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Abstract

In recent years, the Embedded Reasoning Area
(ERA) has been developing a planning system tar-
geting fast online planning problems in manufactur-
ing. The planner, which is based on general-purpose
AI planning techniques, has evolved through sev-
eral iterations and successfully solved applications
such as hyper-modular printers, modular packaging
machines, material control for LCD manufacturing,
and warehouse management. In this paper, we will
describe the core techniques underlying the current
version of the planner: a combination of timeline-
based state representation and action-based planning
algorithm. This combination is proven to be flexible
and can quickly adapt to new applications and at the
same time can scale to complex problems.

1 Introduction

Our research on model-based online planning starts with the
Tightly Integrated Parallel Printer (TIPP) project [Ruml et al.,
2005; Do et al., 2008; Ruml et al., 2011] where we need to
effectively control reconfigurable printing systems. After the
success of this project, there have been efforts in adopting the
software, in particular the planner to new applications. The
first application was controlling modular packaging machine,
which shown that the adaptation of the TIPP planner can ef-
fectively control (in simulation) a variety of high-speed infeed
systems of food flow-wrapper machines. However, this is just
the first step in generalizing it to solve a more general class of
problems in manufacturing.

After the initial investigation in the packaging domain, we
have been further extending our model-based planner so that
it can easily be adapted to a wide variety of application do-
mains. Recently, our planner has been used in several funded
projects by the IHI Corporation in 2010 and 2011 for different
applications: Material Control System (MCS) and Automated
Warehouse. In this paper, we outline the architecture of the
new planner and the application domains that it was tested on.

The rest of this paper is organized as follows: we start with
the timeline-based online planning architecture in the next sec-
tion. We then follow with two implemented planning algo-
rithms (1) forward state-space; and (2) partial-order in Sec-
tion 2.3 and Section 2.4. We outline the results of using our
planner in the manufacturing applications outlined above and
we finish the paper with some future work.
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Figure 1: A logistics example

2 Overall Architecture

Planning is the problem of finding a (sequential or parallel)
sequence of actions that when executed from a known initial
state will achieve all pre-defined goals. Our group has been
working on “fast continual on-line planning” problems where
user’s goals and system updates continuously arrive in concur-
rent with plan executions of previously found plans. In fast we
mean the software generally needs to find a complete solution
within a few seconds (sub-second in several cases).

Our current Plantrol planner uses a timeline-based planning
approach that operates by continually maintaining the time-
lines that capture how different system state variables change
their values over time. The planner builds and maintains con-
sistent plans by adding tokens to the affected timelines; with
each token represents a different operation/change affecting
the state variable represented by that timeline. The overall
framework allows selection among multiple planning algo-
rithms, all share the same timeline-based state representation,
for a given task. In turn, different planning algorithms can call
different search algorithms and constraint solvers (e.g., tempo-
ral reasoning, uncertainty reasoning) to solve either planning
or replanning tasks effectively.

To illustrate different concepts, we will first present a simple
example that will be used throughout the paper:
Example: shown in Figure 1 is an example inspired by IHI’s
MCS application. In this example, a package located at loca-
tion B11 needs to be moved to B22 using first the crane lo-
cated at LC12, then the overhead vehicle (OHV) that is origi-
nally at L02 and then lastly the second crane originally located
at LC21. The arrows in solid red color show the path of the
package. Note that there are a couple of actions belong to a
final plan but are not included in this path such as moving the
OHV from L02 to L01 and the second crane from LC21 to
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Figure 2: Timeline example

Belt3. They are represented by solid blue arrows. The remain-
ing dotted blue arrows represent the other actions available but
are not part of the final plan.

2.1 Timeline-based State Representation

The input to the deterministic online planner consists of:

1. a set of variables V with each v ∈ V is associated with a
given domain of values D(v);

2. a set of actions A, each specified by its (pre)condition and
effect lists. An action condition represents a constraint on
the value of a given variable (e.g., v = x) and an action
effect represents a change to the value of a given variable
(e.g., v ← y).

3. a complete variable assignment for all v ∈ V represents
the fully observable initial state I .

4. a partial variable assignment G represents the desired
goal condition.

An action a is applicable in state s if all of its conditions
are satisfied by s and the resulting state from applying a in s
reflects the changes caused by a’s effects on s. The planner
needs to find a consistent sequence of actions (a plan) P that
can connect I to G.

