
Learning rules with Adaptor Grammars

Mark Johnson

Macquarie University

joint work with Sharon Goldwater and Tom Griffiths

February 2010

1 / 86

The drunk under the lamppost

Late one night, a drunk guy is crawling around under a
lamppost. A cop comes up and asks him what he’s doing.

“I’m looking for my keys,” the drunk says. “I lost them
about three blocks away.”

“So why aren’t you looking for them where you dropped
them?” the cop asks.

The drunk looks at the cop, amazed that he’d ask so
obvious a question. “Because the light is so much better
here.”

2 / 86

“There exists today a very elaborate system of formal logic, and
specifically, of logic as applied to mathematics. This is a discipline
with many good sides, but also with certain serious weaknesses. . . .

Everybody who has worked in formal logic will confirm that it is one
of the technically most refractory parts of mathematics. The reason
for this is that it deals with rigid, all-or-none concepts, and has very
little contact with the continuous concept of the real or of complex
number, that is, with mathematical analysis. Yet analysis is the
technically most successful and best-elaborated part of mathematics.

Thus formal logic is, by the nature of its approach, cut off from the
best cultivated portions of mathematics, and forced onto the most
difficult part of mathematical terrain, into combinatorics.”

— John von Neumann

3 / 86

Ideas behind talk
• Statistical methods have revolutionized computational

linguistics and cognitive science
• But most successful learning methods are parametric

◮ learn values of parameters of a fixed number of elements

• Non-parametric Bayesian methods can learn the elements as
well as their weights

• Adaptor Grammars use grammars to specify possible elements
◮ Adaptor Grammar learns probability of each adapted subtree it

generates
◮ simple “rich get richer” learning rule

• Applications of Adaptor Grammars:
◮ acquisition of concatenative morphology
◮ word segmentation (precursor of lexical acquisition)
◮ learning the structure of named-entity NPs

• Sampling (instead of EM) is a natural approach to Adaptor
Grammar inference

4 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

5 / 86

Bayesian inference for a proposition

• Bayesians interpret Bayes rule as a prescription of how to
update beliefs

P(Hypothesis | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• Hypothesis: Rain = “It is raining during this talk”

• Prior: P(Rain) = 0.5, P(¬Rain) = 0.5

• Data: Wet = “Footpath is wet”

• Likelihood: P(Wet | Rain) = 0.8, P(Wet | ¬Rain) = 0.4

• Posterior: P(Rain | Wet) = 2/3, P(¬Rain | Wet) = 1/3

6 / 86

Bayesian inference for a parameter
P(Hypothesis | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• Hypothesis: “Probability of coin coming up Heads is θ”
• Prior: every value for θ ∈ [0, 1] is equally likely, i.e., P(θ) = 1
• Data: “Three flips: Heads, Tails, Heads (HTH)”
• Likelihood: P(HTH | θ) = θ · (1 − θ) · θ

• Posterior: P(θ | HTH) ∝ θ2 · (1 − θ)

 0

 1

 2

 0 0.2 0.4 0.6 0.8 1

P(
θ)

Probability of Heads θ

Prior
Posterior

7 / 86

Language acquisition as Bayesian inference

P(Grammar | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Grammar)
︸ ︷︷ ︸

Likelihood

P(Grammar)
︸ ︷︷ ︸

Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen
◮ can be very specific (e.g., Universal Grammar)
◮ can be very general (e.g., prefer shorter grammars)

• Posterior is a distribution over grammars
◮ captures learner’s uncertainty about which grammar is correct

• Grammatical inference is non-parametric because we have to
learn how many parameters there are (e.g., the size of the
vocabulary) as well as their values

8 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

9 / 86

Probabilistic context-free grammars
• Rules in Context-Free Grammars (CFGs) expand nonterminals

into sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with
a multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the
rules used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P

Sam

NP

S

VP

barks

 = 0.45 P

Sandy

NP

S

VP

snores

 = 0.1

10 / 86

Learning syntactic structure is hard

• Bayesian PCFG estimation works well on toy data

• Results are disappointing on “real” data
◮ wrong data?
◮ wrong rules?

