Chapter 6

Zero-Inflated Models in Statistical Process Control

6.0 Introduction

In statistical process control Poisson distribution and binomial
distribution play important role. There are situations wherein the process
leads to zero-inflation in its output. Traditional process in monitoring
manufacturing and biological studies usually involve selecting random
samples at regular intervals. Due to technological advancement and
automation of manufacturing processes, a well-designed process could have
more count of zeros than are expected under chance variation of its
underlying Poisson or binomial distribution. One such process is the thermo
sonic wire bonding process of an integrated circuit assembly (Chang and Gan
2001). The bonding machine has a closed loop controlled system to detect and
rectify any non-conformity generated during the bonding process.

The excess number of zeros in binomial count can also be found in the

biological control of pests. The Shewhart c-chart and np -chart are widely
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used to monitor processes with Poisson and binomial counts. However, as
both the Poisson and binomial distributions tend to underestimate the mean
and variability of the zero-inflated count, the resulting attribute charts have
tighter control limits which subsequently lead to a higher false alarm rate in
detecting out-of-control signals.

When the model is used in statistical process control, control limits can
then be derived based on the zero-inflated Poisson model and zero-inflated
binomial model. The classical Shewhart c-chart and np -chart constructed
based on the Poisson and binomial distributions are inappropriate in
monitoring zero-inflated counts. They tend to underestimate the dispersion of
zero-inflated counts and subsequently lead to higher false alarm rate in
detecting out-of-control signals (Sim and Lim (2008)).

Another drawback of these charts is that their 3-sigma control limits,
evaluated based on the asymptotic normality assumption of the attribute
counts; fail to provide the required false alarm rate for the parameter under
study. To overcome these drawbacks, Sim and Lim (2008) proposed the zero-
inflated models which will take the account of the excess number of zeros.
They have provided attribute charts for zero-inflated processes and estimated
the Poisson parameter ¢ from zero-inflated Poisson model. Further they have
used the model to construct a one sided c - chart with its upper control limit
constructed based on the Jeffreys prior interval or Blyth - Still interval of the
binomial proportion #. However in the study of performance of the one-sided
¢ chart using average run length (ARL) criterion Sim and Lim (2008) have
not used ZIP model. ARL values are evaluated using classical Poisson model.
Additionally, a simple two-of-two control rule is also recommended to
improve further on the performance of these two proposed charts. Xie et al.
(2001) proposed ZIP model instead of conventional Poisson model in
statistical process control.

In the following the zero-inflated models for attribute counts with

excess number of zeros are discussed.
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6.1 Control Charts for Poisson and Binomial Processes

In any production process there exist certain amounts of inherent or
natural variability. This natural variability or “background noise” is the
cumulative effect of many small, essentially unavoidable causes. In the frame
work of statistical quality control, this natural variability is often called a
stable system of chance causes. A process that is operating with only chance
causes of variation alone is said to be in statistical control. In other words, the
chance causes are an inherent part of the process. The other kind of variability
may be present in the process output is an unnatural variation which is known
as assignable causes of variation. Such variability is generally large when
compared to the back ground noise. A process operating in the presence of
assignable causes is said to be out of control.

In recent years due to advanced technologies there is a competitive
environment in manufacturing industries. Therefore, manufacturer has to
produce products of very high quality. However, it is not an easy task to
maintain such a high quality of product. The main reason behind this is the
inherent variability in the quality of the product. This product may be
components require for automobiles, various equipments like power
generating sets, electric motor etc. If the variability can only be described in
statistical terms, the statistical methods play an important role in the quality
improvement. The technique comprising these statistical methods is named as
‘Statistical Quality Control’ (SQC). The SQC techniques are used for the
process control, the product control and to design scientific experiments.

A General Model for Control Charts:
Let W be a statistic that measures a quality characteristic of interest.

Suppose that the mean of Wis x4, and the standard deviation of W is oy, .

The control limits become

UCL = yy, + Loy,

CL = py
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LCL = uy, — Loy, ...(6.1.1)
where L is the distance of the control limits from the centre line, expressed in
standard deviation units. It is customary to choose L =3. The control limits
taking L =3 are called Shewhart’s control limits. The concept of control
charts was first proposed by Dr. Walter A. Shewhart and control chart
developed according to these principles are often called Shewhart control
charts.

The Classical C —Control Chart for Poisson Count
Poisson distribution is a natural choice for modeling the occurrence of

random event or the number of nonconformities (X) found in a subgroup of

size n. The classical Shewhart c-chart has been widely used to monitor
processes with Poisson count. The 3-sigma control limits of a classical two-
sided c-chart when standards are known, in monitoring a Poisson process

with mean 6 are given by
UCL, =0+z,,,\0
CL, =6
LCL, =max(0,0—z,,,/0) ...(6.1.2)

When standards are unknown the parameter @ is replaced by X

. v X . o
(i.e. mean), where X = Z—’ and the corresponding control limits are
=1 N

