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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 139 { 145PROLONGATION OF TANGENTVALUED FORMS TO WEIL BUNDLESAntonella Cabras, Ivan KoláøAbstract. We prove that the so-called complete lifting of tangent valued formsfrom a manifold M to an arbitrary Weil bundle over M preserves the Fr�olicher-Nijenhuis bracket.We also deduce that the complete lifts of connections are torsion-free in the sense of M. Modugno and the second author.It has been pointed out recently that the Weil functors represent a uni�edtechnique for studying a large class of geometric spaces. Moreover, the generalresults from [4] enable us to clarify that certain procedures can be applied preciselyto Weil bundles. In [7], A. Morimoto introduced the so-called complete lifting oftensor �elds of type (1; 1) from a manifoldM to any Weil bundle TAM by usingthe canonical exchange isomorphism between TATM and TTAM . A special caseof such a construction is the lifting of arbitrary connections from a �bered manifoldE ! B to TAE ! TAB by J. Slov�ak, [8]. The problem of lifting tensor �elds oftype (1; k) was studied by J. Gancarzewicz, [1] and by himself, W. Mikulski andZ. Pogoda, [2]. We present their construction of the complete lift of such a tensor�eld in Section 2 below, but we add a justi�cation of the fact that such a procedureworks for Weil bundles only, provided we accept the standard assumption of theso-called point property. A special case of tensor �elds of type (1; k) onM are thetangent valued k-forms on M . Using some results from [2] and the expression ofthe Fr�olicher-Nijenhuis bracket of tangent valued forms in terms of the bracketof vector �elds by P. W. Michor, [4], and M. Modugno, [6], we prove that thecomplete lifting preserves the Fr�olicher-Nijenhuis bracket. In our setting this is aconsequence of a more general formula deduced in Section 4. This general formulaenables us to study the torsions of connections on Weil bundles introduced by M.Modugno and the second author, [5]. In particular we deduce that all torsions ofthe complete lift of every connection vanish.1991 Mathematics Subject Classi�cation: 53C05, 58A20.Key words and phrases: Weil bundle, tangent valued form, Fr�olicher-Nijenhuis bracket, com-plete lift, connection, torsion.Received June 2, 1994.This work has been performed during the visit of I. Koláø at Dipartimento di MatematicaApplicata \G. Sansone", Universit�a di Firenze, supported by G. N.S.A.G. of C.N.R. The secondauthor was also supported by a grant of the GA ÈR No. 201/93/2125.



140 ANTONELLA CABRAS, IVAN KOLÁØAl manifolds and mappings are assumed to be in�nitely di�erentiable and allmanifolds are paracompact. 1. Weil bundlesWe recall the de�nition of a Weil bundle over a manifold M in a form gener-alizing the classical concept of the jet functor T rk of k-dimensional velocities oforder r, T rkM = Jr0 (Rk;M ). Let hx1; : : : ; xki � R[x1; : : : ; xk] be the ideal of allpolynomials without absolute term in the algebra of all polynomials in k variablesand hx1; : : : ; xkir be its r-th power. By a Weil ideal in R[x1; : : : ; xk] we meanan ideal A satisfying hx1; : : : ; xkir+1 � A � hx1; : : : ; xki2. The factor algebraA = R[x1; : : :xk]=A is called a Weil algebra; the number k is said to be the widthof A and the minimumof the r's is called the depth of A. If we consider the algebraE(k) of all germs of smooth functions on Rk at zero, then A generates an idealeA � E(k). Clearly, we have A = E(k)= eA as well.De�nition 1. Two maps g, h : Rk ! M , g(0) = h(0) = x are said to be A-equivalent, if ' � g � ' � h 2 eA for every germ ' of a smooth function on M at x.Such an equivalence class will be denoted by jAg and called an A-velocity on M .The point g(0) is said