

Duals of equivalent LPs are equivalent

Theorem 4.2

Suppose that we have transformed a linear programming problem Π_1 into another linear programming problem Π_2 , by a sequence of transformations of the following types:

- Replace a free variable with the difference of two nonnegative variables.
- Replace an inequality constraint by an equality constraint involving a nonnegative slack variable.
- If some row of the matrix A in a feasible standard form problem is a linear combination of the other rows, eliminate the corresponding equality constraint.

Then the duals of Π_1 and Π_2 are equivalent, i.e., they are either both infeasible, or they have the same optimal cost.

Problems in standard form

$$P = {\mathbf{x} \in \Re^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}}$$

 $\mathbf{A} \in \Re^{m \times n}$, and rows of \mathbf{A} are linearly independent (i.e., $m \le n$)

Theorem 2.4

Consider *P* in standard form above. A vector $\mathbf{x} \in \Re^n$ is a basic solution if and only if we have $\mathbf{A}\mathbf{x} = \mathbf{b}$, and there exist indices $B(1), \ldots, B(m)$ such that:

(a) The columns $\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(m)}$ are linearly independent; (b) If $i \neq B(1), \dots, B(m)$, then $x_i = 0$.

To construct a basic solution:

- 1. Choose *m* linearly independent columns $\mathbf{A}_{B(1)}, \ldots, \mathbf{A}_{B(m)}$
- 2. Let $x_i = 0, i \neq B(1), \dots, B(m)$
- 3. Solve the system of *m* equations $\sum_{k=1}^{m} \mathbf{A}_{B(k)} x_{B(k)} = \mathbf{b}$ for $x_{B(1)}, \dots, x_{B(m)}$

A basic solution is feasible if $x_{B(1)}, \ldots, x_{B(m)} \ge 0$

IOE 610: LP II, Fall 20

Bases: notation and definitions

Let B(1), ..., B(m) be a set of (distinct) indices such that $A_{B(1)}, ..., A_{B(m)}$ are linearly independent $B = \{B(1), ..., B(m)\}$ — set of *basic indices*, or simply *basis*; two bases are distinct if the sets of basic indices are different $A_{B(1)}, ..., A_{B(m)} - basic columns$ (they span \Re^m) $B = [A_{B(1)} ... A_{B(m)}] \in \Re^{m \times m}$ is a *basis matrix*; invertible $x_i, i \in B$ — *basic variables*; $x_i, i \notin B$ — *nonbasic variables* $N = \{j \neq B(1), ..., B(m)\}$ — set of *nonbasic indices* (|N| = n - m)Re-order and group components of x and c and columns of A: $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, c = \begin{bmatrix} c_B \\ c_N \end{bmatrix}, A = [A_B; A_N] = [B; A_N]$ $x = (x_B; x_N) = (B^{-1}b; 0)$ — basic solution of *P* corresponding to basis *B*

Correspondence of bases and basic solutions

- Not one to one!
 - A basis uniquely determines a basic solution
 - Converse not true (consider, e.g., b = 0)
- Recall: a BS is *degenerate* if the number of active constraints is greater than n.

Definition 2.11

Let **x** be a basic solution of $P = {\mathbf{x} \in \Re^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}}$. **x** is a *degenerate* basic solution if more than n - m of the x_i 's are 0.

Example:

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ b = \begin{bmatrix} 8 \\ 12 \\ 4 \\ 6 \end{bmatrix}$$

$$\mathbf{B}^1 = [\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_7] \text{ vs. } \mathbf{B}^2 = [\mathbf{A}_1, \mathbf{A}_4, \mathbf{A}_3, \mathbf{A}_7]$$
LP II, Fall 2013
Polyhedra in standard form: basic solutions

Primal standard form problem, its dual, and their basic solutions x > 0• Let $B = \{B(1), \ldots, B(m)\}$ be a basis of the primal LP (P) Corresponding to this basis, we have: **B**: a basis matrix • $\mathbf{x} = (\mathbf{x}_B; \mathbf{x}_N) = (\mathbf{B}^{-1}\mathbf{b}; \mathbf{0}) - primal$ basic solution corresponding to basis B• $\mathbf{p}^T = \mathbf{c}_B^T \mathbf{B}^{-1} - ???$ ► Claim: p defined as above is a basic solution to the dual LP (D), and ▶ is complementary to the primal basic solution **x** corresponding to the same basis B…and thus they have the same objective function values Polyhedra in standard form: basic solutions

Optimality conditions

$$\mathbf{x} = (\mathbf{x}_B; \mathbf{x}_N) = (\mathbf{B}^{-1}\mathbf{b}; \mathbf{0}), \ \mathbf{p}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

Theorem 3.1 (paraphrased)

Consider a basis *B* and corresponding basic solutions \mathbf{x} and \mathbf{p} ; define

$$\bar{\mathbf{c}}^T \stackrel{\triangle}{=} \mathbf{c}^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A} = \mathbf{c}^T - \mathbf{p}^T \mathbf{A}.$$

(a) If $\mathbf{x}_B \ge 0$ and $\mathbf{\bar{c}} \ge \mathbf{0}$, then \mathbf{x} and \mathbf{p} are optimal basic solutions (b) If \mathbf{x} is optimal and nondegenerate, then $\mathbf{\bar{c}} \ge \mathbf{0}$ and $\mathbf{p}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ is optimal.

Definition 3.3: An optimal basis

A basis matrix **B** is said to be *optimal* if (a) $\mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}$, and (b) $\mathbf{\bar{c}}^T = \mathbf{c}^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A} \ge \mathbf{0}$.

IOE 610: LP II, Fall 2013

Page 96