UCL, =X +z,,,JX

CL, =X

LCL, =max(0,X -z, ,7/ X) (6.1.3)
The np -Control Chart

The np control chart has been widely used in industry to monitor the

number of nonconforming units in sample of » units inspected. A

nonconforming unit (d)is the number of units that fails to meet at least one
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specified requirement in a subgroup of size n. The control limits using

binomial distribution are as follows

UCL =np +3\np(1- p)

CL=np
LCL =np—3np(1-p) ...(6.1.4)

Suppose, we have m subgroups samples each of size n. And if a standard

i=1

value of p is unknown, then ; can be used to estimate p, where ; = .
mn

Then the centre line and control limits are as follows:
UCL =np +3+np(1-p)

CL=np

LCL = np - 3/np(1- ) ...(6.1.5)

Now, we introduce the concept of run-length, average run-length and
expression for average run-length.
Run Length

The run-length of control chart is the number of samples required to
detect the out-of-control state. Clearly run-length is a positive integer valued
random variable with support 1, 2, 3....

Average Run Length (ARL)

Average run length is defined as the average number of points that
must be plotted before a point indicates an out of control condition. The
performances of the control chart are often described in terms of their run
length distribution. When the process is in-control we expect that ARL should
be as large as possible and when process goes out-of-control, ARL should be
as small as possible. Comparison of one control chart with the other is usually

done through ARL.
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One-of-One Control Rule

In this rule, a process is declared to be out of control if single point
falls outside the control limits.
Two-of-Two Control Rule

In this rule, a process is declared to be out of control if two successive
points fall outside the control limits. It is found that two-of-two control rule
are more sensitive than one-of-one control rules, in the sense that, the former
detect out of control state early.
6.2  Control Chart for Zero-Inflated Poisson Count

The excess number of zero counts causes reduction in the value of
mean. Consequently, this reduces the natural variability within control limits.
As a result of this, there will be many false alarms. Therefore, we implement
zero-inflated models to construct control limits. Further to assess the
performance of the proposed control charts we have used confidence interval
that provides good coverage probability.

First, consider the control limits based on ZIP model. Note that the
Poisson parameter € is replaced by its maximum likelihood estimator (é)

The control limits based on this mle are given by,
UCL, =0+z,,,\0
CL, =6

LCL, =max(0,0—z,,,\0) (621
Control Chart Based On Two- Of- Two Control Rule
To improve further the performance of the control chart a simple two-
of- two control rule is used and the control limits are set so that rule gives
desired in control ARL. These limits are obtained by using simulation. R

program has been developed for the same (Appendix 3).
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The Control Chart for Zero- Inflated Binomial Count
When an excess numbers of zero counts are present then the control

limits are evaluated based on a process fraction nonconforming p estimated
from ZIB model. This pis denoted by p and it is the solution of the
following equation,

ixi _ ”15(”_’?0) ~0

- (1=-0-p)
The control limits then are given by

UCan = nﬁ+ Zgi2N nﬁ(l _ﬁ)

A

CL,, =np

LCL, =np—z,,,\np(1-p) ..(6.2.2)
Performance of the ZIP Control Chart
Now, we shall consider the performance of the one-sided ¢ - chart
using its average run length ARL(A). It denotes the number of inspection
units required to inspect until one is able to detect an upward shift of the

Poisson process mean from 6, to 6, =6, +A, A>0. The in-control average
run length ARL (A =0), is denoted by ARL . It is the average number of

inspection units required to inspect before the c¢ - chart falsely detect an out-
of-control signal when the process is actually in-control. The out of control
average run length ARL(A #0), namely ARL , is the average number of
inspection units that should be inspected to correctly detect an out-of-control
signal when the process is actually out-of-control. In general we require a

reasonably large ARL  value in order to have a low false alarm rate, and
small ARL  values to enable rapid detection of shifts in process mean. The

average run length of the ¢ chart is given by

ARL (A)=$,

in which P.(A) = p(X >UCL,(6,)|0=6,)
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0 -0, X
-y ° b ...(6.2.3)

v=UCL (o)1 X!

P (A) i1s the probability that the Poisson count of a given inspection unit is
plotted above the control limit UCL_(6,). Sim and Lim (2008) reported ARL
values for zero-inflated Poisson process. However it is found that ARL
calculation are based on classical Poisson model and hence are incorrect.

The performance of the classical ¢ chart constructed with standards
known, standards unknown, ZIP model and two-of two control rule in
monitoring ZIP process with parameters € =4.0 (0.5) 5.5 is given in Table
6.2.1. Examination of Table 6.2.1 reveals that for a process with zero-inflated
parameter 7 =0.6, and Poisson parameter € =4.0; (i) the classical c-chart
(standards unknown), constructed without taking in to account of ZIP count,

yields an unacceptably small ARL  of 15.0215 ; (i1) the ¢ -chart constructed
based on the ZIP model yields a bigger ARL | of 205.2845; (ii1) the classical
c —chart (standards known) yields 203.5522; and (iv) the ¢ -chart constructed
based on two-of- two control rule yields a larger ARL  value of 243.8718.

For the case #=4.5, (i) the classical c-chart (standards unknown),
constructed without taking in to account of ZIP count, yields small ARL  of

19.2018; (ii) the c-chart constructed based on the ZIP model yields much
larger ARL_ & of 691.1483; (ii1) the classical c¢—chart (standards known)

yields 254.3254; and (iv) the c-chart constructed based on two-of- two
control rule yields a ARL value of 393.5261.

