ARL for 

two of 

two 

chart 

Actual 

ARL 

for ZIB 

model 

0.004 0.0040 

0.0048 

0.0056 

0.0040 

0.0048 

0.0056 

0.0040 

0.0048 

0.0056 

502 

(2.00) 

 

577 

(2.30) 

 

653 

(2.60) 

347.515 

143.507 

  68.965 

616.209 

226.463 

  97.066 

300.650 

113.271 

  51.731 

31.298 

17.283 

10.594 

56.110 

27.062 

15.286 

33.108 

17.009 

10.205 

364.358 

145.356 

  66.931 

187.699 

  70.429 

  35.770 

321.406 

113.424 

  53.126 

146.621 

  64.448 

  35.528 

 11.041 

140.647 

  63.255 

193.157 

  73.415 

  35.981 

347.515 

138.637 

  63.837 

616.209 

231.216 

117.432 

300.650 

106.099 

  49.695 

347.515 

152.751 

  84.207 

616.209 

210.851 

  94.828 

300.650 

114.271 

   56.005 

367.626 

143.471 

  68.024 

177.796 

  72.812 

  36.187 

310.273 

112.316 

  50.739 

0.010 0.0070 

0.0084 

0.0098 

0.0070 

0.0084 

0.0098 

0.0070 

0.0084 

0.0098 

288 

(2.00) 

 

331 

(2.30) 

 

374 

(2.60) 

 

362.040 

141.529 

  67.344 

671.267 

231.128 

  95.357 

310.105 

117.557 

  48.439 

31.719 

17.288 

10.831 

19.705 

11.136 

  7.414 

33.232 

17.149 

10.146 

369.104 

146.962 

66.978 

172.702 

  69.635 

  35.630 

314.313 

115.313 

  50.624 

146.673 

63.628 

34.573 

397.599 

134.901 

  62.990 

192.751 

  73.141 

 36.309 

362.040 

144.149 

  65.696 

671.267 

270.661 

138.489 

310.105 

113.709 

  49.920 

362.040 

157.057 

  85.339 

671.267 

227.753 

106.346 

310.105 

117.672 

  58.415 

365.709 

142.554 

  67.521 

176.460 

  72.201 

  35.860 

310.709 

112.281 

  50.648 

0.010 0.0010 

0.0120 

0.0140 

0.0010 

0.0120 

0.0140 

0.0100 

0.0120 

0.0140 

202 

(2.00) 

 

232 

(2.30) 

 

263 

(2.60) 

335.741 

144.770 

  69.326 

683.379 

215.644 

94.236 

331.311 

114.857 

  51.772 

99.897 

45.855 

25.094 

55.500 

26.330 

  15.299 

  33.329 

  16.553 

  10.062 

369.624 

142.099 

  68.784 

173.560 

  69.654 

37.079 

302.827 

105.332 

  50.115 

141.447 

  61.896 

  34.724 

404.537 

135.857 

62.995 

187.238 

  72.314 

  35.239 

335.741 

129.073 

  62.479 

683.379 

274.257 

145.996 

331.311 

115.240 

  54.829 

335.741 

146.916 

   82.422 

683.379 

229.502 

106.417 

331.311 

127.958 

  62.354 

367.715 

143.071 

  67.655 

177.473 

  72.482 

35.941 

307.035 

110.870 

  49.986 
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                   Table : 6.2.4 

ARL performance of attribute charts in monitoring ZIB  processes 

=π 0.4, and =p 0.004 (0.003) 0.010. 

ARL of np   chart  

p  

 

1
p  

Sample 

Size 

n /     

Variance 

with 

standards 

known 

with 

standards 

unknown 

with 

ZIB 

model 

with 

two of 

two 

control 

rule 

Adjusted 

ARL of 

np chart 

ZIB 

Adjusted 

ARL for 

two of 

two 

chart  

Actual 

ARL 

for ZIB 

model 

0.004 0.0040 

0.0048 

0.0056 

0.0040 

0.0048 

0.0056 

0.0040 

0.0048 

0.0056 

502 

(2.00) 

 

577 

(2.30) 

 

653 

(2.60) 