(rules in PCFG are given a priori; can we learn them too?)

• Strategy: study simpler cases
◮ Morphological segmentation (e.g., walking = walk+ing)
◮ Word segmentation of unsegmented utterances

11 / 86

A CFG for stem-suffix morphology

Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent
any segmentation of words into
stems and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

12 / 86

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
◮ not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

13 / 86

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

14 / 86

Forcing generalization via sparse Dirichlet priors
• Idea: use Bayesian prior that prefers fewer rules
• Set of rules is fixed in standard PCFG estimation,

but can “turn rule off” by setting θA→β ≈ 0
• Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)

15 / 86

Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

• Uniform Dirichlet prior prefers sparse solutions as α → 0

• Gibbs sampler samples from posterior distribution of parses
◮ reanalyses each word based on parses of the other words

16 / 86

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed

continuing continuing continu ing continu ing
report report report report

reports report s report s report s
17 / 86

Log posterior for models on token data

-1.2e+06

-1e+06

-800000

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Posterior

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!
18 / 86

Relative frequencies of inflected verb forms

19 / 86

Types and tokens
• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens
eliminates (most) frequency variation

◮ 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology
from word types

• Adaptor grammar mimics Goldwater et al “Interpolating
between Types and Tokens” morphology-learning model

20 / 86

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
21 / 86

Log posterior of models on type data

-400000

-200000

 0

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Optimal suffixes

• Correct solution is close to optimal at α = 10−3

22 / 86

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of
generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

◮ context-free rules generate types
◮ another process replicates types to produce tokens

• Adaptor grammars:
◮ learn probability of entire subtrees (how a nonterminal expands

to terminals)
◮ use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference emerges

23 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

24 / 86

Multinomial and Dirichlet distibutions
• A multinomial is a distribution over multiple independent trials

each with the same finite set of outcomes (e.g., rolls of a die)
◮ specified by vector θ = (θ1, . . . , θm),

where outcome k ∈ 1, . . . ,m has probability θk

• A Dirichlet distribution is a probability distribution over
multinomial parameter vectors θ

◮ specified by vector α = (α1, . . . , αm)

• If θ ∼ Dirichlet(α) then P(k | α) ∝ αk

• If prior is Dirichlet with parameters α,
and data is n = (n1, . . . , nm), where k is seen nk times
then posterior is Dirichlet with parameters α + n

 0
 1
 2
 3
 4
 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

θ1 (probability of outcome 1)

α = (1,1)
α = (3,2)

α = (21,11)

25 / 86

Dirichlet-Multinomials with many outcomes

• Dirichlet prior α, observed data z = (z1, . . . , zn)

P(Zn+1 = k | z, α) ∝ αk + nk(z)

• Consider a sequence of Dirichlet-multinomials where:
◮ total Dirichlet pseudocount is fixed α =

∑m
k=1 αk, and

◮ prior uniform over outcomes 1, . . . ,m, so αk = α/m
◮ number of outcomes m → ∞

P(Zn+1 = k | z, α) ∝

nk(z) if nk(z) > 0

α/m if nk(z) = 0

But when m ≫ n, most k are unoccupied (i.e., nk(z) = 0)

⇒ Probability of a previously seen outcome k ∝ nk(z)
Probability of an outcome never seen before ∝ α

26 / 86

From Dirichlet-multinomials to Chinese

Restaurant Processes
• Observations z = (z1, . . . , zn) ranging over outcomes 1, . . . ,m

• Outcome k observed nk(z) times in data z

• Predictive distribution with uniform Dirichlet prior:

