Name: _____

Absolute Value Algebra 1

Recall the following important facts about absolute value:

• The absolute value of a positive number equals the number itself.

|6| = 6 |13| = 13 |121| = 121 {note: "| |" denotes absolute value}

• The **absolute value** of a negative number is equal to the additive inverse (opposite) of the number.

-9 = 9	$\left -\frac{2}{3}\right = \frac{2}{3}$	-85 = 85

• The **absolute value** of zero equals zero (|0| = 0).

Exercise #1: Rewrite without using absolute value.

- (a) |15| (b) |0| (c) |-7|-2
- (b) |26| (f) |-2.25| (j) $|5-3\cdot 4|$ (n) $3\cdot |-10|+6$
- (c) |-4| (g) |9-15| (k) $\frac{|12|}{|-3|}$ (o) $\sqrt{|1-2 \cdot 25|}$
- (d) $\left|-\frac{1}{3}\right|$ (h) |9|-|15| (l) $\left|\frac{12}{-3}\right|$ (p) $\sqrt{|6-10|} + \sqrt{|26-10|}$

Absolute value has a *geometric* interpretation. The absolute value of a number represents the **distance** that the number is away from zero on a real number line.

|7| = 7 because 7 is 7 units away from zero on the real number line.

|-7| = 7 because -7 is 7 units away from zero on the real number line.

		_																		
1	1	1	.	1	1	1	1	1	1	À	1	1	1	1	1	1	1	1	1	
1		1	•							Y										
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10

Exercise #2: Graph all solutions to |x| = 4 on the number line below.

	1	1	1	1	1		і I	1	1	1	1	1	1	1	1	1	1	Т	1	1.
-1	0 -9	-8	-7	' -6	-5	5 -	4 - 3	-2	-1	0	1	2	3	4	5	6	7	8	9	10

Exercise #3: Graph all solutions to |x| = 6 on the number line below.

4			-	+	+	+	-	+	+		+	+	+	+	+	+	+	+	+	+	+	-+►
	-1() -9	9	-8 -	-7 -	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10

Exercise #4: (a) How far apart are the graphs of 2 and 9 on the real number line?

- (b) Compute |9-2|.
- (c) Compute |2-9|.
- (d) Suppose that *a* and *b* represent real numbers. What can we say about the value of |*a*−*b*| as compared to the distance between the graphs of *a* and *b* on the real number line?

Exercise #5: Explain why |x| = -3 has no solutions.

Exercise #6: Compute $|4500-212 \cdot 32|$ using a graphing calculator.

Step #1: Press "MATH."

Step #2: Press right arrow to "NUM."

Step #3: Press "ENTER," then type the expression.

Step #4: Press "ENTER" to obtain the answer.

Absolute Value Algebra 1 Homework

Skills

1. Compute each of the following without using a calculator.

 (a) |18| (e) |10-3| (i) |-4(-3)-15| (m) 12-|-10|

 (b) |-6| (f) $\left|-\frac{1}{5}\right|$ (j) $|2-6\bullet3|$ (n) $-4\bullet|-2|+3$

 (c) |-42| (g) |18-30| (k) $\frac{|-12|-|-8|}{|-4|}$ (o) $\sqrt{|-8-8|}$

 (d) $|-\pi|$ (h) |2|-|-7| (l) $\left|-\frac{36}{9}\right|$ (p) $3\bullet\sqrt{|9-18|}$

2. Compute each of the following using a calculator. Round your answer to the *nearest hundredth*, where appropriate.

a.
$$\left| \frac{5 - 3.2(4.47)}{-1.2} \right|$$
 b. $\left| -56 \bullet 22^2 - 18 \bullet 12 \right|$ c. $\sqrt{45 + 2.2 \bullet \left| 126 - 171 \right|}$

3. Find the value of $|a^2b - ab^2|$ if a = 2 and b = 5.

4. If
$$a = 6$$
 and $b = 14$, then find the value of $\left| \frac{a-b}{b-a} \right|$.

5. Graph all solutions to |x| = 9 on the number line below.

6. Graph all solutions to $|x| = 4\frac{1}{2}$ on the number line below.

Reasoning

- 7. Tanisha claims that |x| = x for any real number. Explain why Tanisha is incorrect.
- 8. Natasha claims that if x is any integer, then |x| must be positive. Is Natasha correct? Explain.
- 9. For which values of *a* and *b* is |a-b| = |a| |b|? (1) a = 8, b = -3 (3) a = -5, b = 9(2) a = -6, b = -4 (4) a = 2, b = 3
- 10. Assuming that *a* and *b* represent real numbers, which of the following statements is not always true? Explain your choice.

(1)
$$|a \bullet b| = |a| \bullet |b|$$

(2) $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$
(3) $|a| = |-a|$
(4) $|a + b| = |a| + |b|$

11. List all integers x for which |x| is less than π .