For online continual planning scenarios, finding and ex-
ecuting plans and goal-arriving are interleaved. Given that
the planner needs to continuously reason about those inter-
leaving processes, we need to effectively maintain the sta-
tus of different state variables as they change values over
time. One good way to do so is through timelines and there
are several application-oriented planners, including TIPP, that
have used this approach at different levels [J. Frank, 2000;
Fratini et al., 2008].

Figure 2 shows an example of the timelines of several vari-
ables in our leading example: (1) a multi-value (discrete) vari-
able v1 = LocationOf(Package) that represents the pack-
age location; (2) a binary variable v2 = Available(Crane1)
represents whether or not Crane1 is busy carrying some pack-
age; (3) a continuous variable v3 = Space(Buffer1) rep-
resents the available/empty space in Buffer1. While we cur-
rently only support three types of variables (which are most
common) in our planner, theoretically any variable with a cer-
tain value domain can be included in the timeline set managed
by the planner.

The timeline for a given variable v consists of a value cv ∈
D(v), which is the value of v at the current wall-clock time
tc and a set of tokens representing future events affecting the
value of v. Those events represent pre-committed assignments
of different equipments/resources/objects. Figure 2 shows one
example where there are three tokens in the timeline for v1 =
LocationOf(Package) representing the following events (in
this order): (1) the value of v1 changes from the current value
v1 = L1 to a new location v1 = L2, (2) and v1 = L2 needs

to be maintained for certain duration; then (3) it changes again
from L2 to L3. Each token tk is represented by:

• Start and end time points start(tk) and end(tk).

• A start value vs (or bounds on start value [lb, ub] with
lb ≤ ub for continuous variable).

• Start condition (e.g., v = vs) specifies the condition that
needs to be satisfied by the token. Right now, we support:
=, 6=, >,<,≥,≤, NONE.

• Change operation 〈operator, value〉 (e.g., v ← v + 5
or v ← x) specifies how the variable value is changed
within the token duration. Some change operators are:

←, +=, -=, ×=, /=, CHANGE, USE, MAINTAIN1.

Given that tokens generally represent conditions and
changes caused by actions, there can be temporal relations be-
tween tokens that are either: (1) conditions/effects of the same
action a; (2) conditions/effects of actions that are related to
each other. For example, before we move the package from L1
to L2 using Crane1, the crane needs to pick up the package
first. Thus, tokens caused by the pick up action need to finish
before the tokens added by the move action and thus there are
temporal orderings between them.

Figure 3 shows an example of tokens on different timelines
created by a given action instance. On the left side, we show
the action representation in PTDL, a variation of PDDL [Fox
and Long, 2003] – a standard planning modeling language,
and the right side shows five tokens which would be added to
different timelines if action move is added to the plan. The
same action starting time point ts will be the starting time
of four tokens and thus those four are constrained to start to-
gether.

For a given action a, we will use T (a) to denote the set
of tokens caused by a.The set of timelines for all variables is
consistent if:

• Value consistent: Consecutive tokens on the same time-
line should make up a consistent sequence of changes.
Thus, the end value of a given token should match with

the start value of the next token2.

• Temporal consistent: All temporal constraints between
tokens should not cause any temporal inconsistency. One
example of temporal inconsistency is that two temporal
orderings: t1 < t2 and t2 < t1 are both deductible from
the temporal network.

A consistent timeline for vg achieves a given goal g =
〈vg, x〉 (i.e., vg = x) at the end of the timeline for vg if the
end value of the last token matches with x. Alternatively, we
say that it achieves g at some point in time if there exist a to-
ken T such that the end value of T matches x. For a given goal
set G, if for all g ∈ G the consistent timeline for vg satisfies
g then we say that the set TL of all timelines for all variables
satisfy G or TL |= G.

2.2 Timeline-based Online Continual Planning

The previous section discusses how the world state is repre-
sented and maintained in continual planning by using a set
of evolving timelines containing tokens representing actions’

1The variable value at the end of the token is calculated based on
the start value and the change operation.

2In matching, we generally mean equal but for continuous vari-
ables that are represented by a [lb, ub] interval, matching means that
two intervals overlap.
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Figure 3: Action and its corresponding tokens

conditions and effects. In this section, we provide a high-level
planning algorithm that operates on timelines and finds con-
sistent plans.