P(Zn+1 = k | z) ∝ nk(z) + α/m

• Let m → ∞

P(Zn+1 = k | z) ∝ nk(z) if k appears in z

P(Zn+1 6∈ z | z) ∝ α

• If outcomes are exchangable ⇒ number in order of occurence
⇒ Chinese Restaurant Process

P(Zn+1 = k | z) ∝

{
nk(z) if k ≤ m = max(z)
α if k = m + 1

27 / 86

Chinese Restaurant Process (0)

• Customer → table mapping z =

• P(z) = 1

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝

{
nk(z) if k ≤ m = max(z)
α if k = m + 1

28 / 86

Chinese Restaurant Process (1)

α

• Customer → table mapping z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝

{
nk(z) if k ≤ m = max(z)
α if k = m + 1

29 / 86

Chinese Restaurant Process (2)

1 α

• Customer → table mapping z = 1, 1

• P(z) = α/α × 1/(1 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝

{
nk(z) if k ≤ m = max(z)
α if k = m + 1

30 / 86

Chinese Restaurant Process (3)

2 α

• Customer → table mapping z = 1, 1, 2

• P(z) = α/α × 1/(1 + α) × α/(2 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝

{
nk(z) if k ≤ m = max(z)
α if k = m + 1

31 / 86

Chinese Restaurant Process (4)

2 1 α

• Customer → table mapping z = 1, 1, 2, 1

• P(z) = α/α × 1/(1 + α) × α/(2 + α) × 2/(3 + α)

• Next customer chooses a table according to:

P(Zn+1 = k | z) ∝

{
nk(z) if k ≤ m = max(z)
α if k = m + 1

32 / 86

Labeled Chinese Restaurant Process (0)

• Table → label mapping y =

• Customer → table mapping z =

• Output sequence x =

• P(x) = 1

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

33 / 86

Labeled Chinese Restaurant Process (1)

fish

α

• Table → label mapping y = fish

• Customer → table mapping z = 1

• Output sequence x = fish

• P(x) = α/α × P0(fish)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

34 / 86

Labeled Chinese Restaurant Process (2)

fish

1 α

• Table → label mapping y = fish

• Customer → table mapping z = 1, 1

• Output sequence x = fish,fish

• P(x) = P0(fish) × 1/(1 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

35 / 86

Labeled Chinese Restaurant Process (3)

fish

2

apple

α

• Table → label mapping y = fish,apple

• Customer → table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple

• P(x) = P0(fish) × 1/(1 + α) × α/(2 + α)P0(apple)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

36 / 86

Labeled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table → label mapping y = fish,apple

• Customer → table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple,fish

• P(x) = P0(fish) × 1/(1 + α) × α/(2 + α)P0(apple) × 2/(3 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

37 / 86

Summary: Chinese Restaurant Processes

• Chinese Restaurant Processes (CRPs) generalize
Dirichlet-Multinomials to an unbounded number of outcomes

◮ concentration parameter α controls how likely a new outcome is
◮ CRPs exhibit a rich get richer power-law behaviour

• Labeled CRPs use a base distribution to label each table
◮ base distribution can have infinite support
◮ concentrates mass on a countable subset
◮ power-law behaviour ⇒ Zipfian distributions

38 / 86

Nonparametric extensions of PCFGs

• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied
tables) depends on the data

• Two obvious nonparametric extensions of PCFGs:
◮ let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG

◮ let the number of rules grow unboundedly

– “new” rules are compositions of several rules from original
grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .

39 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

40 / 86

Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by
CFG rules as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Implemented by having a CRP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs

41 / 86

Adaptor grammar for stem-suffix morphology (0)

Word → Stem Suffix

Stem → Phoneme+

Suffix → Phoneme⋆

Generated words:
42 / 86

Adaptor grammar for stem-suffix morphology (1a)

Word → Stem Suffix

Stem → Phoneme+

Suffix → Phoneme⋆

Generated words:
43 / 86

Adaptor grammar for stem-suffix morphology (1b)

Word → Stem Suffix

Stem → Phoneme+

Suffix → Phoneme⋆

Generated words:
44 / 86

Adaptor grammar for stem-suffix morphology (1c)

Word → Stem Suffix

Stem → Phoneme+
Stem

c a t

Suffix → Phoneme⋆
Suffix

s

Generated words:
45 / 86

Adaptor grammar for stem-suffix morphology (1d)

Word → Stem Suffix
Word

Stem

c a t

Suffix

s

Stem → Phoneme+
Stem

c a t

Suffix → Phoneme⋆
Suffix

s

Generated words: cats
46 / 86

Adaptor grammar for stem-suffix morphology (2a)

Word → Stem Suffix
Word

Stem

c a t

Suffix

s

Stem → Phoneme+
Stem

c a t

Suffix → Phoneme⋆
Suffix

s

Generated words: cats
47 / 86

Adaptor grammar for stem-suffix morphology (2b)

Word → Stem Suffix
Word

Stem

c a t

Suffix

s

Stem → Phoneme+
Stem

c a t

Suffix → Phoneme⋆
Suffix

s

Generated words: cats
48 / 86

Adaptor grammar for stem-suffix morphology (2c)

Word → Stem Suffix
Word

Stem

c a t

Suffix

s

Stem → Phoneme+
Stem

c a t

Stem

d o g

Suffix → Phoneme⋆
Suffix

s

Generated words: cats
49 / 86

Adaptor grammar for stem-suffix morphology (2d)

Word → Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem → Phoneme+
Stem

c a t

Stem

d o g

Suffix → Phoneme⋆
Suffix

s

Generated words: cats, dogs
50 / 86

Adaptor grammar for stem-suffix morphology (3)

Word → Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem → Phoneme+
Stem

c a t

Stem

d o g

Suffix → Phoneme⋆
Suffix

s

Generated words: cats, dogs, cats
51 / 86

Adaptor grammars as generative processes
• The sequence of trees generated by an adaptor grammar are not

independent
◮ it learns from the trees it generates
◮ if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• but the sequence of trees is exchangable (important for
sampling)

• An unadapted nonterminal A expands using A → β with
probability θA→β

• Each adapted nonterminal A is associated with a CRP (or
PYP) that caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
◮ to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
◮ using A → β with probability proportional to αAθA→β

52 / 86

Properties of adaptor grammars

• Possible trees are generated by CFG rules
but the probability of each adapted tree is learned separately

• Probability of adapted subtree τ is proportional to:
◮ the number of times τ was seen before

⇒ “rich get richer” dynamics (Zipf distributions)
◮ plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their
parts

• PCFG rule probabilities estimated from table labels
⇒ effectively learns from types, not tokens
⇒ makes learner less sensitive to frequency variation in input

53 / 86

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed
of a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

◮ reuse an old Word, or
◮ generate a fresh one from the base

distribution, i.e., generate a Stem
and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

54 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

55 / 86

Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y △u Nw △a △n △t Nt △u Ns △i ND △6 Nb △U △k

• Useful cues for word segmentation:
◮ Phonotactics (Fleck)
◮ Inter-word dependencies (Goldwater)

56 / 86

Word segmentation with PCFGs (1)

Sentence → Word+

Word → Phoneme+

which abbreviates

Sentence → Words
Words → Word Words
Word → Phonemes
Phonemes → Phoneme Phonemes
Phonemes → Phoneme
Phoneme → a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

57 / 86

Word segmentation with PCFGs (2)

Sentence → Word+

Word → all possible phoneme strings

• But now there are an infinite number of
PCFG rules!