555.101 

220.905 

106.474 

943.439 

328.407 

141.557 

501.033 

163.505 

  77.416 

17.555 

11.025 

  8.143 

12.454 

  8.321 

  6.245 

19.852 

12.000 

  8.259 

526.984 

215.406 

  97.225 

266.714 

106.162 

  53.919 

464.375 

164.182 

  77.323 

325.605 

130.806 

  55.016 

895.377 

306.943 

136.083 

434.172 

158.066 

  76.669 

555.101 

226.899 

102.412 

943.439 

375.523 

190.726 

501.033 

177.143 

  83.427 

555.101 

223.001 

  93.793 

943.439 

323.419 

143.387 

501.033 

182.407 

  88.476 

551.439 

215.206 

102.036 

266.694 

109.218 

  54.281 

465.410 

168.474 

  76.108 

0.010 0.0070 

0.0084 

0.0098 

0.0070 

0.0084 

0.0098 

0.0070 

0.0084 

0.0098 

288 

(2.00) 

 

331 

(2.30) 

 

374 

(2.60) 

 

573.553 

221.714 

   99.710 

943.723 

324.680 

146.105 

458.037 

176.080 

  75.914 

17.226 

11.036 

   8.079 

12.203 

  8.179 

  6.129 

20.010 

11.912 

  8.184 

559.469 

213.406 

103.471 

271.798 

109.698 

  57.324 

455.706 

166.902 

  73.428 

318.283 

134.468 

  72.510 

890.233 

298.694 

134.437 

427.213 

156.873 

  76.105 

573.553 

218.778 

106.076 

943.723 

380.888 

199.037 

458.037 

167.756 

  73.804 

573.553 

242.313 

130.665 

943.723 

316.641 

142.515 

458.037 

168.192 

  81.596 

548.564 

213.830 

101.282 

264.689 

108.302 

  53.790 

466.063 

168.421 

  75.973 

0.010 0.0010 

0.0120 

0.0140 

0.0010 

0.0120 

0.0140 

0.0100 

0.0120 

0.0140 

202 

(2.00) 

 

232 

(2.30) 

 

263 

(2.60) 

583.145 

211.674 

102.713 

995.149 

330.953 

 142.850 

438.821 

163.465 

  78.109 

17.175 

10.963 

  7.808 

12.246 

  8.282 

  6.113 

19.821 

11.822 

  7.966 

564.285 

218.935 

  95.702 

245.163 

109.511 

  53.516 

461.895 

166.027 

  75.198 

309.346 

135.324 

  72.154 

890.656 

299.603 

133.565 

410.332 

153.315 

  74.752 

583.145 

226.252 

  98.900 

995.149 

444.519 

217.228 

438.821 

157.733 

  71.441 

583.145 

255.098 

136.017 

995.149 

334.753 

149.235 

438.821 

163.960 

  79.942 

551.573 

214.606 

101.481 

266.209 

108.725 

53.918 

460.552 

166.305 

  74.979 
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 Conclusion 

In constructing attribute control charts for monitoring zero inflated 

processes, an appropriate approach is to fit a ZIP or ZIB model to the zero 

inflated count. The parameter value estimated from the model is then used to 

construct the required c or np  charts. However, the resulting chart is still 

likely to have an ARL0 value much smaller than the desired value due to the 

poor coverage probability of its control limit. Our study reveals that in some 

cases, a simple two of  two control rule can also be used to enhance the 

performance of the c   chart.  

 In the following we introduce one more application of zero inflated 

models in process capability index. 

 

6.3 Process Capability Index for Zero%Inflated Poisson Process 

  Process capability indices have been of interest for the researchers in 

the recent years. Most of the indices are based on the assumption of normality 

of process. Indices for non normal process distributions have also been 

proposed in the literature. An extensive review of various indices can be 

found in Kotz and Johnson (2002), Kotz and Lovelace (1998), Spiring et al. 

(2003) have provided a good review on the bibliography on process capability 

indices. Borges and Ho (2001) have provided a capability index based on 

fraction defective. Clements (1989) has given process capability computations 

for non normal distributions. Kane (1986), Kotz and Johnson (1993) have 

studied process capability indices. Pearn and Chen (1995) have proposed the 

estimating process capability indices for non normal pearsonian populations. 

