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Abstract

ChalkBoard is a domain specific language (DSL) for describing images. The

ChalkBoard language is uncompromisingly functional and encourages the use of

modern functional idioms. Unlike many similar systems, ChalkBoard uses off-the-

shelf graphics cards to speed up the rendering of these functional descriptions. The

speed gained from this efficient rendering has allowed the addition of animation

to the language. The Active extension to ChalkBoard is another DSL, built on

top of ChalkBoard, that captures the concept of animation inside a Haskell ap-

plicative functor. This allows for a clean, compositional approach to animation

in ChalkBoard. Given both the efficiency and functional style of this animation,

there are many possible applications. One of these is a system called Active Trans-

formations, which uses the animation capabilities of ChalkBoard to animate code

(and other tree-based) transformations. The Active Transformations system uses

ChalkBoard animation in order to show how certain transformations and opti-

mizations occur, instead of just providing before and after snapshots, making it

an extremely useful educational tool. In this thesis, the design of each of these

systems is described and explained, from the core ChalkBoard language, to the

Active extension to ChalkBoard, and finally the Active Transformation system

built on top of them.
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Chapter 1

Introduction

Options for image generation abound. Functional languages and image gen-

eration have been courting for decades. Describing the mathematics of images

in functional languages like Haskell [26] is straightforward. Yet there is no clear

choice for describing images functionally and then efficiently rendering them.

There certainly are many image generation choices in Haskell. The popu-

lar cairo [1], for example, is an efficient image language, based on imperatively

drawing shapes onto a canvas, with a Haskell IO port of the API. This thesis is

interested in exploring purely functional representations of images, however, and

seeks to understand if they can be made efficient.

The ChalkBoard project, presented in this thesis, is an attempt to bridge the

gap between the clear specification style of a language with first-class images, and

a practical and efficient rendering engine. Though systems like cairo offer the

ability to use created images as new components, the difference here is that with

the first-class status offered by pure functional languages comes clean abstraction

possibilities, and therefore facilitated construction of complex images from many

simple and compossible parts. This first-class status traditionally comes at a

1



cost—efficiency. Unless the work of computing these images can be offloaded

onto efficient execution engines, then the nice abstractions become tremendously

expensive.

Part of this thesis describes a successful attempt to target one such functional

image description language to the widely supported OpenGL standard in order

to achieve this efficiency. Much of this work on ChalkBoard has been described

in and is based upon my original ChalkBoard paper [22].

After the success of ChalkBoard in efficiently rendering functionally-described

images, the next step was to see if this generation was efficient enough to allow

for real-time animation. Initial, rudimentary tests appeared to indicate that it

would be, and so work began on an extension to ChalkBoard that would allow it

to easily create animations, called Active.

The key to this extension was keeping the animation and timing effects ab-

stracted from the actual ChalkBoard drawing functions. In addition, Active must

also be flexible and robust, as well as maintain the functional style of Chalk-

Board. This new set of challenges faced in creating Active are expanded upon in

Section 2.2. As with ChalkBoard, much of this work is based upon my original

paper on the subject [23].

The final piece of this thesis is a practical example of a complex system built on

top of ChalkBoard and Active, called Active Transformations. This system takes

advantage of many of the features of ChalkBoard and Active mentioned above,

as well as others expanded upon throughout this thesis. This Active Transforma-

tions system is a transformation animation framework that can be used to create

animations for code transformations almost automatically. Although the system

is intended for displaying code transformations, such as those that might be found
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inside a compiler, it is actually a lot more general than that. Active Transforma-

tions can be used to animate nearly any sequence of changes to nearly any tree,

given certain requirements are fulfilled by the user.

In addition to demonstrating the usefulness of ChalkBoard in a practical, com-

plex example, however, this transformation animation system actually encounters

many interesting challenges of its own. It must wrestle with problems such as

how to represent a user’s data structure internally, capturing incremental changes

to this structure, and knowing how each of these changes should be correctly an-

imated. These problems, among others, are expanded upon in Section 2.3. The

work for this portion of the thesis, unlike the others, has yet to be published

elsewhere, but will likely be so in the future.

Overall, through each different piece of this thesis, the goal remains roughly

the same. That goal is to show how functional languages and functional design

patterns can be combined effectively and efficiently with computer graphics in

order to create new and interesting opportunities for both. Inherent in this goal

is that the new opportunities generated must also have practical applications in

the real world.
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Chapter 2

Problem Specifics

2.1 Functional and Efficient Rendering

In order to understand some of the problems in achieving an efficient render-

ing of a functional image specification, we must first understand roughly how this

transliterating from a functional image description language to a imperative-style

library such as OpenGL may work. Figure 2.1 gives the basic architecture of

ChalkBoard. Our image specification language is an embedded Domain Specific

Language (DSL). An embedded DSL is a style of library that can be used to

capture and cross-compile DSL code, rather than interpret it directly. In order

to do this and allow use of a polygon-based back-end, we have needed to make

some interesting compromises, but the ChalkBoard language remains pure, has a

variant of functors as a control structure, and has first-class images. We compile

this language into an imperative intermediate representation that has first-class

buffers—regular arrays of colors or other entities. This language is then inter-

preted by macro-expanding each intermediate representation command into a set

of OpenGL commands. In this way, we leverage modern graphics cards to do the

4



heavy lifting of the language.

ChalkBoard
Image

Specification

Deep
DSL

ChalkBoard
IR

OpenGL

GPU

DSL Capture

& Compile
//

ChalkBoard
Back End

//

Figure 2.1. The ChalkBoard Architecture

Both subsystems of ChalkBoard are written in Haskell, and are compiled using

GHC [2]. ChalkBoard could use the same Intermediate Representation (IR) to

target other back ends besides OpenGL, but this first part of the thesis focuses

on how we use OpenGL to achieve fast static image generation from a purely

functional specification. Specifically, our work on ChalkBoard makes the following

contributions.

• We pursue an efficient functional representation of images. In order to do

this, we build a simple image generation DSL, modeled on Elliott’s Pan [6],

but with an abstract principal data type to facilitate introspection.

• To allow DSL capture, we need to impose some restrictions on the form

of expressions. In particular, we identify challenges with capturing maps

over functors and introduce our solution, the observable O datatype, which

should be reusable in other DSLs.

• Having captured our DSL, we need a vehicle to experimentally verify our

image generation ideas. We describe the design of our ChalkBoard acceler-

ator and give some initial performance results for our ChalkBoard compiler

and runtime system that demonstrate that ChalkBoard has sufficient per-

formance to carry out these future experiments.
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The intent with the technology discussed here is that it will be of immediate

applicability, as well as serve as a basis for our dynamic image generation and pro-

cessing tools discussed later, all of which will be executing specifications written

in functional languages.

2.2 Animation

This thesis also describes our endeavor to construct a useful abstraction for

ChalkBoard animations, as well as animations in general. Our early attempts

at animation used functions to create changing images. By looping and passing

slightly varied arguments to one of these functions, we could create a quick pro-

gression of slowly-changing images, or an animation. While this approach did

successfully create animations, it was by no means a very sophisticated solution.

It required an argument for each aspect of an image that we wished to change, so

an appropriate sequence of values had to be generated for each argument every

time an animation was created. This solution was also very intertwined with the

specific animation created. Every animation had to be built from scratch, without

much in the way of reusable code.