◮ once we see our (finite) training data,
only finitely many are useful

⇒ the set of parameters (rules) should be
chosen based on training data

Words

Word

D 6

Words

Word

b U k

58 / 86

Unigram word segmentation adaptor grammar

Sentence → Word+

Word → Phoneme+

• Adapted nonterminals
indicated by underlining

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the
probability of each Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score

59 / 86

Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Sentence → WordSentence 1 Sentence → Word
1 Word → Phons
1 Phons → Phon Phons 1 Phons → Phon
1 Phon → D 1 Phon → G
1 Phon → A 1 Phon → E

• A grammar learnt from Brent corpus

16625 Sentence → WordSentence 9791 Sentence → Word
1 Word → Phons

4962 Phons → Phon Phons 1575 Phons → Phon
134 Phon → D 41 Phon → G
180 Phon → A 152 Phon → E
460 Word → (Phons (Phon y) (Phons (Phon u)))
446 Word → (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word → (Phons (Phon D) (Phons (Phon 6)))
372 Word → (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))

60 / 86

Words (unigram model)

Sentence → Word+ Word → Phoneme+

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)
• Unigram model can only capture such dependencies by

analyzing collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

61 / 86

Collocations ⇒ Words

Sentence → Colloc+

Colloc → Word+

Word → Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over
unigram model (76% f-score; ≈ Goldwater’s bigram model)

62 / 86

Collocations ⇒ Words ⇒ Syllables

Sentence → Colloc+ Colloc → Word+

Word → Syllable Word → Syllable Syllable
Word → Syllable Syllable Syllable Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+

Sentence

Colloc

Word

Onset

l

Nucleus

U

Coda

k

Word

Nucleus

&

Coda

t

Colloc

Word

Onset

D

Nucleus

I

Coda

s

• With no supra-word generalizations, f-score = 68%
• With 2 Collocation levels, f-score = 82%

63 / 86

Distinguishing internal onsets/codas helps
Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF SyllableIF → (OnsetI) RhymeF
OnsetI → Consonant+ RhymeF → Nucleus (CodaF)
Nucleus → Vowel+ CodaF → Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• Without distinguishing initial/final clusters, f-score = 82%
• Distinguishing initial/final clusters, f-score = 84%
• With 2 Collocation levels, f-score = 87%

64 / 86

Collocations2 ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

65 / 86

Syllabification learnt by adaptor grammars

• Grammar has no reason to prefer to parse word-internal
intervocalic consonants as onsets

1 Syllable → Onset Rhyme 1 Syllable → Rhyme

• The learned grammars consistently analyse them as either
Onsets or Codas ⇒ learns wrong grammar half the time

Word

OnsetI

b

Nucleus

6

Coda

l

Nucleus

u

CodaF

n

• Syllabification accuracy is relatively poor
Syllabification given true word boundaries: f-score = 83%
Syllabification learning word boundaries: f-score = 74%

66 / 86

Preferring Onsets improves syllabification

2 Syllable → Onset Rhyme 1 Syllable → Rhyme

• Changing the prior to prefer word-internal Syllables with
Onsets dramatically improves segmentation accuracy

• “Rich get richer” property of Chinese Restaurant Processes
⇒ all ambiguous word-internal consonants analysed as Onsets

Word

OnsetI

b

Nucleus

6

Onset

l

Nucleus

u

CodaF

n

• Syllabification accuracy is much higher than without bias
Syllabification given true word boundaries: f-score = 97%
Syllabification learning word boundaries: f-score = 90%

67 / 86

Modelling sonority classes improves syllabification

Onset → OnsetStop Onset → OnsetFricative

OnsetStop → Stop OnsetStop → Stop OnsetFricative

Stop → p Stop → t

• Five consonant sonority classes

• OnsetStop generates a consonant cluster with a Stop at left edge

• Prior prefers transitions compatible with sonority hierarchy
(e.g., OnsetStop → Stop OnsetFricative) to transitions that aren’t
(e.g., OnsetFricative → Fricative OnsetStop)

• Same transitional probabilities used for initial and non-initial
Onsets (maybe not a good idea for English?)

