
Book Title

Book Editors

IOS Press, 2003

1

Simple Form Recognition Using Bayesian
Programming

Guy Ramel a,1, Adriana Tapus a, François Aspert a and Roland Siegwart a

a Autonomous Systems Lab

Swiss Federal Institute of Technology

Ecublens, Lausanne 1015, Switzerland

Abstract. The environment that surrounds us is very complex. Understanding
and interpreting it is a very hard task. This paper proposes an approach allowing
simple form recognition with a camera by using a probabilistic approach called
Bayesian Programming. The main goal is to recognize several type of elemental
features composing an image, such as local orientation of a contour, or corners.
The Bayesian Program for feature recognition is presented and the learning stage
explained. One approach has been validated through experiments.

Keywords. Computer Vision, Pattern recognition, Bayesian Programming, Humans
Robots Interaction

1. Introduction

Nowadays, the ability to detect some particular shapes in an image is a crucial issue
that take more and more importance. Indeed, in two-dimensional images, most of the
time, important information about objects can be extracted from the particular shape of
objects. For example, we can state that a door is composed of vertical lines, horizontal
lines and four corners. This information can be considered as sufficient to recognize a
door. This type of recognition can be taken as a basis for multiple industrial or security
image processing applications (e. g. video surveillance, quality control). Therefore, there
is a real need in detecting these features and in finding a way to classify them in a robust
manner in order to be able to build stronger applications from this basic model.

Biological vision is an example of hierarchical based system: the part of the neo-
cortex that treats the vision is composed of several layers named for example V1, V2,
V4 and IT (enumeration non exhaustive). V1 is directly activated by the optic nerve and
contains a population of neurons specialised in recognition of elementary features (prim-
itives) such as lines with a particular orientation, corners or end of lines for example.
Each layer is focused on more complex combinations of primitives. Finally, IT contains
a population of neurons activated if specific objects are present in the field of vision
(e.g. human face), and invariant to translation or rotation [2,3]. Even if this description
is uncomplete, we show a brief overview of a cognitive vision system.

1Correspondence to: Guy Ramel, EPFL - STI - I2S Ű LSA, ME A3 434 (Bâtiment ME), Station 9, CH-1015
Lausanne. Tel.: +41 21 693 54 65; Fax: +41 21 693 78 07; E-mail: guy.ramel@epfl.ch.

2 Guy Ramel et al. /

As for human object recognition, top-down knowledge of objects from object recog-
nition may be used to categorise objects in a real scene from primitive features. Some
previous works use codebook of local appearances of a particular object category to
recognise this one in real-world scenes [5]. Other approach described in [6] analyzes
the appearance and the contour shape to classify objects. In [8], authors use Bayesian
networks to describe a class of objects from primitive features given by the two first-
derivative of the Gaussian basis function and by the 18-vector containing the responses
to the basis filters of the first three derivatives at two scales.

All these considerations justify the development of a robust tool for recognition of
simple forms, using some minimal information about the image (i.e. no a priori informa-
tion can be taken). Furthermore, the user should be able to easily describe and modify
the forms to recognize in the image. The approach should also be able to deal with the
uncertainty and the possible range of variations that exists for each feature we want to
detect and recognize. Another strong constraint is the computational efficiency.

Given all these constraints, we propose a new approach based on the Bayesian Pro-
gramming formalism so as to recognise simple forms in a robust manner. This method,
first described by Lebeltel in [4], is designed for robot programming using conditional
probabilities. It addresses several interesting properties that can be applied to our form’s
recognition problem. One of the main strength is the fact that it is based on a supervised
learning which can potentially enable the definition of any kind of form for recognition
and the possibility of their modification in a very flexible way. Secondly, using the con-
ditional probabilities allow some variations in the features to recognise. That permit a
detection of form dealing with noise and other undesirable possible variations.

The rest of the paper is structured as follows. Section 2 briefly defines the Bayesian
Programming formalism. Section 3 is dedicated to the probabilistic method used for
the simple forms recognition. Experimental results are presented in Section 4. Finally,
Section 5 draws conclusions and discusses further work.

2. Bayesian Programming

Probabilistic methodologies and techniques offer possible solutions to the incomplete-
ness and uncertainty problems when programming a robot. The basic programming re-
sources are probability distributions. In the context of probabilistic method, the Bayesian
Programming (BP) approach was originally proposed as a tool for robotic programming
(see [4]), but nowadays used in a wider scope of applications ([7,9] shows some exam-
ples).