Perakis and Xekalaki (2002) have studied a process capability index based on 

the proportion of conformance. Yeh and Bhattacharya (1998) have given the 

robust process capability index. Perakis and Xekalaki (2005) have proposed a 

new process capability index useful for both the discrete and continuous 

processes. Further Perakis and Xekalaki (2005) have provided a process 

capability index for Poisson and attribute data. Their indices are based on 



 135 

maximum likelihood estimate of the Poisson parameter as well as on 

minimum variance unbiased estimator (MVUE). A simulation study 

performed by them reveals that indices based on maximum likelihood 

estimates perform better than the one based on MVUE. 

In the recent years, due to adoption of technology, production 

processes produce extremely good products. Therefore, zero  inflated models 

have been found useful in modeling production process data. Xie et al. (2001) 

have proposed control limits based on zero inflated Poisson model. Naturally, 

process capability indices (PCI) which are based on Poisson distribution need 

to be updated, to take an account of zero inflated behavior property of 

process. 

In the present study, we modify the PCI provided by Perakis and 

Xekalaki (2005) so as to take an account of inflation at zero in the process. If 

the process is zero inflated, then the use of usual Poisson distribution results 

in underestimating the parameter value. We throw some light on this aspect 

by providing some numerical study. The proposed index here involves two 

parameters. Therefore, maximum likelihood estimators for the same have 

been used. The study of performance of the proposed index has also been 

taken up.  

Suppose X (usually number of defects) denotes the quality 

characteristic under study which follows Poisson distribution with parameter 

θ .  Let U  be the upper tolerance specified by the manufacturer on the number 

of defects. The upper process capability index )( PCUC defined by Perakis and 

Xekalaki (2005) is given by  

p

p
CPCU −

−
=

1

1 0 , 

p
CPCU −

=
1

0027.0
,                  …(6.3.1) 
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  where 0p  is the minimum allowable proportion of conformance of the 

examined process and p is the proportion of conformance which is given by 

∑
−

=

−

=<=
1

0 !
)(

U

x

x

x

e
UXpp

θθ
                                           …(6.3.2) 

It is easy to see that p  can be expressed as  

                  )2( 2

2 θχ >= Upp ,     

   or           )2(1 2
2 θχ <=− Upp ,                                        …(6.3.3)                  

where 2
kχ  denotes the Chi square random variable with k  degrees of 

freedom. Therefore, we have  

)2(

0027.0
2

2 θχ <
=

U

PCU
p

C .                                  …(6.3.4) 

In the recent years, awareness about quality of any production process 

has been enhanced to great extent and best quality products are being 

manufactured by adopting technological innovations. Therefore, production 

processes contain significant number of zero defectives in the production 

runs. To accommodate this behavior of the process, zero inflated distributions 

are being used to model process data. ZIP distribution is one of such 

distributions.  

In the light of presence of inflation in the process distribution, PCUC  as 

defined in Eq. (6.3.1) is modified and it is now given by 

)2(

0027.0
2

2 θχπ <
=

U

Z

PCU
p

C .                                   …(6.3.5) 

We note that, if 1=π , then Z
PCUC   coincides with PCUC . Since the index 

defined in Eq. (6.3.5) contains unknown parameters π  and θ . In the 

following we discuss the estimation of these parameters. 
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Estimation of Z
PCUC  

Suppose a random sample nXXX ...,,, 21  is available from the ZIP 

process. We obtain  π  and θ  in Eq. (6.3.5) by their respective mles. 

