
MCS-385 Notes on Lisp February 8, 2003
David Wolfe (adapted from Stuart Russell)

These notes review the basic ideas of symbolic computation and functional programming as embodied in LISP.
We will cover the basic data structures (s-expressions); the evaluation of functional expressions; recursion as the
expression of repetition; binding and equality; user-defined data structures (defstructs). With minor differences
which will be pointed out, LISP and Scheme (which you should recall from MCS-177 and 178) are very similar.
These notes intended mainly as a refresher for students who have seen Scheme a while back. For a thorough
introduction and a complete reference, I strongly recommend Paul Graham’s ANSI Common Lisp; a copy is in the
lab.

Characteristics of LISP

The main characteristic of LISP is its capability for symbolic computation. Symbols (atoms) are the principal data
type. The operations that can be performed on symbols include equality testing and building up symbol structures.
Putting two symbols together creates a structure, which can then be accessed and taken apart.

Typical applications:

• Language processing, using words as symbols; lists for sentences, trees for grammatical structure.

• Mathematics, involving expressions and equations; trees for expressions.

• Manipulating programs — these are just pieces of (formal) language.

LISP programs are just symbol structures, so LISP programs can modify or create LISP programs. Hence
programs can implement the results of learning by writing new code for themselves; it is also easy to write interpreters
for new languages in LISP.

LISP is a functional language: compute by evaluating nested functional expressions. (Pure) programs have no
side-effects, so they are modular. Simple semantics (i.e., it’s easy to tell what a program does) allows for powerful
program development environments.

Evaluating functional expressions

Read-eval-print: LISP reads the expressions you type, evaluates them and prints the value.
Expressions are as follows:

Atoms can have a value associated with them, e.g. X might have the value 5.

Numbers (which are also atoms) evaluate to themselves.

Functional expressions are delimited by matching parens: (fn arg1 . . . argn) applies fn to the arguments as follows:

1. Evaluate each argument in turn, then

2. Apply the function definition of fn to the results.

Note the difference from Scheme: in Scheme, every position including the fn position is evaluated; in LISP,
symbols can have a function definition pointer distinct from the value pointer. More on this later.

Sometimes we want to pass an argument directly, without evaluation. To do this we need an identity function,
which doesn’t evaluate ITS argument. QUOTE serves this purpose.

• (QUOTE A) or ’A evalues to A

• (+ ’4 ’4) returns 8, but (+ ’(+ 2 2) ’(+ 1 3)) is an error.

(+ 2 2) is just a piece of list structure. The next section discusses how to build list structures from atoms.



MCS-385 Notes on Lisp page 2

Operations on list structure

List structure is made by putting symbols together. The function that puts things together is CONS.
(cons (cons ’a ’b) ’c) evaluates to ((a . b) . c)

The parts of cons-pairs are accessed using car and cdr:
(car (cons ’a ’b)) is a; (cdr (cons ’a ’b)) is b.
Lists, of which the functional expressions used above are examples, are special kinds of cons-expressions whose

rightmost element is the special atom NIL. they have a special printed representation:
(cons ’a (cons ’b NIL)) evaluates to (a b)

(Note that the missing “.” indicates a list, a special kind of cons pair.) CDRing down a list eventually returns
NIL. NIL is the empty list.

Lists can be constructed using list as well as cons:
(list ’a ’b ’(c d)) evaluates to (a b (c d)).

Defining functions, conditionals and temporary variables

The defun function is used to associate a function definition with a symbol (not the same as giving the symbol
a value). Note that defun, since it effects the global environment, is a function with side-effects. (defun is like
Scheme’s define, except it only effects a symbol’s function pointer.) The following code defines a function 1/ which
calculates 1/x.

(defun 1/ (x &optional (checkp nil)) ;comments can follow semicolons like this

(if (and checkp (zerop x))

most-positive-single-float

(/ 1 x)))

Note the use of optional arguments. Here, checkp does not have to be provided in the calling expression, and if
not then it defaults to nil.