The Bayesian Programming formalism allows for using a unique notation and pro-
vides a structure to describe probabilistic knowledge and its use. The elements of a
Bayesian Program are illustrated in Figure 1. A BP is divided in two parts: a description
and a question.

2.1. Description

The purpose of a description is to specify an effective method to compute a joint distri-
bution on a set of relevant variables X1, X2, . . . , Xn, given a set of experimental data δ

and a priori knowledge π. In the specification phase of the description, it is necessary to:

Guy Ramel et al. / 3

Program

Description

Specification(π)

Pertinent Variables
Decomposition

Form

{

Parametric Forms
Program

Identification based on data(δ)
Question

Figure 1. Structure of a Bayesian program.

• Define a set of relevant variables X1, X2, . . . , Xn, on which the joint distribution
shall be defined

• Decompose the joint distribution into simpler terms, using the conjunction rule.
The conditional independence rule can allow further simplification, and such a
simplified decomposition of the joint distribution is called decomposition

• Define the forms for each term in the decomposition; i.e. each term is associated
with either a parametric form, as a function, or to another Bayesian Program

2.2. Question

Given a description P(X1 ∧X2 ∧ ∧Xn | δ ∧ π), a question is obtained by partitioning
the variables X1, X2, . . . , Xn into three sets: Searched, Known and Unknown variables.
A question is defined as the distribution P(Searched | Known ∧ δ ∧ π). In order to
answer this question, the following general inference is used:

P(Searched | Known ∧ δ ∧ π) =
∑

Unknown P(Searched ∧ Unknown ∧ Known)
∑

Unknown,Searched P(Searched ∧ Unknown ∧ Known)
(1)

3. Form Recognition with Bayesian Programming

3.1. Primitives

In this work, we focus only on primitives features of low level. These ones are depicted in
Figure 2. The primitives used are : vertical, horizontal, slash and backslash lines and four
corners of different orientations. Several translated primitives of each type are added and
used as Garbage Collector. Usage of garbage collector will be explained in the section 4.

3.2. Pertinent Variables

The choice of the pertinent variables is a crucial point in defining a Bayesian program
since it will be the backbone of the program and the quality of our detection will highly
depend on it. These variables must not only be relevant for describing the features in
terms of attributes and characteristics, but also, not be too numerous in order to keep the
decision calculation time reasonable.

4 Guy Ramel et al. /

Figure 2. Set of primitives with “real” primitives (vertical, horizontal, slash and backslash line and the four

corners) and several translated primitives of each type used as Garbage Collector.

Only one output variable is needed in our case. This is used to determine the type of
the feature that have been recognized. This variable that is denoted by Feat. It is discrete
and takes integer values over the range [0 . . . N], where N corresponds to the number of
different features that are searched in the image.

In our case, all low-level features are recognised inside a window, which one scans
the entire image. As shown in the figure 3, this window is divided into several square
zones. In each of these zones, the ratio between the number of white pixels (contour
pixels) called whitepix and the total number of pixels within a zone (called totpix) is
employed for primitives detection. For each zone, this ratio is represented by a variable
called Xi (i standing for a particular zone of a given feature) and is discrete over the
interval IX = [0, 1]. This can be expressed as :

Xi =
whitepix

totpix
(2)

These variables corresponds to the Known variable subset in our questioning infer-
ence . Therefore, the following joint distribution stands for our description of the prob-
lem:

P (Feat ⊗ X1 ∧ . . . ∧ Xi | δ ∧ π) (3)

3.3. Decomposition

For this purpose, independence hypotheses need to be done in order to simplify the join
decomposition. One can express this statement in the following way:
P (X1 | Feat ∧ δ ∧ π)⊥ . . .⊥P (Xi | Feat ∧ δ ∧ π).

Under this hypothesis, using the product and marginalization rule, the decomposition
becomes:

P (Feat ∧ X1 ∧ . . . ∧ Xi | δ ∧ π) =

P (Feat | δ ∧ π) × P (X1 | Feat ∧ δ ∧ π) × . . .

. . . × P (Xi | Feat ∧ δ ∧ π) (4)

Guy Ramel et al. / 5

Figure 3. This figure depict how is divided the windows on several square zones. Each of these ones correspond

to a variable. One see inside the window one feature (an upper-right corner)

3.4. Parametric forms

Since no a priori information about the distribution of the features is available, one as-
sume Feat to be uniformly distributed over [0 . . . N] , i.e:

P (Feat = i) =
1

N
∀ i ∈ ℵ, [0 . . . N]

One assume that these variables follows a Gaussian probability law where the mean
and the standard deviation is dependent on the particular zone and the feature corre-
sponding to the variable.

