
Problem in standard form: outline

I Prep work for the Simplex method for solving LPs: problems
in standard form

I Basic solutions
I Bases; primal and dual basic solutions
I Adjacent basic solutions
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Some linear algebra facts

Let A 2 <m⇥n: A = [A1 A2 · · · An] =
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I Row rank of A: dimension of subspace spanned by aT1 , . . . , a
T
m

I Column rank of A: dimension of subspace spanned by
A1, . . . ,An

I The two ranks above are the same for any matrix; called
rank(A)  min(m, n)

Theorem 2.5 (modification)

Let P̃ = {x 2 <n : Ax = b} be a nonempty set, where A 2 <m⇥n,
with rows aT1 , . . . , a

T
m. Suppose that rank(A) = k < m and rows

aT1 , . . . , a
T

k
are linearly independent. Then

Q̃ = {x : aTi x = bi , i = 1, . . . , k} = P̃ .
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Duals of equivalent LPs are equivalent

Theorem 4.2

Suppose that we have transformed a linear programming problem
Π1 into another linear programming problem Π2, by a sequence of
transformations of the following types:

I Replace a free variable with the difference of two nonnegative
variables.

I Replace an inequality constraint by an equality constraint
involving a nonnegative slack variable.

I If some row of the matrix A in a feasible standard form
problem is a linear combination of the other rows, eliminate
the corresponding equality constraint.

Then the duals of Π1 and Π2 are equivalent, i.e., they are either
both infeasible, or they have the same optimal cost.
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Basic solutions of polyhedra in standard form

P = {x 2 <n : Ax = b, x � 0}

A 2 <m⇥n, and rows of A are linearly independent (i.e., m  n)

Theorem 2.4

Consider P in standard form above. A vector x 2 <n is a basic
solution if and only if we have Ax = b, and there exist indices
B(1), . . . ,B(m) such that:
(a) The columns AB(1), . . . ,AB(m) are linearly independent;
(b) If i 6= B(1), . . . ,B(m), then xi = 0.

To construct a basic solution:

1. Choose m linearly independent columns AB(1), . . . ,AB(m)

2. Let xi = 0, i 6= B(1), . . . ,B(m)

3. Solve the system of m equations
P

m

k=1AB(k)xB(k) = b for
xB(1), . . . , xB(m)

A basic solution is feasible if xB(1), . . . , xB(m) � 0
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Bases: notation and definitions

Let B(1), . . . ,B(m) be a set of (distinct) indices such that
AB(1), . . . ,AB(m) are linearly independent

I B = {B(1), . . . ,B(m)} — set of basic indices, or simply basis;
two bases are distinct if the sets of basic indices are different

I AB(1), . . . ,AB(m) – basic columns (they span <m)
I

B =
⇥

AB(1) . . . AB(m)

⇤

2 <m⇥m

is a basis matrix; invertible
I xi , i 2 B — basic variables; xi , i 62 B — nonbasic variables

I N = {j 6= B(1), . . . ,B(m)} — set of nonbasic indices

(|N| = n �m)
I Re-order and group components of x and c and columns of A:

x =



xB
xN

�

, c =



cB
cN

�

, A = [AB ; AN ] = [B; AN ]

I x = (xB ; xN) = (B�1b; 0) — basic solution of P
corresponding to basis B
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Correspondence of bases and basic solutions

I Not one to one!
I A basis uniquely determines a basic solution
I Converse not true (consider, e.g., b = 0)

I Recall: a BS is degenerate if the number of active constraints
is greater than n.

Definition 2.11

Let x be a basic solution of P = {x 2 <n : Ax = b, x � 0}. x is a
degenerate basic solution if more than n �m of the xi ’s are 0.

Example:

A =

2
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4

1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
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, b =

2
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B1 = [A1,A2,A3,A7] vs. B
2 = [A1,A4,A3,A7]
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Primal standard form problem, its dual, and their basic

solutions

(P) min cTx (D) max bTp
s.t. Ax = b s.t. pTA  cT

x � 0

I Let B = {B(1), . . . ,B(m)} be a basis of the primal LP (P)

I Corresponding to this basis, we have:
I B: a basis matrix
I x = (xB ; xN) = (B−1b; 0) — primal basic solution

corresponding to basis B
I pT = cT

B
B−1 — ???

I Claim: p defined as above
I is a basic solution to the dual LP (D), and
I is complementary to the primal basic solution x corresponding

to the same basis B
I ...and thus they have the same objective function values
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Optimality conditions

x = (xB ; xN) = (B�1b; 0), pT = cT
B
B�1

Theorem 3.1 (paraphrased)

Consider a basis B and corresponding basic solutions x and p;
define

c̄T
4
= cT � cT

B
B�1A = cT � pTA.

(a) If xB � 0 and c̄ � 0, then x and p are optimal basic solutions
(b) If x is optimal and nondegenerate, then c̄ � 0 and
pT = cT

B
B�1 is optimal.

Definition 3.3: An optimal basis

A basis matrix B is said to be optimal if
(a) B�1b � 0, and
(b) c̄T = cT � cT

B
B�1A � 0.
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Adjacent basic solutions and adjacent bases

I For a general problem: two basic solutions to a set of linear
constraints in <n are adjacent if there are n � 1 linearly
independent constraints that are active in both of them

I If both adjacent basic solutions are feasible, the line segment
joining them is called an edge of the feasible set

I For standard form problem: two bases are adjacent if they
share all but one basic column
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