This lack of abstraction seemed unnecessary, as the drawing functions and

how to use these functions over time are two inherently different things. At least

the basics of an animation language seemed like it should be abstracted from

the image creation language. In addition, many of these timing-related tasks

are also repeated over and over in creating an animation. We therefore wanted

an animation language that would allow for this abstraction from the drawing

language, but that would also lend itself well to creating useful combinators for

common, repeated tasks. The Active animation language is our solution to this
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problem, and is built as an extension to ChalkBoard (though it could work in any

similar drawing system). In this thesis, we show how the Active extension:

• Uses an applicative functor structure to gain many advantageous proper-

ties, such as abstracting the animation and timing away from the image

description and drawing

• Takes a non-standard timing approach to help provide further abstraction

and ease the creation of composable animation pieces

• Provides many helpful combinators and predefined functions for quickly cre-

ating functional animations

• Can be used to easily create practical animations with real-world applica-

tions

The fundamental goal of Active is to have a simple animation language, pa-

rameterized over time, which keeps the desired final effects and the timing of those

effects independent. We also want to make sure that this timing and how it is

applied to a given drawing system is abstracted and flexible, both so that the

same general structures can be reused and also so that combinators can easily be

built up for common actions.

2.3 Practical Applications and Other Problems

The last topic covered by this thesis is the practical application of ChalkBoard

in a system for animating code transformations. Pretty printing an abstract syn-

tax tree is something functional languages are really good at. By using a small
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Domain Specific Language [15] [21], a clear and clean syntax rendering mecha-

nism can be constructed for any representable syntax in a few lines of code. In

a sense, these prettified renditions are stand-alone snapshots of observable, static

syntax trees. In the programming language community, however, we consider lan-

guages to be first class citizens. Code changes over time, and pretty printers are

ill-equipped to do anything but re-render a syntax tree from scratch.

Consider explaining a program transformation, using a specific example. We

can show the (static) code before and after, in a visually aesthetic form, and hope

that the relationship between the two pieces of code brings out the differences

in a way that the transformation can be observed and understood. Or we can

animate the transformation, showing the difference between two examples using

dynamically morphing code, and being explicit about the change. The final part of

this thesis discusses the issues faced in building this animation capability; a pretty

printer that is aware of its commitments to time, as well as usage of whitespace.

An overarching design decision of this system is to allow, as much as possible,

the structure and data types used in an original transformation to be preserved

when using our pretty printer. This enables the user to take a transformation sys-

tem they have already created and animate it straightforwardly, with only a few

changes/additions. Most of the information needed to animate a transformation

is already present inside the implementation of that transformation. Our final so-

lution, therefore, has the user augment their transformation with some additional

information and parameterization, which allows the rest of the work to be done

for them.

The leading questions in this work are:

• What structural representation allows the capture and the extraction of
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changes caused by a user’s transformation?

• If the transformation is recursive with nested changes, how can we break this

recursion, and capture the intermediate steps to animate them correctly?

These questions are interesting in and of themselves, in addition to the overall

system being a suitably complex example that demonstrates the usefulness of

ChalkBoard. I will therefore be exploring these issues in further depth as well in

the later parts of the thesis, and displaying how this system effectively makes use

of ChalkBoard.
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Chapter 3

Background

3.1 Haskell

The ChalkBoard domain specific language is written in Haskell, a pure, func-

tional programming language [26]. Because of this, understanding the basics of

Haskell and how it works is therefore very helpful in comprehending this thesis.

3.1.1 Types

One of the first things that must be discussed when trying to briefly explain

the basics of Haskell is types. Haskell is a language that relies heavily on types

and a comprehensive type system. The basic types in Haskell are pretty much the

same as you would find in most language. There are Int, Float, Bool, String,

and many other fundamental types commonly found in most languages.

In Haskell, however, these types can be combined and extended in a large

variety of ways. The simplest forms of combining types are pairs, triples, and

so on, which use the “tuple” syntax. These structures simply combine two types

together to form one type, with a field for each of the sub-types. An example of
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this would be the type:

(Bool, Float)

This type is simply a combination of a Bool and a Float, where values of

both types must be passed around together. The values can also be accessed

individually, but never changed, because values in Haskell are immutable. In

order to change the values, a new pair must be constructed with the new desired

values.

Another way to group values together in Haskell is with lists. Lists in Haskell

are homogeneous structures, meaning that they can hold any type, but only one

type per instance. For example, a list of Int can be created and a list of Bool can

be created, but once they are created, no other types besides Int and Bool can

be used in these lists, respectively. Because of how commonly the list structure is

used, it is given a simple syntax in Haskell:

foo :: [Int] -- List of Ints

foo = [1,2,3,4]

This example also shows a couple other features in Haskell. In this example,

foo is specified to have the type [Int], or list of ints, by the :: operator. This

operator ascribes a type to an object, and can be thought of as saying “has the

type”, meaning that in this instance foo “has the type” list of ints. We also see

in this example that -- is the syntax used to add comments, as well as a basic

way of creating lists. This way of creating lists is simply to place the desired list

values inside square brackets, separated by commas. In this case, foo has been

assigned the list “1, 2, 3, 4”.

This same list (of 1 through 4) could also be created using the syntax [1..4],

which says to make a list of all the values from 1 to 4, counting by 1. This syntax

11



can also be used to count by other values than 1 if an example is given, such as

[2,4..10] or [1,1.1..2], which will construct lists from 2 to 10, counting by 2,

or 1 to 2, counting by 0.1, respectively.

There are also other, more complex ways of creating lists, such as list compre-

hensions:

listComp1 = [i*i | i <- [1..4]]

listComp2 = [(i,j) | (i,j) <- zip [1..] [-1,-2..]]

In the first list comprehension, each element of the returned list is equal to

i*i, where i is “drawn from” the list [1..4]. What this means is that, for the

first element of the returned list, the i varible will represent the first element of

the list [1..4], or 1. In the returned list, then, the first element will therefore

be 1*1. The rest of the list will follow the same pattern, eventually returning the

final result [1,4,9,16].

The second list comprehension is much the same except that the zip function

is used to zip two lists together into a new list of tuples. These tuples are then

drawn, one at a time, to represent the variables i and j. The two lists that are

zipped in this example are also infinite, one counting upwards from 1, and the

other counting downwards from negative 1. This list comprehension will therefore

also return an infinite list. It will return an infinite list of pairs of integers, starting

with “(1,-1), (2,-2), (3,-3) ...” and continuing onwards.

Because Haskell is a lazy, language, the values of this list are not actually

generated until they are needed. This is what allows infinite lists to be represented.

The first few values of the list can then be accessed by using the take function to

grab, for instance, the first 10 values from the list (take 10 listComp2), or the

first 1000 values from the list (take 1000 listComp2). The user must be careful
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with infinite lists, however, as using them in a recursive call can obviously result

in an infinite loop.

Although lists in Haskell have all this syntactic sugar to make them easier to

use, they are actually a good example of a Haskell data structure as well. The

Haskell declaration of a data structure representing lists may look something like:

data List a = Cons a (List a)

| Nil

There are actually quite a few new pieces of Haskell to examine in this short

code snippet. First, let’s begin with the data structure declaration itself. The

data key word is used here to declare a new datatype, List a. Before worrying

about what this a means, let’s first worry about the rest of the datatype definition.

A datatype in Haskell is kind of similar to a grammar. On the right hand side

of the equals sign, there is a set of “constructors.” These constructors are the

different options used to create instances of the datatype. An object of type

List a, therefore, must either be a Cons a (List a), or a Nil.