Algorithm 1: Timeline-Based Planning Algorithm

input : A consistent timeline set TL, a goal set G
output: Plan P achieves G & an updated timeline set TL

Let: P0 ← ∅, TL0 ← TL, and s0 = 〈P0, TL0〉;1

Initialize the state set: SQ = {s0};2

while SQ 6= ∅ and done = false do3

Pick the best state s = 〈Ps, TLs〉 from SQ;4

if TLs is consistent and TLs |= G then5

done = true6

else7

Generate zero or more revisions P ′ of Ps;8

Generate timeline sets TL′ ← TL
⋃
T (P ′);9

Add temporal constraints between temporally10

related tokens in TL′;
Add s′ = 〈TL′, P ′〉 to generated state set SQ;11

Execute Ps;12

Revise the master timeline set: TL← TLs;13

Algorithm 1 shows at a high-level a planning algorithm op-
erating on timelines. Some notations used in this algorithm,
and all subsequent algorithms described in the next several
sections are:

• For each time point tp (e.g., token’s start/end time-point):
est(tp) and lst(tp) represent the earliest and latest possi-
ble times that tp can happen.

• For an action set A: T (A) is the set of tokens caused
by all actions in A. Similarly, T (P ) is the set of tokens
caused by all actions in the plan P .

The planner starts with a consistent timeline set TL repre-
senting all changes and constraints related to all state variables
from the current wall-clock time. It needs to find a plan P
such that (1) adding T (P ) to TL does not cause any inconsis-
tency, (2) achieve all goals, and (3) executable (i.e., all tokens
caused by this plan should be able to start after the wall-clock
time at which the plan is found). The planner starts with an
empty plan and keeps revising it until achieving these objec-
tives (lines 8-11). The planner tries to find the best plan by
maintaining a set of generated states (which is composed of a
plan P and the timelines resulted from adding tokens caused
by P to the original timelines) and at each step picks the best

from the generated set to check for being a valid plan. When
the best plan P is found, we execute P (line 12) and incor-
porate its effects in the continually maintained timelines (line
13).

This high-level algorithm obviously lacks many details such
as: how to revise Ps (line 8)? what is the best plan? or what
exactly is the representation of the plan during the planning
process? On the other hand, it’s general enough to capture
both systematic and local-search style of planning, and for dif-
ferent planners that can handle different set of variables and
constraints. In the next two sections, we describe two imple-
mented algorithms based on this framework.

2.3 Forward State-Space Planner on Timeline

Forward state-space (FSS) planners move forward in time
through fixed-time complete state. It starts with an empty plan
and gradually add actions at some fixed wall-clock time to the
end of the currently expanding partial plan until the final se-
quence of actions satisfies the goals. In short, a visited “plan-
ning state” s of a FSS planner consists of: (1) a time-stamp ts
of s; (2) a set of timelines in which all tokens (i) end after ts
and (ii) have fixed start and end times.

The algorithm starts searching from the current wall-clock
time tc but will execute the plan at the (expected) wall-clock
time te > tc when the plan is found. To start the planning
process, the planner “freezes” all tokens in all timelines and
remove all tokens that end before te. This step simplifies the
token and timeline representation and also reduces their sizes.
The key details here are the successor generating functions to
create subsequent search nodes:

• Applicable: for each action a, the FSS planner moves for-
ward in time from the current state’s time stamp ts until it
finds an earliest time ta ≥ tc that if a executes at ta then
all new tokens added will not cause any inconsistency.
Any action ta that we can find a consistent execution time
ta is added to our candidate set.

• Apply: the planner generates successors by creating to-
kens corresponding to action’s conditions and effects and
add them to the current timelines.

• AdvanceTime: this is a special action that helps move the
state time-stamp ts forward closer to the goal. When
moving the time-stamp forward, it basically sets the
newer lower-bound on the future action execution time
and thus: (1) simplifying the timelines (remove all tokens
finish before the new time-stamp); and (2) reducing the
interactions between existing tokens and future actions.
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Figure 4: Example illustrating several steps of the FSS on timeline algorithm: adding actions in “forward” direction.

