Problem in standard form: outline

- Prep work for the Simplex method for solving LPs: problems in standard form
- Basic solutions
- Bases; primal and dual basic solutions
- Adjacent basic solutions

Some linear algebra facts
Let $\mathbf{A} \in \Re^{m \times n}: \mathbf{A}=\left[\begin{array}{llll}\mathbf{A}_{1} & \mathbf{A}_{2} & \cdots & \mathbf{A}_{n}\end{array}\right]=\left[\begin{array}{c}\mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \vdots \\ \mathbf{a}_{m}^{T}\end{array}\right]$

- Row rank of \mathbf{A} : dimension of subspace spanned by $\mathbf{a}_{1}^{T}, \ldots, \mathbf{a}_{m}^{T}$
- Column rank of \mathbf{A} : dimension of subspace spanned by $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$
- The two ranks above are the same for any matrix; called $\operatorname{rank}(\mathbf{A}) \leq \min (m, n)$

Theorem 2.5 (modification)

Let $\tilde{P}=\left\{\mathbf{x} \in \Re^{n}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}$ be a nonempty set, where $\mathbf{A} \in \Re^{m \times n}$, with rows $\mathbf{a}_{1}^{T}, \ldots, \mathbf{a}_{m}^{T}$. Suppose that $\operatorname{rank}(\mathbf{A})=k<m$ and rows $\mathbf{a}_{1}^{T}, \ldots, \mathbf{a}_{k}^{T}$ are linearly independent. Then

$$
\tilde{Q}=\left\{\mathbf{x}: \mathbf{a}_{i}^{T} \mathbf{x}=b_{i}, i=1, \ldots, k\right\}=\tilde{P} .
$$

Duals of equivalent LPs are equivalent

Theorem 4.2

Suppose that we have transformed a linear programming problem Π_{1} into another linear programming problem Π_{2}, by a sequence of transformations of the following types:

- Replace a free variable with the difference of two nonnegative variables.
- Replace an inequality constraint by an equality constraint involving a nonnegative slack variable.
- If some row of the matrix \mathbf{A} in a feasible standard form problem is a linear combination of the other rows, eliminate the corresponding equality constraint.
Then the duals of Π_{1} and Π_{2} are equivalent, i.e., they are either both infeasible, or they have the same optimal cost.

Basic solutions of polyhedra in standard form

$$
P=\left\{\mathbf{x} \in \Re^{n}: \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}
$$

$\mathbf{A} \in \Re^{m \times n}$, and rows of \mathbf{A} are linearly independent (i.e., $m \leq n$)
Theorem 2.4
Consider P in standard form above. A vector $\mathbf{x} \in \Re^{n}$ is a basic solution if and only if we have $\mathbf{A x}=\mathbf{b}$, and there exist indices $B(1), \ldots, B(m)$ such that:
(a) The columns $\mathbf{A}_{B(1)}, \ldots, \mathbf{A}_{B(m)}$ are linearly independent;
(b) If $i \neq B(1), \ldots, B(m)$, then $x_{i}=0$.

To construct a basic solution:

1. Choose m linearly independent columns $\mathbf{A}_{B(1)}, \ldots, \mathbf{A}_{B(m)}$
2. Let $x_{i}=0, i \neq B(1), \ldots, B(m)$
3. Solve the system of m equations $\sum_{k=1}^{m} \mathbf{A}_{B(k)} x_{B(k)}=\mathbf{b}$ for $x_{B(1)}, \ldots, x_{B(m)}$
A basic solution is feasible if $x_{B(1)}, \ldots, x_{B(m)} \geq 0$

Bases: notation and definitions

Let $B(1), \ldots, B(m)$ be a set of (distinct) indices such that $\mathbf{A}_{B(1)}, \ldots, \mathbf{A}_{B(m)}$ are linearly independent

- $B=\{B(1), \ldots, B(m)\}$ - set of basic indices, or simply basis; two bases are distinct if the sets of basic indices are different
- $\mathbf{A}_{B(1)}, \ldots, \mathbf{A}_{B(m)}$ - basic columns (they span \Re^{m})
-

$$
\mathbf{B}=\left[\begin{array}{lll}
\mathbf{A}_{B(1)} & \ldots & \mathbf{A}_{B(m)}
\end{array}\right] \in \Re^{m \times m}
$$

is a basis matrix; invertible

- $x_{i}, i \in B$ - basic variables; $x_{i}, i \notin B$ - nonbasic variables
- $N=\{j \neq B(1), \ldots, B(m)\}$ - set of nonbasic indices $(|N|=n-m)$
- Re-order and group components of \mathbf{x} and \mathbf{c} and columns of \mathbf{A} :