If it is Nil, then we are done and the object has been created. If it is

Cons a (List a), on the other hand, then there are some fields that need filling

in. The first is this a that has been ignored up until now. This a is a type variable

that designates the type of elements contained within the list. For instance, if we

are creating a list of ints, then the full type would be List Int, or if we were

creating a list of booleans, then the full type would be List Bool. Coming back

to the Cons constructor then, the a field is going to hold an element of the list,

either an Int, a Bool or anything else. The final List a field, then, is how lists

are created of an arbitrary length. This field holds another list of the same type,

creating an explicit recursion. In this way, the Cons constructor can be used over

and over to create a list of whatever length before it is eventually terminated
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by the Nil constructor. An example of our original list created using this data

structure would be:

list1 :: List Int

list1 = Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

3.1.2 Functions

Having explored the basic style of types in Haskell, the next fundamental

structure is a function. In Haskell, functions are actually treated like values, such

as Ints, and therefore can be passed around as arguments to other functions or

have almost anything else done to them that is possible to do with normal values

(such as creating a list of functions, for instance). The type and structure of a

basic function in Haskell is:

successor :: Int -> Int

successor i = i + 1

In this example, the successor function is of type Int -> Int, or Int “goes

to” Int. What this essentially means is that the function takes an Int values as a

parameter, and then returns an Int as a result as well. In this case, the argument

passed in is i and the returned value is i + 1.

A more complicated example of a function might be:

bar :: Int -> String -> String

bar 0 str = str

bar i str = newStr ++ show i

where newStr = str ++ str

This useless code shows a couple new other features of Haskell. The most

obvious is the ++ operator, which is simply an operator used to append strings or

lists together. More notably, we see how multiple argument functions are done in

14



Haskell. A new type is simply inserted into the type signature followed, meaning

that this function takes an Int and a String and returns a String. Functions

in Haskell can only return one value, although this value can be a complex type,

such as a tuple.

Another useful addition is the ”where” clause, which is simply a way to name

and store intermediate values. While this isn’t particularly necessary in this case,

it can be highly useful in more complicated functions. Perhaps one of the most

useful additions seen in bar is the idea of pattern matching. Pattern matching

is the matching of a variable to specific cases or patterns, which determines how

to proceed. In this instance, if the input Int is a zero, then the first definition

of bar is used, simply returning the old string. If, however, a different Int is

passed in, then the second definition is used. In this definition, the string is

concatenated with itself (in the where clause), and then with show i. show is a

built-in function that turns the given Int into a String of that integer. As can

be seen here, application in Haskell is done simply by placing the arguments after

the function, with nothing but white space in between.

If this value of i is not needed in the current function, the _ symbol can be

used to designate that anything will match, but that we do not need to know what

the value is. This could be used if the second definition was instead something

like:

bar _ str = str ++ str

Before it was mentioned that functions can actually be passed around as ar-

guments to other functions, or returned from those functions. This can done in

the following way:

15



curryFn :: (Int -> Int -> String) -> Int -> (Int -> String)

curryFn fn i = let newFn = fn $ i - 1

in

newFn

This code again has lots of new Haskell pieces in it. The first of these can be

observed in the type signature. The (Int -> Int -> String) is the type of the

function that is passed in. In addition, another Int value is passed in, and then

finally, a function of the type (Int -> String) is returned.

Looking at the actual function, the first thing we see is the let ... in clause.

This clause is pretty much the same as the where described above, except that

values defined inside it can only be used after the let, in the expression following

in. Values defined inside a where, on the other hand, can be used anywhere inside

that function.

Next, the $ operator used in this function is basically the same as putting

parenthesis around i - 1. It is used to designate that the rest of the current line

is all one argument, being passed to the function fn. Speaking of fn, this function

is of the type Int -> Int -> String, and here we are passing a single Int to

the function (i - 1), and then returning it. This is called “currying”, or partial

application of the function. We are passing one argument to the function now,

and the other Int must be passed to it later in order to get the resulting String.

In essence, the function is now storing the value i - 1 inside it and only needs

one more Int argument before it returns a resultant String, based on the two

Ints.

We can sometimes increase the number of arguments to functions as well:

newArgs :: (Int -> Bool) -> (Int -> Int -> Bool)

newArgs fn = (\ x y -> fn (x*y ‘mod‘ 10))

16



In this example, a “lambda” function is used. A lambda function is essentially

an unnamed function, or a function that isn’t bound to a symbol, such as newArgs.

In this case, by calling newArgs of a function of type Int -> Bool, we return a

new function that takes two Int arguments instead. In this new function, we

multiply the two Int arguments by each other, modulus by 10, and then pass the

result to the original function, which finally returns a Bool.

Note the usage of the back-ticks around the mod function. If a function in

Haskell takes two arguments, it can be used as an infix function instead of a

prefix function by simply placing back-ticks before and after the name of the

function. This can be useful in some instances to help make code more legible,

or to use functions in the same way as we think about them day to day, such as

with the mod function.

3.1.3 Classes and Useful Monads

Other useful features of Haskell that are utilized in this thesis are “classes” and

“monads.” Without getting too much into the implementation details and how

they work, let’s first look at some things that monads allow us to do in Haskell.

The first of these monads is the IO monad. The IO monad allows a purely

functional program to still have effects, such as interactions with the user. It also

allows functional programs to use “do-notation” in order to provide a different

style of syntax/structure that appears to be more imperative and stateful. A

typical usage of the IO monad may be:

main :: IO ()

main = do

str <- getLine

print str
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This code sample simply reads a line of text from the terminal into a string, and

then prints that string back out to the terminal. Notice the sequential ordering

of commands inside the do-notation, unlike traditional Haskell where a function

is a single expression. This sequence of commands is actually still turned into

a single expression and remains purely functional, but the do-notation and IO

monad allow the user to program imperatively like this when necessary.

Other useful monads include the State monad and the Writer monad. As the

name would suggest, the State monad simply allows for a state to be maintained

throughout the monad, so that certain variables can be accessed from any function

that remains inside that State monad. In reality, a simplified explanation of how

this monad works would be that it just passes the state around as a hidden

argument to each function inside the monad. In this way, the current state can

be accessed from anywhere inside the monad.

The Writer monad is similar, but instead an accumulation of certain ”write”

commands is maintained. For example, if we wished for some function(s) to

accumulate a list of Ints, we could use the Writer monad to do this. Each time

we add to the list, all subsequent calls and/or functions will now take the new list

and add more elements from there. We can then retrieve this list of Ints after

these functions have completed. The Writer monad just supplies a simpler means

to do this than by passing around our own list explicitly.

Moving on from monads, the final Haskell topic covered here that might be

useful in reading this thesis is the topic of classes. This includes both classes that

are built into Haskell, and creating our own new classes.

Classes in Haskell, generally take the form of:

class Functor f where

fmap :: (a -> b) -> f a -> f b
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While the Functor class is already defined in Haskell, user-created classes

are also declared in this same way. What this class does is make a claim about

whatever type is filled in for f. It says that for each f type that this class applies

to, the following functions must be implemented (in this case, fmap). What this

does is allow for all members of the class, Functor, to have some similar properties,

namely that the function fmap applies to them in a given way. This can be useful

in creating certain polymorphic functions, as described a bit later.

First, however, let’s look at how a type f that this class applies is declared.

This association of a given type with a given class in Haskell is called an “instance.”

A basic instance of Functor for our lists we created earlier would be:

instance Functor (List a) where

fmap _ Nil = Nil

fmap fn (Cons e l) = Cons (fn e) (fmap l)

This code again uses the pattern-matching feature of Haskell discussed earlier.