Given that the plan returned by the FSS algorithm has all
actions and tokens tied to some fixed wall-clock times, de-
pending on a particular search algorithm and heuristic setting,
the FSS planning algorithm may not return the plan with all
actions start at the earliest possible time according to their
temporal relation. The “fixed-time” plan found by the FSS
algorithm can easily be converted to flexible temporal plans
using techniques described in [Do and Kambhampati, 2003].

Figure 4 shows several steps with the goal of having a pack-
age inside an OHV. In the timelines for the three variables
mentioned above, tokens represented by solid rectangles are
from previous planning episodes and thus tokens created by
the current planning process should not overlap with them.
We start by setting up the time stamp te, and the planner starts
by adding an action of loading the package into Crane 1 at
te. This action addition creates two fixed-time tokens on the
timelines for v1 and v2. We then apply the AdvanceTime ac-
tion (several times) to reach t1 and apply the second action
to move the OHV to L01 (this adds one token to the time-
line of v3). After several steps of adding regular actions (e.g.,
Move(Crane, LC11), Unload(P,Belt2)) and several Ad-
vanceTime actions, we load the package into OHV . At this
time, all timelines are consistent and achieving all goals so we
terminate the planning process.

2.4 Partial-Order Planner (POP) on Timeline

The FSS algorithm described in the previous section finds
plans by moving forward through a sequence of consistent
timelines until a given timeline set satisfying all goals. On
the other hand, the POP algorithm finds plans by starting with
an inconsistent timeline set and systematically refines it until
it becomes consistent. The planner searches backward from
the goals. For that, it first creates special tokens representing
the goals and the planner’s objective is to create enough to-

kens through action addition so that those goal tokens are all
eventually supported. Instead of finding Applicable actions as
in the FSS algorithm, it finds Relevant actions, which can con-
tribute new tokens that support some currently un-supported
tokens. We have two-level branching: (1) over actions that are
deemed relevant; and (2) over token ordering where the new
tokens introduced by the newly added actions can be added
in the respective timelines. Note that there is no fixed start-
ing time for all actions and tokens but their start/end times are
represented by floating time points.

Figure 5 shows several steps in the POP algorithm finding
the plan with the same set of actions as the FSS algorithm
shown in Figure 4. The planner starts by creating a special
token v1 = In(OHV ) at the end of the timeline for v1. It then
adds an action Load(P,OHV ) to the plan because that action
can add a token to support v1 = In(OHV ). Appropriate
temporal orderings are also added between related time points
(we show some of them in the figure). The algorithm keeps
picking un-supported tokens and add actions to support them
until the timelines are consistent and the final plan is found.

FSS vs. POP: Two algorithms have distinctive advantages.
The fixed-time and the association of a time-stamp for each
search state during the planning process lead to:

• Smaller state representation: (1) any token ends before
the current state’s time-stamp can be removed from con-
sideration; (2) no order between different tokens need
to be stored. They are implicitly implied by the fixed
start/end time of all tokens.

• Lower branching factor: each applicable action generates
exactly one successor.

Therefore, the FSS planner likely find some valid plan
faster. On the other hand, the POP algorithm employs a more
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Figure 5: Example illustrating several steps of the POP on timeline algorithm: adding flexible actions in “backward” direction.

complete branching rule and thus does not rule out any valid
solution. FSS planner, due to the fact that it doesn’t consider
all possible action starting times (by only moves the time-
stamp forward to the next significant time point) may miss
some solutions.

Depending on the actual application, one algorithm may be
more appropriate: FSS is likely more suitable for applications
where finding a plan quickly is of critical; and POP may be
more appropriate where planning time is not critical but plan
quality is more important.

2.5 Makespan-estimation Heuristic

Planner’s performance, especially search-based, highly de-
pends on the quality of the heuristic guiding its exploration
of its solution space. In our targeted problems of Plantrol, we
concentrate on finding plans that optimize for goal achieve-
ment time, which is highly related to makespan (i.e., plan ex-
ecution time). Our heuristic is based on building the relaxed
temporal planning graph (RTPG) and adjusting its estimation
with the potential conflicts with tokens of the previous plan.

For each planing state s, the RTPG estimates the temporal
distance between the current state in the search tree and the
final state that the search algorithm tries to reach. In our FSS
algorithm (Section 2.3), the heuristic estimates the distance
between the current state and the goal state while in the POP
algorithm (Section 2.4), the heuristic estimates the distance
between the current state and the initial state. Given that the
heuristic procedures for both types of planner are very similar,
we will just discuss and give an example for the FSS planner.