P (Xi = x) = Gauss(µ(zone, Feat), σ(zone, Feat)) ∀ i ∈ ℜ, [0, N]

where µ(zone, Feat) and σ(zone, Feat) will be computed during the learning.
This particular choice for the probability law seemed to be logical since a Gaussian

law express the fact that for each primitive, each variable has a fixed value corresponding
to the mean of the Gaussian. More the value will differ from the mean, the less probable
it will be.

3.5. Identification

The identification process consists in determining the different free parameters of the
previously chosen probability laws associated with the variables. In our case, we only
need to determine parameters for the zone ratio variables (mean and standard deviation)
since the Feat variable is already completely determined. This is done by performing a
learning over a defined data feature set.

3.6. Question

According to the equation 1 the Bayesian inference will therefore be of the following
form :

P (Feat | X1 ⊗ X2 ∧ . . . ∧ Xi ∧ δ ∧ π) (5)

6 Guy Ramel et al. /

where i depends on the number of division used to describe the selected features.
Figure 4 resumes the Bayesian Programm used in this work.

P
ro

gr
am

D
es

cr
ip

ti
on

S
pe

ci
fi

ca
ti

on
(π

)

Pertinent Variables
•X1 . . . Xn input variables designating all zones
•Feat output variable corresponding to the detected feature
Decomposition
•P (Feat ∧ X1 ∧ . . . ∧ Xn | δ ∧ π)
= P (Feat | δ ∧ π) ·

∏n

i=1
P (Xi | Feat ∧ δ ∧ π)

Form
•P (Feat) = Uniform(Feat)
•P (X1 | Feat ∧ δ ∧ π), . . . , P (Xn | Feat ∧ δ ∧ π)
= N(µi(F), σi(F))

Identification based on data (learning)(δ)

Question
•P (Feat | X1 ∧ . . . ∧ Xn ∧ δ ∧ π)

Figure 4. Structure of our Bayesian program for primitives recognition.

4. Experimental Results

In order to validate our Bayesian programming based approach for visual primitives
detection, some experiments were conducted.

The first step is a pre-process used to obtain a black and white image, by applying
a simple method of thresholding. This is followed by a gaussian blurring filter in order
to smooth the image and remove the noise. Finally, edges in the resulting image are
detected using the well known Canny edge detector [1]. After this pre-processing step,
our method for simple forms recognition can be applied.

The second step of experiments is to determine the parameters of Gaussian distri-
butions for our variables. This is made by calculating the mean and the standard devi-
ation iteratively from a set of examples. The learning set contains examples of all kind
of primitives with variations in orientation and in position with respect to the center of
the window. Nevertheless, the positions stay close to the centre, because if primitives are
learned in all the surface of the windows, all variables will take a similar value for all
primitive, and recognition capacity will be strongly affected. In order to avoid this, one
add garbage to the set of primitive. These garbage collectors allow capturing all features
outside the correct interval.

The third step is to use the Bayesian program to recognise primitives similar to those
learn. To do that, the program scans the entire image with a window and analyse the
window at each step. Since the windows can contain several primitives at the same times
a new intermediary process is needed. Blob detection is realised so as to detect all fea-
tures in order to process them separately and contingently to remove too small feature to
correspond to a primitive.

Guy Ramel et al. / 7

4.1. Results

To validate our program, a first test was realised on the learning set itself, with different
configurations of variables and sizes for the windows. Hence, we can choose the best
configuration for the real tests with features not included in the learning set. The Table 1
depict the results of this test. It can be noticed that the best configuration is for a size of
12×12 pixels, and 36 variables (6×6 variables made from 2×2 pixels). The best results
obtained with the most big number of variables is explained by the fact that we don’t take
into account the configuration of black and white pixels to evaluate a variable, but only
the number of black and white pixels. So, the fewer variables are, the more confusion
between primitives is.

Set A Set B

Nb pixels 12×12 8×8 12×12 8×8

Nb variables 36 16 36 16

Mean 83.6% 74.1% 68.4% 85.9% 77.4% 70.0%

Table 1. Results for the validation of the method and the determination of the best type of window.

Finally, Table 2 shows some results realised with a window of 12 × 12 pixels, and
36 variables, and with an image composed of several lines drawn in several orientations,
and with corners of different angles described in figure 5.