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{B} \\
\mathbf{x}_{N}
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
\mathbf{c}_{B} \\
\mathbf{c}_{N}
\end{array}\right], \mathbf{A}=\left[\mathbf{A}_{B} ; \mathbf{A}_{N}\right]=\left[\mathbf{B} ; \mathbf{A}_{N}\right]
$$

- $\mathbf{x}=\left(\mathbf{x}_{B} ; \mathbf{x}_{N}\right)=\left(\mathbf{B}^{-1} \mathbf{b} ; \mathbf{0}\right)$ - basic solution of P corresponding to basis B

Correspondence of bases and basic solutions

- Not one to one!
- A basis uniquely determines a basic solution
- Converse not true (consider, e.g., $\mathbf{b}=\mathbf{0}$)
- Recall: a BS is degenerate if the number of active constraints is greater than n.

Definition 2.11

Let \mathbf{x} be a basic solution of $P=\left\{\mathbf{x} \in \Re^{n}: \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$. \mathbf{x} is a degenerate basic solution if more than $n-m$ of the x_{i} 's are 0 .

Example:

$$
\begin{gathered}
A=\left[\begin{array}{lllllll}
1 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 6 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right], b=\left[\begin{array}{c}
8 \\
12 \\
4 \\
6
\end{array}\right] \\
\mathbf{B}^{1}=\left[\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{7}\right] \text { vs. } \mathbf{B}^{2}=\left[\mathbf{A}_{1}, \mathbf{A}_{4}, \mathbf{A}_{3}, \mathbf{A}_{7}\right]
\end{gathered}
$$

Primal standard form problem, its dual, and their basic solutions
(P) $\min c^{T} \mathbf{x}$
s.t. $\mathbf{A x}=\mathbf{b}$
(D) $\max \mathbf{b}^{T} \mathbf{p}$
$\mathbf{x} \geq 0$

- Let $B=\{B(1), \ldots, B(m)\}$ be a basis of the primal LP (P)
- Corresponding to this basis, we have:
- B: a basis matrix
- $\mathbf{x}=\left(\mathbf{x}_{B} ; \mathbf{x}_{N}\right)=\left(\mathbf{B}^{-1} \mathbf{b} ; \mathbf{0}\right)$ - primal basic solution corresponding to basis B
- $\mathbf{p}^{\top}=\mathbf{c}_{B}^{\top} \mathbf{B}^{-1}-$???
- Claim: \mathbf{p} defined as above
- is a basic solution to the dual LP (D), and
- is complementary to the primal basic solution \mathbf{x} corresponding to the same basis B
- ...and thus they have the same objective function values

Optimality conditions

$$
\mathbf{x}=\left(\mathbf{x}_{B} ; \mathbf{x}_{N}\right)=\left(\mathbf{B}^{-1} \mathbf{b} ; \mathbf{0}\right), \mathbf{p}^{T}=\mathbf{c}_{B}^{T} \mathbf{B}^{-1}
$$

Theorem 3.1 (paraphrased)

Consider a basis B and corresponding basic solutions \mathbf{x} and \mathbf{p}; define

$$
\overline{\mathbf{c}}^{T} \triangleq \mathbf{c}^{T}-\mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{A}=\mathbf{c}^{T}-\mathbf{p}^{T} \mathbf{A}
$$

(a) If $\mathbf{x}_{B} \geq 0$ and $\overline{\mathbf{c}} \geq \mathbf{0}$, then \mathbf{x} and \mathbf{p} are optimal basic solutions
(b) If \mathbf{x} is optimal and nondegenerate, then $\overline{\mathbf{c}} \geq \mathbf{0}$ and
$\mathbf{p}^{T}=\mathbf{c}_{B}^{\top} \mathbf{B}^{-1}$ is optimal.

Definition 3.3: An optimal basis

A basis matrix \mathbf{B} is said to be optimal if
(a) $\mathbf{B}^{-1} \mathbf{b} \geq \mathbf{0}$, and
(b) $\overline{\mathbf{c}}^{T}=\mathbf{c}^{T}-\mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{A} \geq \mathbf{0}$.

Adjacent basic solutions and adjacent bases

- For a general problem: two basic solutions to a set of linear constraints in \Re^{n} are adjacent if there are $n-1$ linearly independent constraints that are active in both of them
- If both adjacent basic solutions are feasible, the line segment joining them is called an edge of the feasible set
- For standard form problem: two bases are adjacent if they share all but one basic column