The performance of the classical ¢ chart with inflation parameter 7 =0.4 and

Poisson parameter € =4.0 (0.5) 5.5 are given in Table 6.2.2.
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Table : 6.2.1

ARL performance of attribute charts in monitoring ZIP processes

(£=0.6,and 8=4.0 (0.5) 5.5)

ARL of ¢ chart with

0 6, | standards | standards | ZIP two-of- | Adjusted | Adjusted | Actual
known unknown | model two ARL of | ARL for | ARL for
control c chart | two-of- | ZIP
rule-1 ZIP two chart | model
UCL 9 5 9 6 9 6
4.00 | 203.5522 | 15.021 | 205.2845 | 243.8718 | 203.5522 | 203.5522 | 204.9455
4.80 | 66.3461 | 7.9835 | 68.2963 | 72.3945 | 67.7200 | 60.4254 | 66.2923
00 5.60 | 28.6513 | 5.1072 | 28.0752 | 31.5682 | 27.8383 | 26.3490 | 28.1865
6.40 | 14.6707 | 3.6265 | 14.6485 | 17.9370 | 14.5249 | 14.9715 | 14.5941
UCL 10 7 11 7 11 7
4.50 | 254.3254 | 19.2018 | 691.1483 | 393.5261 | 254.3254 | 254.3254 | 693.2072
5.40 | 73.1962 | 9.4581 | 1723299 | 99.1555 | 63.4131 | 64.0815 | 173.0409
+30 6.30 | 29.5977 | 5.6060 | 59.4104 | 38.1287 | 21.8616 | 24.6416 | 60.0943
7.20 | 14.8110 | 3.8222 | 27.0266 | 19.6156 | 9.9451 | 12.6770 | 26.4946
UCL 11 7 11 8 11 8
5.00 | 306.0902 | 12.7055 | 308.2614 | 626.0450 | 306.0902 | 306.0902 | 305.6370
6.00 | 83.0512 | 6.5070 | 82.5209 | 131.2260 | 81.9397 | 64.1599 | 82.9519
>0 7.00 | 31.6023 | 4.1094 | 31.5868 | 44.8271 | 31.3643 | 21.9172 | 31.2404
8.00 | 14.7838 | 3.0933 | 15.1220 | 21.7713 | 15.0155 | 10.6446 | 14.8910
UCL 12 7 12 8 12 8
5.50 | 371.1953 | 8.7306 | 375.2733 | 264.7746 | 371.1953 | 371.1953 | 374.4576
6.60 | 93.7234 | 4.7974 | 93.8611 | 65.5033 | 92.8411 | 91.8310 | 93.1684
>0 7.70 | 33.1591 | 3.2647 | 32.6317 | 26.2859 | 32.2771 | 36.8510 | 33.0512
8.80 | 14.9822 | 2.5845 | 15.4726 | 14.7322 | 15.3045 | 20.6535 | 15.1292
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Table: 6.2.2

ARL performance of attribute charts in monitoring ZIP processes

(7=0.4,and 6=4.0(0.5)5.5)

ARL of ¢ chart with

Adjusted | Adjusted | Actual
two-of-
ARL of | ARL for | ARL for
standards | standards | ZIP two
0 6, ¢ chart | two-of- ZIP
known unknown | model control
Z1P two chart | model
rule-1

UCL 9 5 9 6 9 6 9
4.00 | 4.00 | 314.6101 | 11.6475 | 307.2295 | 534.6570 | 314.6101 | 314.6101 | 307.4183
4.80 | 100.0760 | 7.2741 97.5526 | 156.1884 | 99.8961 | 91.9065 | 99.4385
5.60 | 42.4400 5.1078 41.8111 65.4201 42.8155 | 38.4954 | 42.2797
6.40 | 22.1013 3.9796 22.0251 36.0239 | 22.5542 | 21.1977 | 21.8912

UCL 10 6 10 7 10 7 10
4.50 | 4.50 | 371.4469 | 14.7109 | 372.2706 | 850.3266 | 371.4469 | 371.4469 | 374.8872
540 | 113.4831 | 8.3425 | 111.4406 | 208.5622 | 111.1940 | 91.1059 | 111.0432
6.30 | 44.2597 5.6009 44.8062 80.0093 44.7071 | 34.9503 | 44.4211
720 | 22.1137 4.2997 22.0198 40.4738 219711 | 17.6801 | 22.0607

UCL 11 6 11 8 11 8 11
5.00 | 5.00 | 464.2578 | 10.4784 | 466.0903 | 1373.5670 | 464.2578 | 464.2578 | 458.4555
6.00 | 125.4139 | 6.3106 | 124.0049 | 289.1661 | 123.5174 | 97.7365 | 124.4279
7.00 | 47.8497 4.4961 46.4122 939766 | 46.2297 | 31.7636 | 46.8609
8.00 | 22.2588 3.6309 22.226 449074 | 22.1386 | 15.1784 | 22.3365