“Conditional branching” used in imperative languages is replaced in LISP by conditional evaluation. The if-
expression is evaluated just like any other, but the returned value depends on whether the value of the first argument
to if is nil or not. (Truth values in LISP are nil for false, anything else counts as true. t is used as a readable
default symbol for true. Both t and nil evaluate to themselves, like numbers.)

Complex test expressions can be formed using the functions and or not:

• and returns a non-null value if all its arguments are non-null.

• or returns a non-null value if any of its arguments are non-null.

• not returns a non-null value if its argument is nil.

When you want to return one of several different values depending on several different conditions, use cond (see
example below).

Sometimes, the same expression will be used several times in the same function definition. To simplify the code,
and save time, one should define a temporary variable to stand for the value of the expression:

(defun age-group (person)

(let ((n (age person)))

(cond ((< n 2) ’baby)

((< n 18) ’child)

((< n 120) ’adult)

(t ’dead))))

For temporary variables that are defined at the beginning of the function, as above, one can also use &aux variables
in the parameter list:



MCS-385 Notes on Lisp page 3

(defun age-group (person &aux (n (age person)))

(cond ((< n 2) ’baby)

((< n 18) ’child)

((< n 120) ’adult)

(t ’dead))))

Recursion

The simplest way to get repetitive execution in LISP is to use recursion, wherein one uses the function being defined
in the definition of the function itself. The key to thinking clearly about this is the recursion relation that holds for
the problem at hand.

For example:

• The length of a list is one more than the length of its cdr

• The number of atoms in a tree is the sum of the numbers in the left and right-hand sides

• The number of digits in an integer is one more than the number of digits in the integer part of one-tenth of the

integer.

The other thing to take care of is the cases where the recursion relation is false. For example, an empty list
doesn’t have a cdr; a tree that is just an atom doesn’t have left and right hand sides.

(defun count (x) ;; returns number of atoms in list structure x

(if (atom x)

1

(+ (count (car x)) (count (cdr x)))))

Although recursion is often elegant, deeply nested recursion takes a lot of space in some cases, so we also use
mapping and iterative constructs.

Mapping and Iteration

In effect, mapping is a way of constructing a big operator out of a little one. The little one works on objects; the big
one works on lists of those objects. In LISP mapping is done with mapcar, which is the same as Scheme’s map. LISP
it’s mapcar.:

(mapcar #’1/ ’(1 2 3))

(1 1/2 1/3)

For now, you can think of the #’ as a special kind of quote used on functions. This is different from Scheme, where

you would simply use the function symbol. If you write functions that take functions as arguments, you need to be
careful in writing the expressions that use the function parameter (unlike SCHEME, where the thing in functional
position is evaluated like anything else). For example, if we wanted to write mapcar:

(defun mapcar (f l)

(if (null l)

nil

(cons (funcall f (car l)) (mapcar f (cdr l)))))

funcall takes a function and some arguments to apply the function to. apply takes a function and a list of arguments.
For example, if you want to find the sum of a list of numbers, use

(apply #’+ ’(1 2 3 4 5))

Sometimes, one needs to map over a list using a function that doesn’t have a name. For this, and other occasions
demanding dynamically-created functions, we use the special λ-expression:



MCS-385 Notes on Lisp page 4

(mapcar #’(lambda (x) (* x x)) ’(1 2 3))

(1 4 9)

Once again, note the use of #’, unlike Scheme.
mapc is like mapcar, but doesn’t gather up the results of the operations into a list.
Then there are the repetitive tasks for which one just can’t come up with a nice clean way to say it using recursion

or mapping. For this, one uses the general do construct, or the specialized dolist and dotimes.
do is too complicated to explain and you’ll only forget it anyway, so look it up in the book (this is what I do).