to be the target of jAg.Denote by TAM the set of all A-velocities onM . It is easy to see that TAR= A.The target map is a bundle projection TAM !M . Further, for every f :M ! Nwe de�ne TAf : TAM ! TAN by TAf(jAg) = jA(f � g). Then TA is a functoron the category Mf of all manifolds with values in the category FM of smooth�bered manifolds, which is called the Weil functor corresponding to A. Clearly,TA(M�N ) = TAM�TAN , so that TA preserves products. In particular, for A =hx1; : : : ; xkir+1 we obtain the functor T rk and the tangent functor T correspondsto the algebra D = R[x]=hxi2 of the so-called dual (or Study) numbers.Let B = R[x1; : : :xk]=B be another Weil algebra and H : A ! B be an al-gebra homomorphism. Then H is the factor map of an algebra homomorphism : R[x1; : : :xk]! R[x1; : : :xl] satisfying  (A) � B and  is generated by a poly-nomial map h : Rm ! Rk, xi =  (xi), i = 1; : : : ; k. In [3] it is proved that themaps �HM : TAM ! TBM ,�HM (jAg) = jB (g � h); g : Rk!Mde�ne a natural transformation �H : TA ! TB .The important role of Weil functors in di�erential geometry has been clari�ed bya recent result, which reads that every product preserving bundle functor onMf isa Weil functor and every natural transformation of two product preserving bundlefunctors is determined by a homomorphism of the corresponding Weil algebras,see [4] for a survey. In particular, the iteration TA � TB of two Weil bundlescorresponds to the tensor product A
B of Weil algebras, TA(TBM ) = TA
BM .The exchange algebra homomorphismA
B ! B
A de�nes a natural equivalence�A;BM : TA(TBM ) ! TB(TAM ) which generalizes the canonical involution of thesecond tangent bundle TTM . Furthermore, if a : R�R! Rorm : R�R! Ris the



PROLONGATION OF TANGENT VALUED FORMS TO WEIL BUNDLES 141addition or the multiplication of reals, then TAa : A�A ! A or TAm : A�A! Ais the vector addition or the algebra multiplication in A = TAR, respectively.2. Complete liftsA tensor �eld D of type (1; k) on M can be interpreted as a mapD : TM �M � � ��M| {z }k-times TM ! TM :Applying the functor TA, we obtainTAD : TATM �TAM � � � �TAM TATM ! TATM :If we add the above mentioned exchange map � : TATM ! TTAM , we constructT AD := � � TAD � (��1 � � � � � ��1) :TTAM �TAM � � � �TAM TTAM ! TTAM(1)This is a tensor �eld of type (1; k) on TAM , which is called the complete lift of Dto TAM , [2]. In the special case k = 0, we have a vector �eld D = X :M ! TM .Then T AX coincides with the ow prolongation of X, i.e(2) T AX = @@t ����TA(exp tX)where exp tX is the ow of vector �eld X, [4]. If X1; : : :Xk 2 C1TM are vector�elds on M , then D(X1; : : :Xk) is a vector �eld on M as well. From (1) we deducedirectly(3) T AD(T AX1; : : :T AXk) = T A(D(X1; : : :Xk))We remark that such a construction of an induced tensor �eld of type (1; k) canbe applied to Weil bundles only. We recall that a bundle functor F :Mf ! FMis said to have the point property, if F (pt) = pt for each one point set pt. FromProposition 38.8 in [4] it follows easily: If F has the point property and thereexists a natural equivalence FT ! TF , then F preserves products, i.e. F is a Weilfunctor.By [7], every a 2 A determines a tensor L(a) of type (1; 1) on TAM as follows.The multiplication of the tangent vectors of M by reals is a map � : R� TM !TM . Applying the functor TA, we obtain TA� : A � TATM ! TATM . Then(4) T A� := � � TA� � (idA���1) : A � TTAM ! TTAMand we de�ne L(a) = T A�(a;�). Since the multiplication in A is induced fromthe multiplication of reals, it holdsL(a1) � L(a2) = L(a1a2) a1; a2 2M :Clearly, L(1) = id. If we need to underline the manifold M , we shall also writeLM (a).The following lemma is due to Gancarzewicz, Mikulski and Pogoda, [2], but wesketch its proof for the sake of completeness.