It says that for a given element of the list that is not the end (Cons constructor),

the function being fmapped (fn) will be applied to the element (e), and this same

mapping will be done for the rest of the list as well, recursively (fmap l). Once

the end of the list is reached (Nil), the recursion will stop. In essence, all fmap

does is apply the given function to each element in the given list. This can be

seen in the following example:

squares = fmap sq list

where list = [1,2,3,4]

sq i = i*i

The squares function in this case will produce the list [1,4,9,16], applying

the sq function to every element of the list. This example is obviously done with

the built-in lists, but behaves exactly the same. In fact, the built-in lists are
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already an instance of the Functor class (though the map function performs the

example same task, explicitly for lists only). This brings up an interesting point.

In what situations are classes like this actually better than just a single definition

for a certain type we are interested in?

One example of such an instance would be the following:

squareAll :: (Num a, Functor f) => f a -> f a

squareAll functor = fmap (\ x -> x*x) functor

Before we get to why this function is useful, there is first a new aspect of

how classes work to be discussed. This is the class constraints that are placed on

the squareAll function. The (Num a, Functor f) => part of the definition says

that a and f are type variables, but that a must be an instance of the Num class,

and that f must be an instance of the Functor class. These constraints guarantee

that the functions * and fmap will, respectively, apply to the given types a and f

whenever the function is used. Without these constraints, there would be no way

to know that the fmap function would apply to the structure we pass in.

Now that the types of the function have been sorted out a little bit, let’s

look at what it actually does. The function takes in some kind of Functor that

contains elements that are instances of Num. Because the variable functor must

be a Functor, the fmap function can be applied to it, and because the elements

inside functor must be instances of Num, the * operation can be used on them

as the lambda function is mapped over each element. This function, therefore,

squares every element contained inside the functor. This functor could be a list,

as defined above, or it could be a tree, a graph, or any other structure that holds

elements. The elements inside this structure can also be of type Int, Float,

Double, or any other type that is an instance of the Num class. This function can
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be used on any of these data structures in order to accomplish the same task,

squaring every element contained inside a functor.

This type of polymorphism is a powerful feature of Haskell. It allows for

simple functions such as the one above to be created once and applicable to many

different types and structures. Any class can be constructed as needed, and many

functions and libraries created to utilize these classes to make efficient, general

code.

Other classes used prominently in this thesis besides Functor include Foldable,

Applicative, and Traversable.

Foldable is another basic class, like Functor. Instead of applying a function

to each element of a structure in place, however, Foldable combines the elements

of a structure together. For instance, if we wish to sum together all the numbers

in a structure, Foldable would let us do this. We are combining the elements

together, using the + operator to create one element out of two. In this way, each

number of the structure can be added to the current number, finally resulting

in a total. The Foldable class allows these type of combining functions to be

used over a structure, resulting in one output element (and throwing away the

structure).

The Applicative class basically allows us to hold and apply functions within

a functor (Functor with application). What this means is that we could have

different functor elements that are of general types f a and f (a->b) and use

them together to get an f b. With Applicative, we can both hold functions

inside a functor (f (a->b), etc) and apply those functions while staying inside

the functor (using f (a->b) to change f a to f b).

The Traversable class is a little bit more complicated, combining parts of all
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the previously mentioned classes (Functor, Foldable, and Applicative), but for

now let’s just say that it allows us to traverse a data structure while also applying

actions at each different element. This allows us to perform actions that might

normally only be allowed in the IO monad, mentioned above, using the elements

of our data structure as input (with Functor, we could only modify the contents

inside the functor, not perform actions on them).

3.2 OpenGL

OpenGL also plays a role in ChalkBoard, and therefore some knowledge of

this system as well as basic concepts in computer graphics is helpful. Thankfully,

not a lot of OpenGL experience is needed to understand this thesis, however, as

the OpenGL implementation details are not required to comprehend most of the

concepts and contributions presented.

The first concept that may be helpful in reading this paper is how images

are represented and displayed on computers. Digital colors are often thought of

as having three main components: a red value, a green value, and a blue value.

Using these three color values, or RGB, most colors can be recreated. Often these

values will be either in the 0 to 255 range or the 0 to 1 range. In either case, lower

numbers for a value signify that less of the color is used, while higher numbers

signify that more of the color is used.

Images are then represented by two-dimensional arrays of these RGB color

values, where each array element represents a either pixel or the smallest discrete

dot of an image. These arrays are sometimes used directly to store images (such

as in the PPM image format), and in general are just how digital images are often

thought of.

22



Sometimes a fourth value is added to this set, however. This value is called

an “alpha” value. What alpha represents is the transparency of an image, with 0

being completely transparent, and 1 or 255 being completely opaque. This value

is exceedingly useful in representing objects such as glass or water, or placing

one image on top of another. If parts of an object or image in the foreground

are partially transparent, then the resulting color at a pixel may be influenced

by objects or images further back in the scene. There will be examples of this

throughout the thesis.

Some image formats support the saving of images with alpha values (such as

PNG), and others do not (such as PPM). All displayed images, however, must

have some RGB representation. This is because transparency is not a color, and

therefore monitors cannot represent it. Transparency is simply a property that

may affect the final color of light as it travels towards the eye. Displaying images

with transparency is usually achieved, then, by adding an opaque background of

white, black, or a checkerboard (often white and gray). The final image using this

method will have an RGB color, but the effect of transparency can still be seen.

The final computer graphics topic to be discussed has a lot more to do with

OpenGL itself. It is the topic of textures. In OpenGL, a texture is an array

of color, as described above, that is pinned to an object. Take, for instance,

the drawing of a wall in OpenGL. The wall itself can be constructed simply of

polygons, placed next to each other in the shape of a wall. These polygons can

have certain color properties and be displayed easily by OpenGL, allowing us to

see our wall on the screen. What if we want this wall to be a brick wall, however?

While color properties of polygons can be described in OpenGL, there is no magic

button to make a polygon look like a brick wall, instead textures can be used.
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Textures are basically images themselves. In our brick wall example, if we had

a picture of a brick wall, or a small pixel art image of a brick pattern, we could

map these images onto our polygons in order to make a much more convincing

brick wall. These textures are basically pasted onto the polygon in order to create

the effect of the image being part of the polygon itself. OpenGL allows us to tile

these images across the polygon, stretch them, or many other cool things. While

this is not exactly what textures are used for in ChalkBoard, the same mechanics

and methods are still used.
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Chapter 4

ChalkBoard

4.1 Functional Image Generation

As a first example of using ChalkBoard, consider drawing a partially-transparent

red square over a partially-transparent green circle. The image we wish to draw

looks like Figure 4.1.

Figure 4.1. Square over Circle

25



This image can be described using the following ChalkBoard specification:

board = unAlphaBoard (boardOf white) (sq1 ‘over‘ cir1) 1

where 2

cir1 = move (0.2,0.2) 3

$ choose (withAlpha 0.5 green) transparent 4

<$> circle 5

sq1 = move (-0.2,-0.2) 6

$ choose (withAlpha 0.5 red) transparent 7

<$> square 8

This code snippet specifies each aspect of the image. A circle (line 5) is colored

green with 50% transparency and placed on top of a transparent background (line

4). This circle is then moved slightly up and to the right (line 3). A square (line 8)

is colored red with 50% transparency placed on top of a transparent background

as well (line 7). This square is then moved slightly down and to the left (line 6).

Finally, the red square is placed on top of the green circle and all transparency is

removed by placing the scene on top of an opaque white background (line 1).

In order to understand the ChalkBoard language, we need to first think about

types. In ChalkBoard, the principal type is a Board, which represents a two-

dimensional plane of values. A color image is therefore a Board of color, or RGB.