UCL 12 7 12 8 12 8 12
5.50 | 5.50 | 558.9356 | 13.2538 | 559.2587 | 583.7251 | 558.9356 | 558.9356 | 561.6864
6.60 | 140.0044 | 7.2491 | 141.3947 | 137.9524 | 141.3130 | 132.0939 | 139.7527
7.70 | 49.5208 4.9968 49.5658 53.8251 49.5372 | 51.5393 | 49.5768
8.80 | 22.6833 3.8084 22.7722 29.1510 | 22.7590 | 27.9130 | 22.6938
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Performance of the np Chart

The average run length of the np chart is detecting an upward shift of
binomial parameter p (such as proportion of nonconforming) from p to
p,=p+A, A>0, isgivenas

1

ARL (4)=— @

in which P,,(A) = p(X >UCL,,(p,)| p=p,)

np

< n X n—x
= > p(1-p)) ..(6.2.4)
x=UCL, ( po)+1\ X
We have conducted a comprehensive study on the performance of

various np charts. Table 6.2.3 reports only the ARLs of the np -chart with a
two- of -two control rule in monitor ring the binomial processes with zero-
inflated parameter 7 = 0.6 and selected the classical np - charts constructed

with and without using the ZIB model are given as well for comparison
purposes. Table 6.2.3 shows that, for a ZIB model with parameters 7 =0.6,
n= 653, and p= 0.004 that result in a variance of 2.00(0.30)2.60: (i) the
classical np -chart, (standards known) constructed without taking into account
the excess number of zeros in the sample, yields ARL, of 300.650; (ii) the
classical mp-chart (standards unknown), constructed without taking into
account the excess number of zeros in the sample, yields an undesirably small
ARL, of 33.108; (iii) the ARL, of the np -chart increases to 321.406 when the
Z1IB model is used to fit the ZIB count; (iv) the np -chart yields ARL, value

of 193.157 when two-of- two rule is applied; and (v) the actual ARL, is
310.273

The performance of the np chart with inflation parameter 7 =0.4 and

p =0.004 (0.003) 0.010 are given in Table 6.2.4
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Table : 6.2.3

ARL performance of attribute charts in monitoring ZIB processes

(7 =0.6,and p =0.004 (0.003) 0.010)

Sample ARL of np - chart with Adjusted | Adjusted Actual
Size twoof- | ARLof | ARL for ARL
p p, iy standards | standards ZIB two np two-of- for Z1B
Variance known | unknown | model | control | chartZIB | two model
rule model chart

0.004 | 0.0040 | 502 347.515 | 31.298 364.358 | 146.621 | 347.515 | 347.515 | 367.626
0.0048 | (2.00) 143.507 | 17.283 145.356 | 64.448 | 138.637 | 152.751 | 143.471
0.0056 68.965 | 10.594 66.931 | 35.528 | 63.837 84.207 68.024
0.0040 | 577 616.209 | 56.110 187.699 | 11.041 | 616.209 | 616.209 | 177.796
0.0048 | (2.30) 226.463 | 27.062 70.429 | 140.647 | 231.216 | 210.851 72.812
0.0056 97.066 | 15.286 35.770 | 63.255 | 117.432 94.828 36.187
0.0040 | 653 300.650 | 33.108 321.406 | 193.157 | 300.650 | 300.650 | 310.273
0.0048 | (2.60) 113.271 | 17.009 113.424 | 73.415 | 106.099 | 114.271 | 112.316
0.0056 51.731 | 10.205 53.126 | 35981 | 49.695 56.005 | 50.739
0.010 | 0.0070 | 288 362.040 | 31.719 369.104 | 146.673 | 362.040 | 362.040 | 365.709
0.0084 | (2.00) 141.529 | 17.288 146.962 | 63.628 | 144.149 | 157.057 | 142.554
0.0098 67.344 | 10.831 66.978 | 34.573 65.696 85.339 67.521
0.0070 | 331 671.267 | 19.705 172.702 | 397.599 | 671.267 | 671.267 | 176.460
0.0084 | (2.30) 231.128 | 11.136 69.635 | 134.901 | 270.661 | 227.753 72.201
0.0098 95.357 7.414 35.630 | 62.990 | 138.489 | 106.346 35.860
0.0070 | 374 310.105 | 33.232 314.313 | 192.751 | 310.105 | 310.105 | 310.709
0.0084 | (2.60) 117.557 | 17.149 115.313 | 73.141 | 113.709 | 117.672 | 112.281
0.0098 48.439 | 10.146 50.624 | 36.309 49.920 58.415 50.648
0.010 | 0.0010 | 202 335.741 | 99.897 369.624 | 141.447 | 335.741 | 335.741 | 367.715
0.0120 | (2.00) 144.770 | 45.855 142.099 | 61.896 | 129.073 | 146.916 | 143.071
0.0140 69.326 | 25.094 68.784 | 34.724 | 62.479 82.422 | 67.655
0.0010 | 232 683.379 | 55.500 173.560 | 404.537 | 683.379 | 683.379 | 177.473
0.0120 | (2.30) 215.644 | 26.330 69.654 | 135.857 | 274.257 | 229.502 72.482

0.0140 94.236 15299 | 37.079 | 62.995 | 145.996 | 106.417 | 35.941
0.0100 | 263 331.311 33.329 | 302.827 | 187.238 | 331.311 | 331.311 | 307.035
0.0120 | (2.60) 114.857 16.553 | 105.332 | 72.314 | 115.240 | 127.958 | 110.870
0.0140 51.772 10.062 50.115 | 35.239 | 54.829 62.354 49.986
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Table : 6.2.4
ARL performance of attribute charts in monitoring ZIB processes

7 =04, and p =0.004 (0.003) 0.010.