(If you think do is complicated, wait till you see loop, which I cannot wholeheartedly recommend.)
(dotimes (x 100) <body>) executes the body 100 times, with the index variable x ranging from 0 to 99. The

index variable is only bound inside the dotimes expression.
(dolist (x l) <body>) executes the body repeatedly as x ranges over all the elements of the list l.

Equality and Binding

Equality between things other than numbers (use = for that) is tricky. You are bound to run into bugs caused by
using the wrong equality test at some point. There are two kinds of equality (at least):

1) Identity: two things are eq if they are the same thing. Atoms are always eq to themselves: (eq ’x ’x).
Similarly, the value of x is the same thing as the value of x, so (eq x x) is true.

2) Structural equality: two things are equal if they have the same ‘structure’; more or less, if they look the same
when printed. (equal (list 1 2) (list 1 2)) is true; (eq (list 1 2) (list 1 2)) is false, since each call to
list creates a new (and therefore different) piece of list structure.

In testing membership of an object in a list, for example, it is important to distinguish the two types of equality:
(member x l) tries to find something in l that is equal to x; if you wanted to find something eq, as for example
in deciding whether or not the list is circular, then use a keyword argument: (member x l :test #’eq). This asks
if there is a member of l that is eq to x. If you want to find out if some member of l has a square root that is
numerically equal to x, you can use a :key:

(member x l :test #’= :key #’sqrt)

So how do atoms get their values anyway? We’ve seen binding for atoms as parameters and in let and lambda

expressions. Yes, there is such a thing as a global variable.
(setq x <expr>) sets the value of the atom x to the value of the expression. Thus (setq a b) causes a and b

to have the same value; i.e., (eq a b) becomes true. Note that setq doesn’t evaluate its first argument; set does.
More generally, you can use setf to cause a place to have a new value. The value cell of an atom is one kind

of place; there are places in the cells of an array; in the fields of a defstruct (see below); in the cons cells of a list
structure, and so on. More or less anything that you can access with a lisp expression can be changed using a call
to setf. For example:

% (setq x ’(1 (2 3) 4))

(1 (2 3) 4)

% (setf (caadr x) ’ding)

ding

% x

(1 (ding 3) 4)

Warning: if you really want to use a global variable, then for efficiency you should declare it as such using defvar,
instead of just doing a setq to initialize it. This will let the compiler know what kind of thing it is. Also, the standard
is to use asterisks around the name like *this*.

Once again, let me emphasize that a symbol’s value and function can be different. The following expression
evaluates to 6:

(setf f 3)

(setf (symbol-function ’f) #’+) ;; or (defun f (a b) (+ a b))

(f f f)



MCS-385 Notes on Lisp page 5

Complex data types

Common LISP also provides a very useful mechanism, called defstruct, for creating your own data abstractions.
(This feature doesn’t exist in Scheme.)

defstruct defines a data type with the given field names, and automatically creates the associated access and
constructor functions. Thus to define a data type for storing information about prisoners, we could use

(defstruct prisoner

name

number

crime

term

entry-date)

which will define the constructor function make-prisoner. We can use this to associate a prisoner data structure
with a particular atom:

(defvar manson (make-prisoner :name "charles manson" :crime ’mayhem :term ’life))

Note that in the call to make-prisoner, the fields have colons.
The access functions prisoner-name, prisoner-number etc. will be created when the defstruct is executed. The

value of a data field is changed using setf, e.g.,

(setf (prisoner-number manson) 4424275684)

Arrays are sometimes useful for multidimensional data tables. For example, you make a 3x4 array by calling
(make-array ’(3 4)). There are various optional keyword arguments for initialization. The access function is
aref. Arrays are 0-indexed. Thus to set the first element of a two-dimensional array *table*:

(setf (aref *table* 0 0) 4)

Using Common Lisp

gcl or lisp invokes Gnu Common Lisp. I recommend you use split-screen emacs with one half running lisp in a
shell. Type C-c l or M-x run-lisp in Emacs.