Figure 5. Example of testing image after the pre-processing.

Table 2 shows a percentage of correct recognition bigger than 68% with a average
of 81%. Another remark is that the sum of percentages for columns are not equal to
zero. This is a result of the misclassification between the core-primitives and the garbage
collector which are not showed in this table. Indeed, we consider that a garbage detection
is not pertinent for statistics since it depends of the position of the primitive and not only
of the type of primitive.

Another difficulty is to interpret why a given primitive is better recognised than
another one. Some configurations of features inside the window can be ambiguous, and
in order to build statistics, we have to choose if the Bayesian program got the wrong class

8 Guy Ramel et al. /

VL HL SL BL UL UR LL LR

VL 89% 7% 1% 3% 3% 2%

HL 98% 1% 1% 1%

SL 1% 68% 3% 4%

BL 76% 1% 3%

UL 1% 1% 13% 77% 4% 1%

UR 3% 5% 1% 80% 3% 2%

LL 4% 1% 1% 1% 6% 82% 8%

LR 1% 1% 7% 1% 5% 81%

Nb measures 129 104 82 106 206 246 205 217

Table 2. Results with real image. In this table, meanings of abbreviation are: VL = vertical line; HL = hor-

izontal line; SL = slash line; BL = back slash line; UL = upper-left corner; UR = upper-right corner; LL =

lower-left corner; LR = lower-right corner.

for the feature or not. This act can depend on the variation of the visual appreciation.
Moreover, some primitives can be more similar to the class belonging to the garbage
collector than to another one. This last fact can strongly depend on the set choose for the
learning.

Moreover, our scanning scheme allows one feature to be detected multiple times.
This fact can increase the quality of the detection. Indeed, if the same feature is detected
N times, it is not absolutely necessary that the detector recognises the right feature N

times. We can imagine that a majority of correct decisions for each feature should be
sufficient for a future processing. From this point of view, the importance of detection
relies no longer only on the ground-truth results but also on the limitation of false posi-
tives for each features which if the necessary condition to state with high probability that
a feature detected is of the right type. Taking into account all these requirements, it can
be noticed that Table 2 shows good results with an average of good detection equal to
81%. This high capability of avoiding confusion between features is also very important
for the robustness.

5. Conclusion and Future Work

This paper presented a new method for visual primitive’s recognition by using the
Bayesian programming methodology. This work took place in the context of percep-
tion and interpretation of the environment using a probabilistic method. From the exper-
iments, we conclude that the presented approach is practical and robust with a global
result of 81% of correct matching. This result can be improved by using the following
property of the scanning of the image: a primitive is analysed in several position inside
the window. Thus one can eliminate the cases where the primitive is recognised as a class
belong to garbage collector.

In the context complex objects recognition, a future work will be to realise a hier-
archical Bayesian program to recognise more complexes objects composed of several
primitives.

Guy Ramel et al. / 9

References

[1] J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Vol 8, No. 6, Nov 1986.

[2] David Hubel and Torsten Wiesel, Receptive fields of single neurones in the cat’s striate cortex,
Journal of Physiology, Vol 148, pages 574-91, 1959

[3] David Hubel and Torsten Wiesel, Receptive fields, binocular interaction and functional ar-

chitecture in the cat’s visual cortex, Journal of Physiology, Vol 160, pages 106-54, 1962
[4] Olivier Lebeltel, Programmation Bayésienne des Robots, INP Grenoble, 1999
[5] Bastian Leibe and Bernt Schiele, Interleaved Object Categorization and Segmentation, in

British Machine Vision Conference (BMVCŠ03), Norwich , UK, Sept. 2003
[6] Bastian Leibe, Bernt Schiele: Analyzing Appearance and Contour Based Methods for Object

Categorization. CVPR (2) 2003: 409-415
[7] K. Mekhnacha, E. Mazer, and P. Bessière, A robotic CAD system using a Bayesian framwork,

In Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems,
Takamatsu (JP), Best Paper Award, 2000

[8] Justus H. Piater and Roderic A. Grupen, Feature Learning for Recognition With Bayesian Net-

works, In Proceedings of Fifteenth International Conference on Pattern Recognition (ICPR
2000), Barcelona, Spain, 2000

[9] A. Tapus and G. Ramel and L. Dobler and R. Siegwart, Topology Learning and Recognition

using Bayesian Programming for Mobile Robot Navigation, Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004