• Word-internal Onset bias still necessary

• Syllabification given true boundaries: f-score = 97.5%
Syllabification learning word boundaries: f-score = 91%

68 / 86

Summary: Adaptor grammars for word

segmentation

• Easy to define adaptor grammars that are sensitive to:

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 87%

• word segmentation improves when you learn other things as
well

◮ explain away potentially misleading generalizations

69 / 86

Another application of adaptor grammars:

Learning structure in names

• Many different kinds of names
◮ Person names, e.g., Mr. Sam Spade Jr.
◮ Company names, e.g., United Motor Manufacturing Corp.
◮ Other names, e.g., United States of America

• At least some of these are structured; e.g., Mr is an honorific,
Sam is first name, Spade is a surname, etc.

• Penn treebanks assign flat structures to base NPs (including
names)

• Data set: 10,787 unique lowercased sequences of base NP
proper nouns, containing 23,392 words

• Can we automatically learn the structure of these names?

70 / 86

Adaptor grammar for names
NP → Unordered+ Unordered → Word+

NP → (A0) (A1) . . . (A6) NP → (B0) (B1) . . . (B6)
A0 → Word+ B0 → Word+

.
A6 → Word+ B6 → Word+

• Sample output:

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

71 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

72 / 86

What do we have to learn?
• To learn an adaptor grammar, we need:

◮ probabilities of grammar rules
◮ adapted subtrees and their probabilities for adapted

non-terminals

• If we knew the true parse trees for a training corpus, we could:
◮ read off the adapted subtrees from the corpus
◮ count rules and adapted subtrees in corpus
◮ compute the rule and subtree probabilities from these counts

– simple computation (smoothed relative frequencies)

• If we aren’t given the parse trees:
◮ there are usually infinitely many possible adapted subtrees
⇒ can’t track the probability of all of them (as in EM)

◮ but sample parses of a finite corpus only include finitely many

• Sampling-based methods learn the relevant subtrees as well as
their weights

73 / 86

If we had infinite data . . .

• A simple incremental learning algorithm:
◮ Repeat forever:

– get next sentence
– sample a parse tree for sentence according to current

grammar
– increment rule and adapted subtree counts with counts

from sampled parse tree
– update grammar according to these counts

• Particle filter learners update multiple versions of the grammar
at each sentence

74 / 86

A Gibbs sampler for learning adaptor grammars

• Intuition: same as simple incremental algorithm, but re-use
sentences in training data

◮ Assign (random) parse trees to each sentence, and compute
rule and subtree counts

◮ Repeat forever:

– pick a sentence (and corresponding parse) at random
– deduct the counts for the sentence’s parse from current

rule and subtree counts
– sample a parse for sentence according to updated grammar
– add sampled parse’s counts to rule and subtree counts

• Sampled parse trees and grammar converges to Bayesian
posterior distribution

75 / 86

Sampling parses from an adaptor grammar

• Sampling a parse tree for a sentence is computationally most
demanding part of learning algorithm

• Component-wise Metropolis-within-Gibbs sampler for parse
trees:

◮ adaptor grammar rules and probabilities change on the fly
◮ construct PCFG proposal grammar from adaptor grammar for

previous sentences
◮ sample a parse from PCFG proposal grammar
◮ use accept/reject to convert samples from proposal PCFG to

samples from adaptor grammar

• For particular adaptor grammars, there are often more efficient
algorithms

76 / 86

Details about sampling parses

• Adaptor grammars are not context-free

• The probability of a rule (and a subtree)
can change within a single sentence

◮ breaks standard dynamic
programming

• But with moderate or large corpora, the
probabilities don’t change by much

◮ use Metropolis-Hastings accept/reject
with a PCFG proposal distribution

Sentence

Colloc

Word

D 6

Word

d O g i

Colloc

Word

D 6

Word

d O g i

• Rules of PCFG proposal grammar G′(t−j) consist of:
◮ rules A → β from base PCFG: θ′A→β ∝ αAθA→β

◮ A rule A → Yield(τ) for each table τ in A’s restaurant:
θ′
A→Yield(τ)