A color image with transparency is a Board of RGBA. A region (or a plane where

a point is either inside a region or outside a region) can be denoted using Board

of Bool. Table 4.1 lists the fundamental types of Boards used in ChalkBoard.

Generally, image creation in ChalkBoard begins with using regions (Board Bool)

to describe basic shapes. ChalkBoard supports unit circles and unit squares, as

well as rectangles, triangles, and other polygons.
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Board RGB Color image
Board RGBA Color image with transparency
Board Bool Region
Board UI Grayscale image

type UI = Float Values between 0 and 1
type R = Float Floating point coordinate
type Point = (R,R) 2D Coordinate or point

Table 4.1. Boards and Type Synonyms in ChalkBoard

The primitive shapes provided in ChalkBoard have the following types:

circle :: Board Bool

square :: Board Bool

rectangle :: Point -> Point -> Board Bool

triangle :: Point -> Point -> Point -> Board Bool

polygon :: [Point] -> Board Bool

To construct a basic color image in ChalkBoard, a color can be mapped over

one of these regions. Typically, this color image will have the area outside the

region be completely transparent, and the area inside the region be a specific color.

This mapping can be done using the choose combinator, and the <$> operator:

choose (alpha blue) transparent <$> circle

In this code segment, we choose alpha blue to replace the true values inside

the region, and transparent to replace the false values outside the region. In

this way, a blue circle is created on a transparent background. The alpha function

lifts blue (normally an RGB value) into the RGBA space, giving it an alpha value

of 1, or completely opaque. The <$> operator is a map-like function which lifts

a specification of how to act over individual points into a specification of how to

translate an entire board. The types of choose and <$> are:

choose :: O a -> O a -> O Bool -> O a

(<$>) :: (O a -> O b) -> Board a -> Board b
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choose is a bool-like combinator that we partially apply, and <$> is an fmap-

like combinator. The type O a is an observable version of a. Although O is actually

an abstract type, it can be considered to have this trivial definition:

data O a = O a -- working definition; to be refined.

This type for O will be redefined and its implementation examined in Sec-

tion 4.5.

For the user, ChalkBoard provides all point-wise functions and primitives al-

ready lifted over O. For example, the colors, and functions like alpha, have the

types:

red :: O RGB

green :: O RGB

blue :: O RGB

transparent :: O RGBA

alpha :: O RGB -> O RGBA

Another important feature of a modularized system like ChalkBoard is the

ability to combine images together. Our boards of RGBA, or images with trans-

parency, can be combined (overlaid) into new boards of RGBA:

(choose (alpha blue) transparent <$> circle)

‘over‘

(choose (alpha green) transparent <$> square)

The over combinator is used here to lay one Board on top of the other. It’s

type is simply:

over :: Board a -> Board a -> Board a

These boards of RGBA can also be transformed into Board RGB, or true color

images without transparency. This translation is done using the unAlphaBoard

function and any default background board (here we choose a blank, white board):
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unAlphaBoard (boardOf white) $

(choose (alpha blue) transparent <$> circle)

‘over‘

(choose (alpha green) transparent <$> square)

unAlphaBoard removes the alpha (transparency) component of a Board RGBA

by laying it on top of an opaque (RGB) background board. This leaves a Board RGB

image without transparency.

As well as translating point-wise, ChalkBoard also supports the basic spatial

transformation primitives of scaling, moving and rotating, which work over any

type of Board:

scale :: Float -> Board a -> Board a

scaleXY :: (Float,Float) -> Board a -> Board a

move :: (Float,Float) -> Board a -> Board a

rotate :: Float -> Board a -> Board a

Finally, ChalkBoard also contains a primitive for constructing a (conceptually

infinite) Board of a constant value, which has the type:

boardOf :: O a -> Board a

With all of these features, ChalkBoard users can begin to construct images

by combining primitives and translating them both in space and representation,

ultimately building a Board RGB to be displayed. ChalkBoard does contain many

other helpful features that we don’t have time to explore in this thesis, however,

such as importing of images as Board RGBA and font support.

4.2 An Example: Drawing Lines

Now that we have our fundamental primitives and combinators, we can begin

to build more interesting, complex combinators. A straightline combinator
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can be constructed, for instance, which takes two points and a width value, using

them to construct a line region:

straightline :: (Point,Point) -> R -> Board Bool

straightline ((x1,y1),(x2,y2)) width =

move (x1,y1)

$ rotate (pi /2 - th)

$ rectangle ((-width/2,0),(width/2,len))

where

(xd,yd) = (x2 - x1,y2 - y1)

(len,th) = toPolar (xd,yd)

(a) (b) (c)

Figure 4.2. How straightline works

Figure 4.2 shows how the straightline function works. Assuming the dots

are the start and end points of our line, and the bottom left intersection is (0,0),

we can draw a rectangle of the right size and width (a), rotate it (b), then move

it to the correct location (c). There are other ways that straightline could be

written, but this way is compositional, a style that works well in ChalkBoard.

Now that we can draw lines of arbitrary thicknesses between arbitrary points,

curved lines can also be simulated using many of these straight segments together.

To do this, the outerSteps function is used, which counts a specified number of

steps between 0 and 1, inclusive:

> outerSteps 5

[0.0,0.2,0.4,0.6,0.8,1.0]
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The result in this instance is a set of 6 values, representing the 5 steps of size

0.2 between 0 and 1. Using outerSteps, a function that represents a curved line

can be sampled. The curved line is emulated by drawing straight lines between

each pair of sample points. Any infidelities at the joints of these lines are filled in

with small dots the size of the width of the lines:

functionline :: (UI -> Point) -> R -> Int -> Board Bool

functionline line width steps = stack

[ straightline (p1,p2) width

| (p1,p2) <- zip samples (tail samples)

] ‘over‘ stack

-- not the first or last point

[ dotAt p | p <- tail (init samples) ]

where

samples = map line (outerSteps steps)

dotAt p = move p $ scale width circle

3 segments 10 segments 50 segments

Figure 4.3. Examples of functionline

Figure 4.3 gives an example of using functionline on a function with 3, 10,

and 50 straight line segments. The figure clearly shows how with a higher number

of samples, the quality of rendering the curved line improves.

Although presented here as an example of the style of ChalkBoard, both of

these functions are actually already defined in the ChalkBoard library. They were

chosen for this example because they clearly show how ChalkBoard compromises
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between continuous boards, and discrete components on these boards. Collec-

tively, these ChalkBoard combinators and the many others like them give a clean

and productive system for scripting images.

4.3 Considerations in Compiling ChalkBoard

ChalkBoard has a relatively simple semantic model. A Board of α is a field of

α-values over R2, where R2 is a floating point coordinate for two dimensions.

Board α = (R, R) → α

This is the same model used in Pan [6], on which the ChalkBoard language is

based. Pan uses this model of a function directly to implement a Board-like

object. Although ChalkBoard shares this same semantic model, however, we

desire a different implementation.

In ChalkBoard, a Board is abstract, specifically to allow the possibility of

our rendering optimizations. In Pan, the equivalent of Board is implemented

as an explicit function, directly guided by the semantic model. Our choice of

abstraction limits the language to using only the built-in combinators for Board

transformations. This is a definite restriction, especially when compared to the

full expressiveness of Pan, but there are almost always ways of accomplishing the

same tasks, given our combinators, or certain tricks that can be played when there

are not.

