\qquad

Absolute Value Algebra 1

Recall the following important facts about absolute value:

- The absolute value of a positive number equals the number itself.

$$
|6|=6 \quad|13|=13 \quad|121|=121 \quad \text { \{note: "| |" denotes absolute value }\}
$$

- The absolute value of a negative number is equal to the additive inverse (opposite) of the number.

$$
|-9|=9 \quad\left|-\frac{2}{3}\right|=\frac{2}{3} \quad|-85|=85
$$

- The absolute value of zero equals zero $(|0|=0)$.

Exercise \#1: Rewrite without using absolute value.
(a) $|15|$
(e) $|0|$
(i) $|(-2)(5)+1|$
(m) $|-7|-2$
(b) $|26|$
(f) $|-2.25|$
(j) $|5-3 \bullet 4|$
(n) $3 \bullet|-10|+6$
(c) $|-4|$
(g) $|9-15|$
(k) $\frac{|12|}{|-3|}$
(o) $\sqrt{|1-2 \cdot 25|}$
(d) $\left|-\frac{1}{3}\right|$
(h) $|9|-|15|$
(1) $\left|\frac{12}{-3}\right|$
(p) $\sqrt{|6-10|}+\sqrt{|26-10|}$

Absolute value has a geometric interpretation. The absolute value of a number represents the distance that the number is away from zero on a real number line.
$|7|=7$ because 7 is 7 units away from zero on the real number line.

$|-7|=7$ because -7 is 7 units away from zero on the real number line.

Exercise \#2: Graph all solutions to $|x|=4$ on the number line below.

Exercise \#3: Graph all solutions to $|x|=6$ on the number line below.

Exercise \#4: (a) How far apart are the graphs of 2 and 9 on the real number line?
(b) Compute $|9-2|$.
(c) Compute $|2-9|$.
(d) Suppose that a and b represent real numbers. What can we say about the value of $|a-b|$ as compared to the distance between the graphs of a and b on the real number line?

Exercise \#5: Explain why $|x|=-3$ has no solutions.

Exercise \#6: Compute $|4500-212 \bullet 32|$ using a graphing calculator.
Step \#1: Press "MATH."

Step \#2: Press right arrow to "NUM."

MRTH GDTA CPX PRE
18abs? 2:rounds 3: iFart
5 : int
G:minc
$7+\mathrm{ma} \times($

Step \#3: Press "ENTER," then type the expression.

Step \#4: Press "ENTER" to obtain the answer.

Absolute Value Algebra 1 Homework

Skills

1. Compute each of the following without using a calculator.
(a) $|18|$
(e) $|10-3|$
(i) $|-4(-3)-15|$
(m) $12-|-10|$
(b) $|-6|$
(f) $\left|-\frac{1}{5}\right|$
(j) $|2-6 \bullet 3|$
(n) $-4 \bullet|-2|+3$
(c) $|-42|$
(g) $|18-30|$
(k) $\frac{|-12|-|-8|}{|-4|}$
(o) $\sqrt{|-8-8|}$
(d) $|-\pi|$
(h) $|2|-|-7|$
(1) $\left|\frac{-36}{9}\right|$
(p) $3 \cdot \sqrt{|9-18|}$
2. Compute each of the following using a calculator. Round your answer to the nearest hundredth, where appropriate.
a. $\left|\frac{5-3.2(4.47)}{-1.2}\right|$
b. $\left|-56 \bullet 22^{2}-18 \bullet 12\right|$
c. $\sqrt{45+2.2 \bullet|126-171|}$
3. Find the value of $\left|a^{2} b-a b^{2}\right|$ if $a=2$ and $b=5$.
4. If $a=6$ and $b=14$, then find the value of $\left|\frac{a-b}{b-a}\right|$.
5. Graph all solutions to $|x|=9$ on the number line below.

6. Graph all solutions to $|x|=4 \frac{1}{2}$ on the number line below.

Reasoning

7. Tanisha claims that $|x|=x$ for any real number. Explain why Tanisha is incorrect.
8. Natasha claims that if x is any integer, then $|x|$ must be positive. Is Natasha correct? Explain.
9. For which values of a and b is $|a-b|=|a|-|b|$?
(1) $a=8, b=-3$
(3) $a=-5, b=9$
(2) $a=-6, b=-4$
(4) $a=2, b=3$
10. Assuming that a and b represent real numbers, which of the following statements is not always true? Explain your choice.
(1) $|a \bullet b|=|a| \bullet|b|$
(3) $|a|=|-a|$
(2) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
(4) $|a+b|=|a|+|b|$
11. List all integers x for which $|x|$ is less than π.