Given a timeline set TL representing a state during the plan-
ning process and the goal set G to be achieved, the algorithm
will estimate the finishing time of a shortest plan that achieves
G and built on top of TL (i.e. extends and includes all tokens
in TL). The algorithm starts from the time-stamp t = tTL of

TL and moves forward in a similar fashion to the FSS algo-
rithm described in Section 2.3. However, instead of selecting
which action to add next, we will optimistically apply all ac-
tions that have their conditions satisfied at t and ignore their
conflicts. The neglect of conflicts between overlapping actions
lead to the name “relaxed” temporal planning graph.

When actions with their conditions satisfied at time t are
added, we add the tokens caused by their effects (refer to Sec-
tion 2.1) to the collective pool of tokens that can lead to new
values. At any given moment, we maintain the set D of (opti-
mistically) achievable values, starting with the current values
at tTL in all timelines. After activating all actions having all
of their conditions satisfied at time t and add tokens represent-
ing their effects into TL, we move forward (increase t) to the
earliest end time te of any token in TL and add the new value
achieved by all tokens ending in te to D. We repeat the pro-
cess until either: (1) D contains all values of G; (2) there is no
additional token in S to advance to its end time (and thus there
is no new value to add to D).

3 Applications

Our online temporal planner has been successfully tested on
several applications.
Tightly Integrated Parallel Printer (TIPP): The TIPP
reconfigurable printer design allows building custom recon-
figurable printer configurations from shared components. This
project requires a software controller that can work with any
design and it starts our work in the integrated planning and
control framework. Our first planner built for this application
uses the timeline representation for shared resources and com-
bines it with the non-timeline state representation for logical
variables. The planner works very well and can control two
physical prototypes and hundreds of conceptual designs with
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the productivity of up to 220 page-per-minute (which requires
planning/solving time to be less than 0.27 seconds). We have
published extensively for this application [Ruml et al., 2005;
Do et al., 2008; Ruml et al., 2011].

Packaging: After the conclusion of the TIPP project,
we investigated the application of our model-based plan-
ning+control technology to controlling an automated infeeder
for a packaging line of food and consumer packaged goods. In
this system, products arrive continuously at high-speed from
the end of the production line and need to be arranged into a
specific configuration for downstream primary and secondary
packaging machines. In collaboration with a domain expert
from the packaging industry, we developed an innovative
design for a reconfigurable parallel infeed system using
a matrix of interchangeable smart belts. We also adapted
our online model-based Plantrol planner to this domain.
Our planner can control various configurations of the new
infeed system through simulation both in nominal planning
and when runtime failures occur. We are also building a
physical prototype to validate the new design and our software
framework. More details are described in [Do et al., 2011a].

Material Control System: Recently, in early 2010, we
have successfully applied our planning framework to another
application: planning for the Material Control System (MCS)
of Liquid Crystal Display (LCD) manufacturing plant in a
joint project between the Embedded Reasoning Area at PARC
and the Products Development Center at the IHI Corporation.
The model-based planner created at PARC was able to
successfully solve a diverse set of test scenarios provided by
IHI, including those that were deemed very difficult by the
IHI experts. The short project time (2 months) proved that
model-based planning is a flexible framework that can adapt
quickly to novel applications. This the the first project where
the the full timeline based representation, as described in this
paper, was used for the planner. More details on the domain
and the adaptation effort are described in [Do et al., 2011b].

Automated Warehouse: Earlier this year, we collaborated
with IHI again on another project on Automated Warehouse

control3. The adaptation of our planner was able to success-
fully control a very large (few thousand objects) warehouse
system with complex constraints. It consistently found plans

3Due to the proprietary IHI’s warehouse design, we are not able
to reveal the details or show any configuration example.

up to hundreds of actions in less than one second. We hope to
be able to describe the details in the future publication.

4 Conclusion & Future Work

In this paper, we introduce an automated planning framework
for fast online continuous planning applications. The planner
combines timeline-based state representation and action-based
planning algorithms. The result planner has been used suc-
cessfully in several manufacturing applications. We are cur-
rently working on extending both the expressiveness of our
modeling language, adding supports for handling constraints
such as uncertainties, and looking to apply our framework for
even more applications.
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