142 ANTONELLA CABRAS, IVAN KOLÁØLemma 1. Let C and �C be two tensor �elds of type (1; k) on TAM . If it holdsC(L(a1)T AX1; : : : ; L(ak)T AXk) = �C(L(a1)T AX1; : : : ; L(ak)T AXk)for all X1; : : :Xk 2 C1TM and all a1; : : :ak 2 A, then C = �C.Proof. It su�ces to consider M = Rm and the constant vector �elds on Rm.Let 1; e1; : : : ; en be a basis of the vector space A with nilpotent e1; : : : ; en andxi; yi1; : : : yin be the induced coordinates on TARm = Am. Since the ow of aconstant vector �eld X = �i@=@xi is formed by translations, we have T AX =�i@=@xi+ 0:@=@yi1 + � � �+ 0:@=@yin. Then L(ep)T AX = �i@=@yip, p = 1; : : : ; n. But�i are arbitrary and this implies the coordinate form of our assertion. �3. Some lemmasEvery function f : M ! R induces a vector valued function TAf : TAM ! A.Every vector �eld Y on TAM determines the Lie derivative Y TAf : TAM ! Aof such a vector valued function. Given a 2 A, we de�ne aTAf : TAM ! A bymultiplying in A.Lemma 2. If two vector �elds Y and eY on TAM satisfy Y (aTAf) = eY (aTAf)for all f :M ! R and all a 2 A, then Y = eY .Proof. The proof is quite similar to the proof of Lemma 1. If su�ces to take inaccount the linear functions f : Rm! R. �Lemma 3. It holds TA(Xf) = T AX(TAf) for every vector �eld X on M andevery f :M ! R.Proof. The derivative Xf is the second projection of Tf �X : M ! TR. ThenTA(Xf) = TA(pr2) � TAf � TAX. We have T AX = �M � TAX by de�nition andTATf � ��1M = ��1R� TTAf by naturality of �. But TA(pr2) � �Ris the secondprojection A �A! A. �Lemma 4. For every X 2 C1TM , every f : M ! R and every a 2 A it holdsT AX(aTAf) = aTA(Xf) and (L(a)T AX)TAf = aTA(Xf).Proof. We have X(tf) = t(Xf) for all t 2 R. By Lemma 3 we obtainT AX(aTAf) = aTA(Xf). Further, we have (tX)f = t(Xf) for all t 2 R. UsingLemma 3 and the de�nition of L(a), we obtain (L(a)T AX)TAf = aTA(Xf). �The following lemma can be found in [2], but we present another proof, whichreplaces real-valued functions by A-valued ones.Lemma 5. It holds [L(a1)T AX1; L(a2)T AX2] = L(a1a2)T A([X1; X2]) for all X1,X2 2 C1TM and all a1, a2 2 A.Proof. We know that the ow prolongation T A preserves the bracket of vector�elds, [4]. For every vector �elds Y1, Y2 on TAM and every F : TAM ! A we have



PROLONGATION OF TANGENT VALUED FORMS TO WEIL BUNDLES 143[Y1; Y2]F = Y1(Y2f) � Y2(Y1F ) by de�nition. Using Lemmas 3 and 4, we obtain[L(a1)T AX1; L(a2)T AX2](aTAf) = L(a1)T AX1(a2aTA(X2f))�L(a2)T AX2(a1aTA(X1f)) = a1a2a(TA(X1X2f) � TA(X2X1f)) =a1a2aT A([X1; X2])TAf = L(a1a2)T A([X1; X2])(aTAf) :Then our assertion follows from Lemma 2. �Even the following lemma is due to Gancarzewicz, Mikulski and Pogoda, [2].Lemma 6. For every tensor �elds D of type (1; k) on M , every X1; : : : ; Xk 2C1TM and every a1; : : : ; ak 2 A, it holds(6) T AD(L(a1)T AX1; : : : ; L(ak)T AXk) = L(a1 : : : ak)T A(D(X1; : : : ; Xk)) :Proof. We have D(t1X1; : : : ; tkXk) = t1 : : : tkD(X1; : : : ; Xk) for all t1; : : : tk 2 R.Applying the functor TA to this relation and using the de�nition of L(a), we obtain(6). �4. The Fr�olicher-Nijenhuis bracketA tangent valued k-form P on M is an antisymmetric tensor �eld of type (1; k)on M . If Q is a tangent valued l-form on M , the Fr�olicher-Nijenhuis bracket [P;Q]is a tangent valued (k+ l)-form on M , [4], [6]. Given a tangent valued k-form S onTAM and an element a 2 A, L(a)S is a tangent valued k-form on TAM as well.The main result of the present paper isProposition 1. For every tangent valued k-form P and tangent valued l-form Qon M and every a; b 2 A, it holds(7) [L(a)T AP;L(b)T AQ] = L(ab)T A([P;Q])In particular, for a = b = 1 we obtain [T AP; T AQ] = T A([P;Q]).Proof. M. Modugno, [6] and P.W. Michor, [4], found the following expression of[P;Q] in terms of the bracket of vector �elds[P;Q](X1; : : : ; Xk+l) =(8) = 1k!l!X� sign�[P (X�1; : : : ; X�k); Q(X�(k+1); : : : ; X�(k+l))]+ �1k!