Substituting π̂  and θ̂  we get MLEs for  Z
PCUĈ        as  

                     .
)ˆ2(ˆ

0027.0ˆ
2

2 θχπ <
=

U

Z

PCU
p

C                                     …(6.3.6) 

Assuming asymptotic normality of )ˆ,ˆ( θπ , we get ),(~)ˆ,ˆ( 2 Σ′′ ξθπ A$ , where 

),( θπξ =  and ),(1 ′=Σ − θπI  and entries of Σ are given by )( jiσ=Σ , 

( )
( )
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n  and 

( ) .
1
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==
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−

θ

θ

ππ
σσ

e

en
                                …(6.3.7) 

To check the performance of proposed process capability index, using 

ZIP model with the one given by Perakis and Xekalaki (2005), we tabulate the 

numerical values of the process capability index for U=20 and .15,...,9,8=θ   
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Table : 6.3.1 

Numerical values of the process capability index for Poisson model 

and Zero  Inflated Poison model for U=20 

 

  

θ  PCUC  p  π  
Z
PCUC  

8 10.67449 0.999747 0.4 

0.5 

0.6 

0.7 

26.68623 

21.34899 

17.79082 

15.24928 

9 2.55693 0.998944 0.4 

0.5 

0.6 

0.7 

  6.39232 

  5.11386 

  4.26155 

  3.65275 

10 0.781625 0.996546 0.4 

0.5 

0.6 

0.7 

  1.95406 

  1.56325 

  1.30270 

  1.11660 

11 0.290652 0.990711 0.4 

0.5 

0.6 

0.7 

  0.72663 

  0.58130 

  0.48442 

  0.41521 

12 0.126881 0.97872 0.4 

0.5 

0.6 

0.7 

  0.31720 

  0.25376 

  0.25376 

  0.21146 

13 0.063278 0.957331 0.4 

0.5 

0.6 

0.7 

  0.15819 

  0.12655 

  0.10546 

  0.09039 

14 0.035292 0.923495 0.4 

0.5 

0.6 

0.7 

  0.08823 

  0.07058 

  0.05882 

  0.05041 

15 0.021638 0.875219 0.4 

0.5 

0.6 

0.7 

  0.05409 

  0.04327 

  0.03606 

  0.03091 
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It is clear that if we ignore inflation in the process then the status of the 

process is underestimated. As the amount of inflation increases (that is π  

decreases), process capability index shows goodness of the process, which is 

quite logical. 

 

6.4 Simulation Study 

In order to test the performance of the proposed estimator, a simulation 

study is conducted. In the simulation study 10,000 random samples were 

generated from the ZIP distribution for various values of the parameters θ , π  

and for five different sample sizes (25, 50, 100, 200, 400). Two alternative 

values of  U (10 and 20) are chosen so as to detect the influence of all these 

factors on the behaviors of the estimator.  Table 6.4.1 gives the process 

capability index for U=10 and for different values of inflation parameter 

π =0.4, 0.5, 0.6, 0.7 and 1.0. Table 6.4.2 gives the process capability index for 

U=20 and for different values of inflation parameter π =0.4, 0.5, 0.6, 0.7 and 

1.0.  

In the present study, we propose an estimator for process capability 

index, when the process distribution is zero inflated Poisson process. It is 

observed that ignorance of inflated behavior of the data leads to 

underestimation of the process capability. It is recommended that, in the 

presence of zero inflation in the data, index using appropriate zero inflated 

distribution gives a better status of the process in terms of the process 

capability.  
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Table  :  6.4.1     

Monte Carlo estimates of Z
PCUC  (U=10) 