Our choice does allow for more rendering efficiency than the original functional

representation, however. ChalkBoard is intended as a system for constructing

complex images, consisting of perhaps tens of thousands of individual components.
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The original functional representation normally prevents this from being efficiently

rendered, though techniques like the worker/wrapper transformation [13] could

perhaps be used to translate an explicit function into something like our abstract

representation.

Consider the ChalkBoard image way back in Figure 4.1. This example can be

used to illustrate a number of the challenges in optimizing a chalkboard image

specification. Figure 4.1 was generated by first building a Board Bool for each of

the two basic shapes and using the <$> operator on each board to convert it into

a Board RGBA. move was then used to move the boards to the desired locations.

Finally, the two boards are overlaid, using over, and the alpha channel is removed

for rendering the scene as a color image.

The basic plan of attack is to augment the representation of a Board internally,

replacing the shape primitives with more complex information about what is being

rendered, and attempting to translate our tree of operations into the drawing of

polygons. Rendering polygons is something OpenGL does extremely efficiently, so

this translation will hopefully be able to lend the power of OpenGL to our system.

4.4 Capturing the ChalkBoard DSL

ChalkBoard is a language for describing boards, which are similar to functors.

The language provides mechanisms for describing the creation of boards, using

spatial transformations and applying a functor-style map. In this section, we

consider how to express all three of these aspects with a deep embedding of the

ChalkBoard DSL.
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Constant boards are captured using a Constant constructor, inside Board:

data Board a where

Constant :: O a -> Board a

...

Here the GADT [27] syntax is used for Board because of the ability to de-

clare constructors that are specialized to monomorphic instances, and each of the

principal constructors is presented individually.

Primitives shapes, like circles and squares, are regions, or Board Bool. They

are represented inside the Board data structure by a list of points, which mark a

convex boundary around the region. For these shapes, the Polygon constructor

is used:

data Board a where

Polygon :: (...) -> Board Bool

...

Representing squares or like shapes in this style is easy, using the corner points,

but what about the points around a circle? There are infinitely many points on a

circle. That is, there are infinitely many points (x,y) that solve the equation:

√

x2 + y2 = r

Graphical rendering systems approximate circles using a small number of these

points on a small circle and a larger number of them on a large circle. At this point,

we appeal to a common idiom of functional programming and defer the decision

of how many points to use in approximating a circle with a simple function. The

full type of the Polygon constructor is therefore:

data Board a where

Polygon :: (Float -> [Point]) -> Board Bool

...
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The Float argument to this function is the “resolution” of the final polygon.

Specifically, it is an approximation of how many pixels a line of unit length should

affect. Knowing this, the ChalkBoard functions of square and circle can both

now be defined:

square :: Board Bool

square = Polygon (const [(-0.5,-0.5),(-0.5,0.5),(0.5,0.5),(0.5,-0.5)])

circle :: Board Bool

circle = Polygon $ \ res ->

let ptcount = max (ceiling res) 3

in [ (sin x/2,cos x/2)

| x <- map (* (pi/(2 * fromIntegral ptcount)))

(take ptcount [0..])

]

sin and cos are used in circle to find the x and y points on a unit circle

(after scaling), and the number of points is dictated by the size of the final circle.

The point count formula used here generates reasonable images, but remains open

to further tuning. In addition, we may consider using the OpenGL functions to

generate circles in the future, offloading this fine tuning onto the experts.

Spatial transformations are also handled using a single Board constructor,

which combines all the relevant information:

data Board a where

Move :: (Float,Float) -> Board a -> Board a

Scale :: (Float,Float) -> Board a -> Board a

Rotate :: Float -> Board a -> Board a

...

move :: (Float,Float) -> Board a -> Board a

move (x,y) = Move (x,y)

scale :: Float -> Board a -> Board a

scale w = Scale (w,w)

35



rotate :: Radian -> Board a -> Board a

rotate r = Rotate r

Finally, we also have our functor map (or fmap) like operators. Consider the

following attempt at a fmap constructor:

data Board a where

Fmap :: forall b . (b -> a) -> Board b -> Board a -- WRONG

...

(<$>) = Fmap

This constructor could be used to successfully typecheck a ChalkBoard-like

language, but we run into problems when trying to walk the Board tree during

compilation. Here, b can be any type; the type information about what it was has

been lost. An <$> over a Board Bool will have completely different behavior than

an <$> over a Board RGB. When walking the tree and performing our attribute

grammar interpretation, we get stuck.

This problem is addressed in ChalkBoard by assuming a pointwise function is

a function over our observable type, O, giving the corrected:

data Board a where

Fmap :: forall b . (O b -> O a) -> Board b -> Board a

...

(<$>) = Fmap

ChalkBoard requires the O type to hold runtime type information, as described

in Section 4.5. It may first appear that using O just postpones the problem, and

does not solve it. By forcing pointwise manipulations to be expressed in the O

world, however, the user’s intention can be observed without requiring that every

function be translated into a Board equivalent.
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With these constructors, We can now construct basic abstract syntax trees for

ChalkBoard, using the Board data type. For example:

scale 2 (choose red green <$> square)

This ChalkBoard specification represents a scaled version of a red square on a

green background. It constructs the Board tree:

Scale (2,2) (Fmap (...) (Polygon (...))

The specific polygon points contained inside the Polygon constructor can be

retrieved when compiling for OpenGL because we know the size of the image in

context. The challenge, then, is how to extract the first argument to Fmap. In

order to do so, the observable type, O, must be used.

4.5 O, the Observable

The data type O, nicknamed the observable, is a mechanism used to observe

interesting values. The idea is that an observable can simultaneously have both

a shallowly and deeply embedded interpretation of the same expression. The

shallow interpretation can be used to directly extract the value of any O expression,

while the deep interpretation can be examined to find out how that result was

constructed. Specifically, the data definition for O is:

data O a = O a E -- abstract in ChalkBoard API

E in this definition is a syntax tree of possible O expressions. In limiting the

ways of building O, we allow O expressions to only be constructed out of primitives

we know how to compile. In ChalkBoard, E has the definition:
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data E = E (Expr E)

data Expr e

= Var Int | Lit Float | Choose e e e

| O_Bool Bool | O_RGB RGB | O_RGBA RGBA

| Alpha UI e | UnAlpha e e

...

Implicit recursion is used inside Expr so that this functor-style representation

of Expr can be shared between the expression inside O and the compiler, for reasons

explained in [12].

As a basic example of how primitives are constructed, choose is defined as:

choose :: O a -> O a -> O Bool -> O a

choose (O a ea) (O b eb) (O c ec) = O (if c then a else b)

(E $ Choose ea eb ec)

Primitive O values can also be built using the Obs class:

class Obs a where

o :: a -> O a

Only instances of Obs can construct objects of type O a. ChalkBoard uses this

class to provide a means of taking a value of Bool, RGB, RGBA, or Float and lifting

it into the O structure using the o function. In many ways, this is similar to a

restricted version of return for monads, or pure for applicative functors [24].

So how is a function actually observed? This is done by first giving a dummy

argument and then observing the resulting expression. The Expr type above

contains a Var constructor specifically for this purpose. If we take the example:

choose red green :: O Bool -> O RGB

We can pass in the argument ‘O ⊥ (Var 0)’ to this function, and get the result:

O ⊥ (E (Choose

(E (O_RGB (RGB 1 0 0)))

(E (O_RGB (RGB 0 1 0)))

(E (Var 0))))
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The structure of the choose and the arguments are completely explicit. Using

this trick, the function argument to the functor can now be observed because the

Fmap constructor of Board requires the argument and result type to both be of

type O. Ignoring the type change between the function argument to Fmap and its

tree representation, our earlier example from the end of Section 4.4 can be parsed

into:

Scale (2,2) (Fmap (E (Choose

(E (O_RGB (RGB 1 0 0)))

(E (O_RGB (RGB 0 1 0)))

(E (Var 0))))

(Polygon (...))