Sample ARL of np - chart Adjusted | Adjusted | Actual
p D, Size with with with with ARL of | ARL for | ARL
n/ standards | standards | ZIB two-of- | np chart | two-of- | for ZIB
Variance | xnown unknown | model two ZIB two model
control chart
rule
0.004 | 0.0040 | 502 555.101 | 17.555 526.984 | 325.605 | 555.101 | 555.101 | 551.439
0.0048 | (2.00) 220.905 | 11.025 215.406 | 130.806 | 226.899 | 223.001 | 215.206
0.0056 106.474 8.143 97.225 | 55.016 | 102.412 93.793 | 102.036
0.0040 | 577 943.439 | 12.454 266.714 | 895.377 | 943.439 | 943.439 | 266.694
0.0048 | (2.30) 328.407 8.321 106.162 | 306.943 | 375.523 | 323.419 | 109.218
0.0056 141.557 6.245 53.919 | 136.083 | 190.726 | 143.387 54.281
0.0040 | 653 501.033 | 19.852 464.375 | 434.172 | 501.033 | 501.033 | 465.410
0.0048 | (2.60) 163.505 | 12.000 164.182 | 158.066 | 177.143 | 182.407 | 168.474
0.0056 77.416 8.259 77.323 | 76.669 | 83.427 88.476 76.108
0.010 | 0.0070 | 288 573.553 | 17.226 559.469 | 318.283 | 573.553 | 573.553 | 548.564
0.0084 | (2.00) 221.714 | 11.036 213.406 | 134.468 | 218.778 | 242.313 | 213.830
0.0098 99.710 8.079 103.471 | 72.510 | 106.076 | 130.665 | 101.282
0.0070 | 331 943.723 | 12.203 271.798 | 890.233 | 943.723 | 943.723 | 264.689
0.0084 | (2.30) 324.680 8.179 109.698 | 298.694 | 380.888 | 316.641 | 108.302
0.0098 146.105 6.129 57.324 | 134.437 | 199.037 | 142.515 53.790
0.0070 | 374 458.037 | 20.010 455.706 | 427.213 | 458.037 | 458.037 | 466.063
0.0084 | (2.60) 176.080 | 11.912 166.902 | 156.873 | 167.756 | 168.192 | 168.421
0.0098 75.914 8.184 73.428 | 76.105 | 73.804 81.596 75.973
0.010 | 0.0010 | 202 583.145 | 17.175 564.285 | 309.346 | 583.145 | 583.145 | 551.573
0.0120 | (2.00) 211.674 | 10.963 218.935 | 135.324 | 226.252 | 255.098 | 214.606
0.0140 102.713 7.808 95.702 | 72.154 | 98.900 | 136.017 | 101.481
0.0010 | 232 995.149 | 12.246 245.163 | 890.656 | 995.149 | 995.149 | 266.209
0.0120 | (2.30) 330.953 8.282 109.511 | 299.603 | 444.519 | 334.753 | 108.725
0.0140 142.850 6.113 53.516 | 133.565 | 217.228 | 149.235 | 53.918
0.0100 | 263 438.821 | 19.821 461.895 | 410.332 | 438.821 | 438.821 | 460.552
0.0120 | (2.60) 163.465 | 11.822 166.027 | 153.315 | 157.733 | 163.960 | 166.305
0.0140 78.109 7.966 75.198 | 74.752 | 71.441 79.942 74.979

133




Conclusion

In constructing attribute control charts for monitoring zero-inflated
processes, an appropriate approach is to fit a ZIP or ZIB model to the zero-
inflated count. The parameter value estimated from the model is then used to
construct the required cor mp charts. However, the resulting chart is still
likely to have an ARL, value much smaller than the desired value due to the
poor coverage probability of its control limit. Our study reveals that in some
cases, a simple two-of- two control rule can also be used to enhance the
performance of the c¢ - chart.

In the following we introduce one more application of zero-inflated

models in process capability index.

6.3  Process Capability Index for Zero-Inflated Poisson Process

Process capability indices have been of interest for the researchers in
the recent years. Most of the indices are based on the assumption of normality
of process. Indices for non-normal process distributions have also been
proposed in the literature. An extensive review of various indices can be
found in Kotz and Johnson (2002), Kotz and Lovelace (1998), Spiring et al.
(2003) have provided a good review on the bibliography on process capability
indices. Borges and Ho (2001) have provided a capability index based on
fraction defective. Clements (1989) has given process capability computations
for non-normal distributions. Kane (1986), Kotz and Johnson (1993) have
studied process capability indices. Pearn and Chen (1995) have proposed the
estimating process capability indices for non-normal pearsonian populations.
Perakis and Xekalaki (2002) have studied a process capability index based on
the proportion of conformance. Yeh and Bhattacharya (1998) have given the
robust process capability index. Perakis and Xekalaki (2005) have proposed a
new process capability index useful for both the discrete and continuous
processes. Further Perakis and Xekalaki (2005) have provided a process

capability index for Poisson and attribute data. Their indices are based on
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maximum likelihood estimate of the Poisson parameter as well as on
minimum variance unbiased estimator (MVUE). A simulation study
performed by them reveals that indices based on maximum likelihood
estimates perform better than the one based on MVUE.