Sample size 

25n =  50n =  100n =  200n =  400n =  θ  PCUC  p  π  

Z
PCUC  

3 2.4490 0.9988 0.4 

0.5 

0.6 

0.7 

1.0 

36.3744 

22.1845 

13.5368 

  8.5782 

  4.3826 

17.6975 

  8.5075 

  7.4402 

  4.9056 

  3.2294 

9.1900 

6.4212 

4.9704 

4.4660 

2.8441 

7.0426 

5.7293 

4.5215 

3.8028 

2.6281 

6.6714 

5.2333 

4.3121 

3.6683 

2.5074 

4 0.3320 0.9918 0.4 

0.5 

0.6 

0.7 

1.0 

3.6159 

1.9067 

1.0140 

0.7634 

0.4684 

1.5052 

0.9231 

0.7105 

0.6089 

0.3862 

1.0235 

0.7951 

0.6231 

0.5426 

0.3530 

0.9204 

0.7186 

0.5830 

0.4995 

0.34254 

0.8719 

0.6898 

0.5697 

0.4850 

0.3409 

5 0.0848 0.9681 0.4 

0.5 

0.6 

0.7 

1.0 

0.4180 

0.3192 

0.2058 

0.1708 

0.1025 

0.2797 

0.2132 

0.1715 

0.1402 

0.0931 

0.2395 

0.1917 

0.1511 

0.1310 

0.0900 

0.2261 

0.1774 

0.1455 

0.1251 

0.0859 

0.2173 

0.1737 

0.1435 

0.1220 

0.0852 

6 0.0321 0.9161 0.4 

0.5 

0.6 

0.7 

1.0 

0.1478 

0.0938 

0.0679 

0.0572 

0.0362 

0.0980 

0.0729 

0.0608 

0.0500 

0.0333 

0.0892 

0.0695 

0.0571 

0.0473 

0.0332 

0.0849 

0.0670 

0.0553 

0.0468 

0.0324 

0.0816 

0.0652 

0.0543 

0.0464 

0.0324 

7 0.0159 0.8304 0.4 

0.5 

0.6 

0.7 

1.0 

0.0584 

0.0400 

0.0328 

0.0258 

0.0170 

0.0468 

0.0350 

0.0286 

0.0244 

0.0167 

0.0430 

0.0337 

0.0275 

0.0232 

0.0161 

0.0412 

0.0323 

0.0270 

0.0230 

0.0161 

0.0405 

0.0320 

0.0267 

0.0229 

0.0160 
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 Table : 6.4.2  

Monte Carlo estimates of Z
PCUC  (U=20) 

Sample size 

25n =  50n =  100n =  200n =  400n =  θ  PCUC  p  π  

Z
PCUC  

0.4 

0.5 

0.6 

0.7 

1.0 

202.5163 

88.1043 

49.7162 

31.5318 

17.1357 

51.7073 

38.7033 

26.1144 

21.1251 

13.6036 

36.1867 

26.9503 

21.5954 

17.9216 

12.0765 

30.5956 

24.3865 

19.2383 

16.9967 

11.4464 

28.1917 

22.6081 

18.7718 

15.7911 

11.0742 

8 10.670 0.9997 

P&X* 17.3033 13.4535 11.8845 11.2921 10.9865 

0.4 

0.5 

0.6 

0.7 

1.0 

34.8076 

12.2786 

8.2793 

6.2031 

3.5835 

10.8434 

7.1280 

5.9664 

4.9343 

3.1612 

8.2225 

6.1069 

5.1004 

4.1165 

2.7624 

7.3380 

5.6066 

4.6108 

3.9251 

2.6834 

6.7527 

5.2886 

4.4785 

3.7945 

2.6305 

9 2.557 0.9989 

P&X 3.6990 3.0711 2.7960 2.6742 2.6136 

0.4 

0.5 

0.6 

0.7 

1.0 

5.7521 

3.2385 

2.5451 

2.0179 

1.0530 

2.8923 

2.1884 

1.7080 

1.3468 

0.9110 

2.4506 

1.8326 

1.4940 

1.2335 

0.8528 

2.1705 

1.6894 

1.3903 

1.1875 

0.8115 

2.0661 

1.6247 

1.3340 

1.1540 

0.7707 

10 0.782 0.9965 

P&X 1.0494 0.8949 0.8382 0.8078 0.7940 

0.4 

0.5 

0.6 

0.7 

1.0 

1.8939 

1.0602 

0.8453 

0.6054 

0.3673 

1.1086 

0.7531 

0.5908 

0.4864 

0.3303 

0.8501 

0.6716 

0.5503 

0.4428 

0.3081 

0.7848 

0.6141 

0.5165 

0.4338 

0.3007 

0.7558 

0.5963 

0.4987 

0.4234 

0.2929 

11 0.291 0.9907 

P&X 0.3657 0.3240 0.3066 0.2989 0.2942 
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Table : 6.4.2  continued… 

 