)

This result can now be translated into the ChalkBoard Intermediate Repre-

sentation.

4.6 The ChalkBoard IR

Both inspection of the Board object itself and observation of O structures are

used to construct our ChalkBoard abstract syntax tree. From here, compilation

is a matter of implementing the attribute grammar interpretation over this tree

in a way that leverages OpenGL’s polygon rendering abilities. These trees are

translated by the compiler into ChalkBoard Intermediate Representation (CBIR),

and then the CBIR is interpreted on the fly into OpenGL commands.

Figure 4.4 gives the syntax of the CBIR. There are two main commands:

• allocate, which allocates a new, fixed-sized buffer in graphics memory.

• buffersplat, which takes a specified polygon from one buffer and renders it

onto another buffer.
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Statement stmt ::= allocate dest (x,y) back Allocate Buffer
| buffersplat dest src pointmaps Splat Texture
| colorsplat dest col points Splat Color
| delete src Deallocate
| save src filename Write to file
| exit

Background back ::= col Background Color
| Ptr Pointer to an Image

Color col ::= RGB RGB Constant
| RGBA RGBA Constant

dest,src ::= buffer-id

pointmap ::= (point,point)
pointmaps ::= pointmap1, pointmap2, . . . , pointmapn n ≥ 3

point ::= (u,v)
points ::= point1, point2, . . . , pointn n ≥ 3

x,y ::= int
u,v ::= float

Figure 4.4. ChalkBoard Intermediate Representation

buffersplat takes a source buffer, a destination buffer, and a sequence of

point maps, each of which is a mapping from a point on the source board to

a point on the destination board. This mapping capability is both powerful and

general. Among many other things, it can be used to simulate scaling, translation,

or rotation. This is the command that does the majority of the rendering work

inside ChalkBoard.

As well as the two principal instructions, there are also commands in the

CBIR for deallocation of buffers, saving buffers to disk images, and colorsplat,

a specialized version of buffersplat where the source is a single color instead of

a buffer.
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4.7 Compiling ChalkBoard to ChalkBoard IR

When compiling ChalkBoard, the AST is traversed in much the same way as

the attribute grammar example above, but instead of passing in the inherited at-

tribute (x, y) many times, we only walk over the graph once, providing as inherited

attributes:

• a basic “quality of the required picture” argument, which in effect tells a

Board how much it is contributing to the final image;

• any rotations, translations, or scaling performed above the current node;

• and an identifier for a previously-allocated target buffer.

A set of compilation schemes for each Board type are then used. In general,

the following compile steps are performed:

• Constant Boards are compiled into a single CBIR splat onto the target

board.

• Move, Scale, and Rotate update the inherited attribute context, recording

the movement required, and then the sub-board is compiled with this new

context.

• Over causes its child boards to be interpreted according to the type of Board:

– For Board Bool and Board RGBA, Over draws the back (second) board,

and then draws the first board on top of it.

– For Board RGB, Over simply compiles the first board (since it is opaque).
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• For Fmap, the type of the map is inferred by observing the type of the

functional argument to Fmap, using the capabilities provided by O. The

bridging code for the Fmap, compiled from the reified functional argument,

is then emitted and the relevant compilation scheme for the sub-board is

called.

The compilation scheme for a Board Bool has one extra inherited attribute,

the colors to use for True and False values. The primitive Polygon, which is

always of type Board Bool, is translated into a colorsplat of this True color

onto a backing board that is initialized to the False color.

The key to the compiler is the compilation of an Fmap that translates a

Board Bool into a Board RGB (or Board RGBA). For example:

( Fmap f (Polygon (...) :: Board Bool) ) :: Board RGB

f in this example has the type O Bool -> O RGB. To compile the inner

Board Bool syntax tree, the True (or foreground) color, and False (or back-

ground) color must be computed. In order to find these colors, f is simply applied

to True, and then to False, giving the two colors present on the board.

4.8 Interpreting ChalkBoard IR

The ChalkBoard IR is interpreted by the ChalkBoard Back End (CBBE).

This CBBE is ran in a separate thread from the rest of ChalkBoard. After it

has been initialized, it waits on an MVar (a type of concurrency “mailbox” used

in concurrent Haskell programs) for lists of CBIR instructions from the compiler.

These CBIR instructions are then expanded and executed inside OpenGL. After

these instructions are executed, a specified final board is printed out onto the
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screen by the CBBE. A new set of instructions can then be passed to the CBBE

in order to repeat the process. Any of the created boards can also be saved to a

file using the save CBIR instruction.

The concept of a Board in ChalkBoard translates roughly into an OpenGL

texture inside the CBBE. For each new buffer that is allocated in the CBIR

instructions, a new OpenGL texture is created in the CBBE. These new textures

can have a variety of internal formats based on the color depth needed by the

board (Luminance, RGB, or RGBA) and either have an initial color specified by

the CBIR instruction or an initial image that is read in from an image file.

These textures can then be texture-mapped onto one another in order to cre-

ate the effects of buffersplat in the CBIR. The preferred way to do this is using

the OpenGL Framebuffer object, or FBO. The FBO saves a lot of overhead by

allowing images to be rendered straight into a texture instead of onto the screen,

from which images would need to be copied back into a texture. When splatting

one board onto another, the back or destination texture is attached to the current

color attachment point of the FBO, and then the front or source texture is simply

texture-mapped on top of it using the pointmaps specified in the CBIR instruc-

tion. The resulting image is automatically rendered into the destination texture.

There is no additional copying necessary because the effects have already been

stored in the destination texture directly.

To support older graphics cards and drivers, an alternate method to using

FBOs is also implemented. This alternative method is not as well supported,

however, so its usage should try be avoided if possible. The main difference

between the methods is that drawing in the alternative method must be done

to the default screen Framebuffer and then copied back out into the appropriate
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destination texture using glCopyTexImage. Because the CBBE use OpenGL’s

double buffering, the images are drawn to the buffer and then copied out without

ever being swapped onto the screen. In this way, the actual step-by-step drawing

is still invisible to the user but will take considerably longer than when using

FBOs because the resulting image structure must be copied back out into the

destination texture.

As an example of the performance difference between the two methods, a small

micro-benchmark, called ChalkMark, was written to stress test splatbuffer by

rendering 5000 triangles onto a buffer 100 times. When running ChalkMark on a

OSX 10.5 with an NVIDIA GeForce 8600M GT running OpenGL 2.0, the CBBE

currently achieves about 38,000 splatbuffer commands per second when using

an FBO, versus about 11,000 splatbuffer commands per second when using the

alternative glCopyTexImage. Even as the CBBE is further tuned, we expect the

difference between the two methods to remain this significant. Thankfully, most

systems in use today should have graphics cards with FBO support, with the

glCopyTexImage method providing only backwards compatibility.

The colorsplat CBIR instruction also uses these two methods for its im-

plementation in the CBBE. It works in much the same way as the buffersplat

instruction except that a simple, colored polygon is drawn onto the destination

texture instead of mapping a second texture onto it. This removes the needless

overhead of allocating extra 1x1 textures just to use as basic colors.