In the recent years, due to adoption of technology, production
processes produce extremely good products. Therefore, zero- inflated models
have been found useful in modeling production process data. Xie et al. (2001)
have proposed control limits based on zero-inflated Poisson model. Naturally,
process capability indices (PCI) which are based on Poisson distribution need
to be updated, to take an account of zero-inflated behavior property of
process.

In the present study, we modify the PCI provided by Perakis and
Xekalaki (2005) so as to take an account of inflation at zero in the process. If
the process is zero-inflated, then the use of usual Poisson distribution results
in underestimating the parameter value. We throw some light on this aspect
by providing some numerical study. The proposed index here involves two
parameters. Therefore, maximum likelihood estimators for the same have
been used. The study of performance of the proposed index has also been
taken up.

Suppose X (usually number of defects) denotes the quality
characteristic under study which follows Poisson distribution with parameter
6. Let U be the upper tolerance specified by the manufacturer on the number

of defects. The upper process capability index (Cp, ) defined by Perakis and
Xekalaki (2005) is given by

l1-p
C'PCU 1 ‘ b
-p
0.0027
Creu =1, .(6.3.1)
-p
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where p, is the minimum allowable proportion of conformance of the

examined process and p is the proportion of conformance which is given by

U—le—ﬂex
p=p(X<U)=Y, . ...(63.2)
x=0 .

It is easy to see that p can be expressed as
p=p(w >20),
or 1-p=p(ys, <20), ...(6.3.3)

where y; denotes the Chi square random variable with k degrees of

freedom. Therefore, we have
0.0027
(1w <20)°

In the recent years, awareness about quality of any production process

CPCU = (634)

has been enhanced to great extent and best quality products are being
manufactured by adopting technological innovations. Therefore, production
processes contain significant number of zero defectives in the production
runs. To accommodate this behavior of the process, zero-inflated distributions
are being used to model process data. ZIP distribution is one of such
distributions.

In the light of presence of inflation in the process distribution, C,.,, as

defined in Eq. (6.3.1) is modified and it is now given by
0.0027
7 p(try <20)

Crey = ...(6.3.5)

We note that, if 7 =1, then Cj., coincides with C,., . Since the index

defined in Eq. (6.3.5) contains unknown parameters 7 and €. In the

following we discuss the estimation of these parameters.

136



Estimation of C/,

Suppose a random sample X, X,,.., X, is available from the ZIP

process. We obtain 7 and @ in Eq. (6.3.5) by their respective mles.
Substituting # and 6 we get MLEs for C%.,,  as

0.0027
7 p(ay <20)

Croy = ..(6.3.6)

Assuming asymptotic normality of (#,6), we get (#,0) ~ AN, (&',%), where

E=(m,0) and £ =1 '(r,0) and entries of T are given by X = (0,,)s
_ -0 N\ ,?
011 _ ]’l(l € )_0 , 022 =\ nrwx (7[;)6704_1 and
72'(1—7Z'+7Z'e ) l-7m+7e 0

-0
ne
O, =0, :(WJ (637)

To check the performance of proposed process capability index, using

ZIP model with the one given by Perakis and Xekalaki (2005), we tabulate the

numerical values of the process capability index for U=20 and 6 =8,9,...,15.
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Table : 6.3.1
Numerical values of the process capability index for Poisson model

and Zero- Inflated Poison model for U=20

0 CPCU p T CgCU
8 10.67449 | 0.999747 | 0.4 | 26.68623
0.5 | 21.34899
0.6 | 17.79082
0.7 | 15.24928
9 255693 | 0.998944 | 0.4 | 6.39232
0.5 | 5.11386
0.6 | 426155
0.7 | 3.65275
10 | 0.781625 | 0.996546 | 0.4 | 1.95406
0.5 | 1.56325
0.6 | 1.30270
0.7 | 1.11660
11 | 0.290652 | 0.990711 | 0.4 | 0.72663
0.5 | 0.58130
0.6 | 0.48442
0.7 | 041521
12 | 0.126881 | 0.97872 | 0.4 | 0.31720
0.5 | 0.25376
0.6 | 0.25376
0.7 | 021146
13 | 0.063278 | 0.957331 | 0.4 | 0.15819
0.5 | 0.12655
0.6 | 0.10546
0.7 | 0.09039
14 | 0.035292 | 0.923495 | 0.4 | 0.08823
0.5 | 0.07058
0.6 | 0.05882
0.7 | 0.05041
15 | 0.021638 | 0.875219 | 0.4 | 0.05409
0.5 | 0.04327
0.6 | 0.03606
0.7 | 0.03091
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It is clear that if we ignore inflation in the process then the status of the
process is underestimated. As the amount of inflation increases (that is 7
decreases), process capability index shows goodness of the process, which is

quite logical.