(l � 1)!X� sign�Q([P (X�1; : : : ; X�k); X�(k+1)]; X�(k+2); : : : )+ (�1)kl(k � 1)!l!X� sign�P ([Q(X�1; : : :X�l); X�(l+1)]; X�(l+2); : : : )+ (�1)k�1(k � 1)!(l � 1)!2X� sign�Q(P ([X�1; X�2]; X�3; : : : ]; X�(k+2); : : : )+ (�1)(k�1)l(k � 1)!(l � 1)!2X� sign�P (Q([X�1; X�2]; X�3; : : : ]; X�(l+2); : : :)



144 ANTONELLA CABRAS, IVAN KOLÁØwith X1; : : :Xk+l 2 C1TM . Let us express the value of [L(a)T AP;L(b)T BQ] onL(a1)T AX1; : : : ; L(ak+l)T AXk+l in this way. Using Lemmas 5 and 6 and (3), wededuce that each term of such a modi�cation of (8) is equal to the value of T Aon the corresponding term of (8) multiplied by L(aba1 : : :ak+l). Hence we obtainL(ab)T A([P;Q])(L(a1)T AX1; : : : ; L(ak+lT AXk+l)). Then Lemma 1 yields (7). �Given an arbitrary �bered manifold p : E ! B, a connection on E can bestudied either as a lifting map  : E �B TB ! TE or as the horizontal projection� : TE ! TE, which is a special tangent valued 1-form on E. Clearly, it holds� =  � Tp. Using the �rst approach, Slovák de�ned the induced connection T Aon TAE ! TAB by T A = �E�TA � ��1B , [8]. Under the second approach, wehave T A� = �E � TA� � ��1E according to (1). But TATp � ��1E = ��1B � TTAp bynaturality, so that T A� = (�E � TA � ��1B ) � TTAp. Hence the results of bothapproaches coincide.Consider two connections � and � on E in the second form of tangent valued1-forms. The Fr�olicher-Nijenhuis bracket [�;�] is called the mixed curvature of �and �, [4], p. 232. Then Proposition 1 yields the following formula for the mixedcurvature of T A� and T A�.Proposition 2. It holds [T A�; T A�] = T A([�;�]).In the special case � = � we obtain the curvature [�;�] of �. We remark thatthis case has been studied in [2]. 5. TorsionsIn [5], M. Modugno and the second authors deduced that all natural tensors(in the sense of [4]) of type (1; 1) on TAM are of the form LM (a), a 2 A. Forexample, in the special case A = D of the tangent bundle, the class fxg 2 R[x]=hxi2determines the well known vertical operator on TTM . Given a connection � onTAM !M , the Fr�olicher-Nijenhuis bracket [�; L(a)] is called the L(a)-torsion of�, [5]. This idea can be modi�ed to the case of connections on TAp : TAE ! TABas well.De�nition 2. Let � be a connection on TAp : TAE ! TAB and a 2 A. Thenthe Fr�olicher-Nijenhuis bracket [�; LE(a)] will be called the a-torsion of �.A natural question is to study the torsions of the connection T A� induced froma connection � on E ! B. The answer is a corollary of the following more generalassertion.Proposition 3. For every tangent valued k-form P on a manifold M and everya 2 A, it holds [T AP;LM(a)] = 0.Proof. We have LM (a) = L(a)ITAM , where ITAM is the identity of TTAM .Then Proposition 1 yields [T AP;L(a)ITAM ] = L(a)T A([P; IM ]). But [P; IM ] = 0is a well known formula. �Corollary. For every connection � on E ! B, all a-torsions of the inducedconnection T A� vanish.
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