Sample size 

25n =  50n =  100n =  200n =  400n =  θ  PCUC  p  π  

Z

PCUC  

0.4 

0.5 

0.6 

0.7 

1.0 

0.5732 

0.4045 

0.3176 

0.2331 

0.1517 

0.4105 

0.3135 

0.2518 

0.2131 

0.1374 

0.3625 

0.2761 

0.2309 

0.1927 

01321 

0.3354 

0.2637 

0.2203 

0.1872 

0.1294 

0.3266 

0.2615 

0.2162 

0.1838 

0.1282 

 12 0.127 0.9787 

P&X 0.1517 0.1384 0.1326 0.1296 0.1282 

0.4 

0.5 

0.6 

0.7 

1.0 

0.2539 

0.1990 

0.1445 

0.1162 

0.0712 

0.2072 

0.1496 

0.1225 

0.0991 

0.0672 

0.1728 

0.1360 

0.1108 

0.0961 

0.0647 

0.1660 

0.1322 

0.1094 

0.0919 

0.0651 

0.1615 

0.1282 

0.1066 

0.0908 

0.0638 

13 0.063 0.9573 

P&X 0.0728 0.0677 0.0653 0.0644 0.0638 

0.4 

0.5 

0.6 

0.7 

1.0 

0.1304 

0.0925 

0.0775 

0.0609 

0.0407 

0.1033 

0.0793 

0.0658 

0.0550 

0.0371 

0.0956 

0.0753 

0.0627 

0.0527 

0.0358 

0.0936 

0.0728 

0.0610 

0.0510 

0.0354 

0.0893 

0.0716 

0.0593 

0.0508 

0.0354 

14 0.035 0.9235 

P&X 0.0395 0.0373 0.0363 0.0358 0.0355 

0.4 

0.5 

0.6 

0.7 

1.0 

0.0947 

0.0556 

0.0438 

0.0356 

0.0238 

0.0644 

0.0488 

0.0392 

0.0335 

0.0227 

0.05668 

0.0454 

0.0377 

0.0318 

0.0219 

0.0564 

0.0444 

0.0365 

0.0314 

0.0219 

0.0549 

0.0438 

0.0362 

0.0310 

0.0216 

15 0.022 0.8752 

P&X 0.0236 0.0226 0.0221 0.0219 0.0218 

       

         * P&X  is the process capability index given by Perakis and Xekalaki 

(2005) 
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Example: 

The data below is the read write errors discovered in a computer hard 

disk in a manufacturing process. A set of defect count from a manufacturing 

process (Xie et al. 2001).           

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 9 

11 0 1 2 0 0 0 0 0 0 0 0 3 3 0 0 5 0 15 6 

0 0 0 4 2 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

75 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 

0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

0 0 1 0 0 0 0 0             

 

  In this data set it can be see that, the data set contains many samples 

with no non conformities. From the data set we have ,208=n  

,163462.1
208

242
==Y  and the maximum likelihood estimates are  =π̂ 0.1346 

and =θ̂ 8.6413. The overall ZIP model for the data set is  

 

    (1 0.1346)+0.1346 4613.8−e   0=xfor , 

  == )( xXP     

!

4613.81346.0 4613.8

x

e x−

 ....3,2,1=xfor                         

The process capability index for the above example using Poisson 

model and zero inflated Poisson model are tabulated in the Table 6.5.3. 
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          Table : 6.4.3 

U 
Poisson Model 

PCUC  

ZIP model 

Z

PCUC  

 5 

 6 

 7 

 8 

 9 

10 

0.002898 

0.003137 

0.003559 

0.004269 

0.005441 

0.007388 

0.021531 

0.023305 

0.026444 

0.031717 

0.040423 

0.054890 

 

It is recommended that, in the presence of zero inflation in the data, 

index using appropriate zero inflated distribution gives a better status of the 

process in terms of the process capability. Though here we study process 

capability index PCUC , other indices can also be modified appropriately in 

order to take an account of inflation in the process. 

 

Future Plans: 

1.� There is a good scope for extending the results reported here for 

multivariate set up. Attempts for the same will be made. A problem of 

interest in the multivariate set will be testing for independence.  LRT  

and Wald’s tests will be developed for the same. Confidence intervals 

for the same will also be studied. 

2.� Instead of considering models with inflation at a single point, it will be 

of interest to study models having inflation at more than one point. 

Inflation may exist even for a subset of the support. We propose to 

study such models, which will have practical applications. 

 

 

 

 