6.4  Simulation Study

In order to test the performance of the proposed estimator, a simulation
study is conducted. In the simulation study 10,000 random samples were
generated from the ZIP distribution for various values of the parameters 6, =
and for five different sample sizes (25, 50, 100, 200, 400). Two alternative
values of U (10 and 20) are chosen so as to detect the influence of all these
factors on the behaviors of the estimator. Table 6.4.1 gives the process
capability index for U=10 and for different values of inflation parameter
7=0.4,0.5,0.6,0.7 and 1.0. Table 6.4.2 gives the process capability index for
U=20 and for different values of inflation parameter 7 =0.4, 0.5, 0.6, 0.7 and
1.0.

In the present study, we propose an estimator for process capability
index, when the process distribution is zero-inflated Poisson process. It is
observed that ignorance of inflated behavior of the data leads to
underestimation of the process capability. It is recommended that, in the
presence of zero inflation in the data, index using appropriate zero-inflated
distribution gives a better status of the process in terms of the process

capability.
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Table : 6.4.1

Monte Carlo estimates of Cp,, (U=10)

Sample size

z
CPC U

24490 | 09988 |04 |36.3744 | 17.6975 | 9.1900 7.0426 6.6714
0.5 |22.1845 8.5075 | 6.4212 5.7293 5.2333
0.6 | 13.5368 7.4402 | 4.9704 4.5215 4.3121
0.7 8.5782 49056 | 4.4660 3.8028 3.6683
1.0 4.3826 3.2294 | 2.8441 2.6281 2.5074

0.3320 | 09918 |04 | 3.6159 1.5052 1.0235 0.9204 0.8719
0.5 | 1.9067 0.9231 0.7951 0.7186 0.6898
0.6 | 1.0140 0.7105 0.6231 0.5830 0.5697
0.7 ] 0.7634 0.6089 0.5426 0.4995 0.4850
1.0 | 0.4684 0.3862 0.3530 0.34254 | 0.3409

0.0848 | 0.9681 | 0.4 | 0.4180 0.2797 0.2395 0.2261 0.2173
0.5 |0.3192 0.2132 0.1917 0.1774 0.1737
0.6 | 0.2058 0.1715 0.1511 0.1455 0.1435
0.7 ]0.1708 0.1402 0.1310 0.1251 0.1220
1.0 | 0.1025 0.0931 0.0900 0.0859 0.0852

0.0321 | 009161 |04 |0.1478 0.0980 0.0892 0.0849 0.0816
0.5 ]0.0938 0.0729 0.0695 0.0670 0.0652
0.6 |0.0679 0.0608 0.0571 0.0553 0.0543
0.7 ]0.0572 0.0500 0.0473 0.0468 0.0464
1.0 | 0.0362 0.0333 0.0332 0.0324 0.0324

0.0159 | 0.8304 | 0.4 | 0.0584 0.0468 0.0430 0.0412 0.0405
0.5 | 0.0400 0.0350 0.0337 0.0323 0.0320
0.6 |0.0328 0.0286 0.0275 0.0270 0.0267
0.7 |0.0258 0.0244 0.0232 0.0230 0.0229
1.0 | 0.0170 0.0167 0.0161 0.0161 0.0160
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Table : 6.4.2

Monte Carlo estimates of Cf., (U=20)

Sample size

0 | Cpoy p ps n=25 | n=50 | n=100 | n=200 | n=400
CgCU

8 10.670 | 0.9997 |04 202.5163 51.7073 | 36.1867 30.5956 28.1917
0.5 88.1043 38.7033 | 26.9503 24.3865 22.6081
0.6 49.7162 26.1144 | 21.5954 19.2383 18.7718
0.7 31.5318 21.1251 17.9216 16.9967 15.7911
1.0 17.1357 13.6036 | 12.0765 11.4464 11.0742
P&X | 17.3033 13.4535 11.8845 11.2921 10.9865

9 |2.557 0.9989 |04 34.8076 10.8434 | 8.2225 7.3380 6.7527
0.5 12.2786 7.1280 6.1069 5.6066 5.2886
0.6 8.2793 5.9664 5.1004 4.6108 44785
0.7 6.2031 4.9343 4.1165 3.9251 3.7945
1.0 3.5835 3.1612 2.7624 2.6834 2.6305
P&X 3.6990 3.0711 2.7960 2.6742 2.6136

10 | 0.782 0.9965 |04 5.7521 2.8923 2.4506 2.1705 2.0661
0.5 3.2385 2.1884 1.8326 1.6894 1.6247
0.6 2.5451 1.7080 1.4940 1.3903 1.3340
0.7 2.0179 1.3468 1.2335 1.1875 1.1540
1.0 1.0530 09110 0.8528 0.8115 0.7707
P&X 1.0494 0.8949 0.8382 0.8078 0.7940

11 | 0.291 0.9907 |04 1.8939 1.1086 0.8501 0.7848 0.7558
0.5 1.0602 0.7531 0.6716 0.6141 0.5963
0.6 0.8453 0.5908 0.5503 0.5165 0.4987
0.7 0.6054 0.4864 0.4428 0.4338 0.4234
1.0 0.3673 0.3303 0.3081 0.3007 0.2929
P&X 0.3657 0.3240 0.3066 0.2989 0.2942
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Table : 6.4.2 continued...