∝ nτ , the number of customers at table τ

• Parses of G′(t−j) can be mapped back to adaptor grammar
parses

77 / 86

Summary: learning adaptor grammars
• Naive integrated parsing/learning algorithm:

◮ sample a parse for next sentence
◮ count how often each adapted structure appears in parse

• Sampling parses addresses exploration/exploitation dilemma

• First few sentences receive random segmentations
⇒ this algorithm does not optimally learn from data

• Gibbs sampler batch learning algorithm
◮ assign every sentence a (random) parse
◮ repeatedly cycle through training sentences:

– withdraw parse (decrement counts) for sentence
– sample parse for current sentence and update counts

• Particle filter online learning algorithm
◮ Learn different versions (“particles”) of grammar at once
◮ For each particle sample a parse of next sentence
◮ Keep/replicate particles with high probability parses

78 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

79 / 86

Summary and future work

• Adaptor Grammars (AG) “adapt” to the strings they generate

• AGs learn probability of whole subtrees (not just rules)

• AGs are non-parametric because cached subtrees depend on the
data

• AGs inherit the “rich get richer” property from Chinese
Restaurant Processes

⇒ AGs generate Zipfian distributions
⇒ learning is driven by types rather than tokens

• AGs can be used to describe a variety of linguistic inference
problems

• Sampling methods are a natural approach to AG inference

80 / 86

Outline

A Primer on Bayesian inference

Probabilistic Context-Free Grammars

Chinese Restaurant Processes and Nonparametric Bayes

Adaptor grammars

Adaptor grammars for unsupervised word segmentation

Bayesian inference for adaptor grammars

Conclusion

Extending Adaptor Grammars

81 / 86

Issues with adaptor grammars

• Recursion through adapted nonterminals seems problematic
◮ New tables are created as each node is encountered top-down
◮ But the tree labeling the table is only known after the whole

subtree has been completely generated
◮ If adapted nonterminals are recursive, might pick a table whose

label we are currently constructing. What then?

• Extend adaptor grammars so adapted fragments can end at
nonterminals a la DOP (currently always go to terminals)

◮ Adding “exit probabilities” to each adapted nonterminal
◮ In some approaches, fragments can grow “above” existing

fragments, but can’t grow “below” (O’Donnell)

• Adaptor grammars conflate grammatical and Bayesian
hierarchies

◮ Might be useful to disentangle them with meta-grammars

82 / 86

Context-free grammars
A context-free grammar (CFG) consists of:

• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A → β, where A ∈ N and β ∈ (N ∪ W)⋆

• a start symbol S ∈ N .
Each A ∈ N ∪ W generates a set TA of trees.
These are the smallest sets satisfying:

• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn
)

where RA = {A → β : A → β ∈ R}, and

TreeA(TB1 , . . . , TBn
) =

{

✏✏ PP

A

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n

}

The set of trees generated by a CFG is TS. 83 / 86

Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector
θ, where:

• θA→β is the probability of expanding the nonterminal A using
the production A → β.

It defines distributions GA over trees TA for A ∈ N ∪ W :

GA =

δA if A ∈ W
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1 , . . . , GBn

) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . , Gn)

(

✏✏ PP

A

t1 tn. . .

)

=
n∏

i=1

Gi(ti).

TDA(G1, . . . , Gn) is a distribution over TA where each subtree ti is
generated independently from Gi.

84 / 86

DP adaptor grammars

An adaptor grammar (G, θ, α) is a PCFG (G, θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of
the Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1 , . . . , GBn

)

The grammar generates the distribution GS.
One Dirichlet Process for each adapted non-terminal A (i.e.,
αA > 0).

85 / 86

Recursion in adaptor grammars

• The probability of joint distributions (G, H) is defined by:

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1 , . . . , GBn

)

• This holds even if adaptor grammar is recursive

• Question: when does this define a distribution over (G, H)?

86 / 86