Sample size
0 | Cpey p a | n=25|n=50 | n=100 | n=200 | n=400
Chev

12 10.127 |0.9787 | 0.4 0.5732 0.4105 0.3625 0.3354 0.3266
0.5 0.4045 0.3135 0.2761 0.2637 0.2615
0.6 0.3176 0.2518 0.2309 0.2203 0.2162
0.7 0.2331 0.2131 0.1927 0.1872 0.1838
1.0 0.1517 0.1374 01321 0.1294 0.1282
P&X | 0.1517 0.1384 0.1326 0.1296 0.1282

13 |1 0.063 | 09573 |04 0.2539 0.2072 0.1728 0.1660 0.1615
0.5 0.1990 0.1496 0.1360 0.1322 0.1282
0.6 0.1445 0.1225 0.1108 0.1094 0.1066
0.7 0.1162 0.0991 0.0961 0.0919 0.0908
1.0 0.0712 0.0672 0.0647 0.0651 0.0638
P&X | 0.0728 0.0677 0.0653 0.0644 0.0638

14 |10.035 |09235 |04 0.1304 0.1033 0.0956 0.0936 0.0893
0.5 0.0925 0.0793 0.0753 0.0728 0.0716
0.6 0.0775 0.0658 0.0627 0.0610 0.0593
0.7 0.0609 0.0550 0.0527 0.0510 0.0508
1.0 0.0407 0.0371 0.0358 0.0354 0.0354
P&X | 0.0395 0.0373 0.0363 0.0358 0.0355

15 10.022 |0.8752 |04 0.0947 0.0644 0.05668 | 0.0564 0.0549
0.5 0.0556 0.0488 0.0454 0.0444 0.0438
0.6 0.0438 0.0392 0.0377 0.0365 0.0362
0.7 0.0356 0.0335 0.0318 0.0314 0.0310
1.0 0.0238 0.0227 0.0219 0.0219 0.0216
P&X | 0.0236 0.0226 0.0221 0.0219 0.0218

* P&X is the process capability index given by Perakis and Xekalaki

(2005)
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Example:
The data below is the read write errors discovered in a computer hard
disk in a manufacturing process. A set of defect count from a manufacturing

process (Xie et al. 2001).

o 0 0 00000 0 0 O O0OT1TUO0OTUO0OO0OO0OTG6 O0
m o1 2 0 0 0 0 0 0 0 0 3 3 0 0 5 015
o 0 0 4200011 O0T1TUO0UO0O0UO0O0TO00O0
o 0o 0 0000 00O O0OOOUOUOO0OO0OO0OTO0O
75 0 0 0 075 0 0 0 O O O O O O O O O O
o 0 020000 O0O0OO0OO0OUO0OUO0OO0OO0OO0OT1TTWO0
o 0 o0 01 0 00O0O0OTO0TO0TO0O0TO0OO0O0TO0 0
o1 0 01 0 0 O0O0OTO0OTO0OO0OO0OO0OTO0OO0O O0O0 9
o2 0 0 000 O0OO0OO0OO0OO0OT1TUO0OTUO0OO0OO0TO00O0
o 0 0 0 o0 0 0 0 O0O0OTO0CDCO0OO0OTO0OTO0OO0TO0 0 2
0 01 0 0 0 0 O

In this data set it can be see that, the data set contains many samples

with no non-conformities. From the data set we have n=208,

Y = % =1.163462, and the maximum likelihood estimates are 7 =0.1346

and @ =8.6413. The overall ZIP model for the data set is

(1-0.1346)+0.1346 ¢ **" for x=0,
P(X =x)=

0.1346 ¢ 3138 4613
x!

for x=123....

The process capability index for the above example using Poisson

model and zero-inflated Poisson model are tabulated in the Table 6.5.3.
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Table : 6.4.3

Poisson Model | ZIP model
U
C’PCU C'1§CU

5 0.002898 0.021531
6 0.003137 0.023305
7 0.003559 0.026444
8 0.004269 0.031717
9 0.005441 0.040423
10 0.007388 0.054890

It is recommended that, in the presence of zero inflation in the data,
index using appropriate zero-inflated distribution gives a better status of the

process in terms of the process capability. Though here we study process
capability index C,.,, other indices can also be modified appropriately in

order to take an account of inflation in the process.

Future Plans:

1. There is a good scope for extending the results reported here for
multivariate set up. Attempts for the same will be made. A problem of
interest in the multivariate set will be testing for independence. LRT
and Wald’s tests will be developed for the same. Confidence intervals
for the same will also be studied.

2. Instead of considering models with inflation at a single point, it will be
of interest to study models having inflation at more than one point.
Inflation may exist even for a subset of the support. We propose to

study such models, which will have practical applications.
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