Although there remains considerable scope for optimizing the use of the OpenGL

pipeline, and many improvements could be made to our ChalkBoard compiler as

well, the current performance of ChalkBoard has been more than sufficient for

rendering simple animations in real time.
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Chapter 5

Active

5.1 The Active Language

The conceptual framework behind the Active language is that all animations

have a beginning, a middle, and an end. The language treats the time component

of an animation as a value that increases from 0 to 1. Before each animation

begins, its time value is considered to be 0. When the animation starts, the time

value begins to increase from 0 to 1. Finally, once the animation has finished, its

time value will remain 1. This idea of having a pre-life value of 0 and a post-life

value of 1 enables animations to have a specific start and end state that occurs

for these values.

This system also allows us to have separate time progressions for separate

animations, instead of just one global progression. Each independent animation

can be built assuming it has its own, unique 0 to 1 time progression. These

individual animations can then be composed together. For instance, they could

be combined to occur at the same time, one right after the other, or with times

explicitly given by the user but independent from the creation of the animation.
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The timing relative to other animations is kept completely abstracted from how an

animation actually behaves. This is because each animation function will always

be given time values between 0 and 1. The only things that change are when the

program starts to give it values above 0 and how many values within this range

it is given (50, 100, 1000, etc). Abstracting the global timing of an animation in

this way allows for much greater flexibility. Animations can be created once and

then used in multiple places within a program, or at different animations speeds.

Animations can also be constructed compositionally by building up smaller pieces

to be combined together in interesting ways.

The implementation of the Active language accomplishes this time abstraction

using the Active data type and a few primitive functions. The Active data type

is defined as:

data Active a

= Active Rational -- start time

Rational -- stop time

(Rational -> a) -- what to do in this time frame

| Pure a

For the Active constructor, the two Rationals are used to hold timing in-

formation, the start and stop time of the current object. The function takes a

Rational, representing time values, and returns an object corresponding to that

time value, such as a ChalkBoard Board for an animation. While generally the

type of an Active used for animation is Active (Board RGBA), any type can

actually be used (to generate values of that type over time). Getting back to the

definition, the Pure constructor is how objects that should remain constant are

represented in the Active world. If an object doesn’t change over the course of a

program, it is stored as Pure.
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Active is also an applicative functor, which, among other things, is particu-

larly helpful in applying multiple animation functions to the same initial board all

at once. This ability allows, for instance, an object to be moved over time while

simultaneously being scaled (made larger or smaller). In theory, any number of

animation functions can be applied to a board like this, though obviously there

are practical limits. Active being an applicative functor is also useful in creating

combinators and predefined functions, as can be seen in Section 5.2. The instance

definitions for Functor and Applicative are given below:

instance Functor Active where

fmap f (Active start stop g) = Active start stop (f . g)

fmap f (Pure a) = Pure (f a)

instance Applicative Active where

pure a = Pure a

Pure a <*> b = fmap a b

Active start stop f <*> Pure a = Active start stop (\ i -> (f i) a)

a0@(Active start0 stop0 f0) <*> a1@(Active start1 stop1 f1) =

Active (min start0 start1) (max stop0 stop1)

$ \ i -> f0 (boundBy a0 i) (f1 (boundBy a1 i))

Given these instances and the datatype above, primitive functions can now be

created to use these structures. One of the first and most primitive members of

the Active DSL is age:

age :: Active UI

age = Active 0 1 f

where f n | n < 0 = error $ "age value negative" ++ show n

| n > 1 = error $ "age value above unit (1)" ++ show n

| otherwise = fromRational n

age is actually a simple Active object, with a start time of 0 and a stop time

of 1. This Active also stores a basic function, which takes a Rational, does

some error checking, and returns it as a UI. A UI in ChalkBoard is simply a
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type synonym for Float, but is used to represent only values on the interval [0,1].

Because ChalkBoard uses the UI type, and all values returned should be between

0 and 1, the function stored within age is made to return a UI by giving age the

type annotation of Active UI.

Using age is the primary method of creating an Active object. Once an

Active has been created using age, all that must be done to create a basic ani-

mation is fmap a function over it. This function can do just about anything, as

long as it takes a UI parameter, representing time. For example, a simple function

for animating a ChalkBoard rotate over time could be written as:

-- A simple Active rotate (not actually implemented this way)

activeRotate’ :: R -> Board a -> Active (Board a)

activeRotate’ radians brd = fmap (\ui -> rotate (ui*radians) brd) age

This function takes a Board a and an amount of radians to rotate this board

by over time. It uses the UI from age as a percentage of how far to rotate a

given frame towards the final goal of radians (because time goes from 0 to 1 once

the animation begins). Because the lambda function used in the fmap over age

returns a Board a, the type of the Active has changed from UI to Board a. This

function, therefore, produces an Active that returns images, and can successfully

be played back as an animation. Playback is described at the end of Section 5.3.2.

So why isn’t this definition used to implement rotation-over-time in the Active

library? This will be discussed more shortly, but the main reason can be found

in the type of activeRotate’. activeRotate’ takes a Board, but produces an

Active. Often in animation, many transformations, as well as other types of

animation, are performed at the same time. If an Active is created that scales

an object, for instance, and that object should also rotate at the same time,

activeRotate’ cannot be used. This function only allows creation of a new
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Active, not additions to an existing Active. While two sets of functions could be

constructed to accomplish each of these tasks separately (creation vs. addition),

this would be a waste of the advantages gained from using an applicative functor.

The cleaner system, using these applicative functor properties, is described in

Section 5.2.

Looking at the activeRotate’ function again, the abstraction the Active DSL

provides can begin to be seen. Notice how the creation of this animation is

completely independent from any timing that will eventually be applied to it.

This same function can be used to create rotations that take 1 second or 100

seconds, at the beginning of a program or the end. The timing is applied to each

Active object later, using either basic functions or built-in combinators.

Two of these primitive Active functions for handling timing effects are scale

and mvActive:

instance Scale (Active a) where

scale _ (Pure a) = Pure a

scale u (Active start stop f) = Active (scale u start) (scale u stop)

$ \ tm -> f (tm / toRational u)

mvActive :: Float -> Active a -> Active a

mvActive _ (Pure a) = Pure a

mvActive d (Active start stop f) = Active (toRational d + start)

(toRational d + stop)

$ \ tm -> f (tm - toRational d)

When applied to an Active object, scale will stretch or shrink the animation

time of the object. This can be used to make certain animations longer or shorter.

mvActive, on the other hand, is used for translating time values. When applied

to an Active object, mvActive can move an animation forwards or backwards in

time, with regards to the rest of the scene. This function, therefore, can be used

to put parts of an animation in order, or to begin animations at slightly offset

times.
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Two of the last basic Active functions are over and after:

instance Over a => Over (Active a) where

over a1 a2 = fmap (\ (a,b) -> a ‘over‘ b) (both a1 a2)

both :: Active a -> Active b -> Active (a,b)

both a b = pure (,) <*> a <*> b

after :: Active a -> Active b -> Active a

after act@(Active low _ _) (Active _ high _) =

mvActive (fromRational (high - low)) act

These functions both take two Active’s as parameters and specify their rela-

tion. over is another instance of the ChalkBoard function with the same name.

It takes the two Active parameters and combines them into one, with both an-

imations occurring one of top of the other. This requires that the a and b of

Active a and Active b must be types that are compatible with the ChalkBoard

version of over (namely, Board’s). The after function, on the other hand, simply

changes the time values of the first Active so that it will occur immediately after

the second Active finishes. Both of these functions are especially important for

building up combinators to manage the ordering of animations in a scene.

5.2 Active Combinators

Having explored the primitive functions of the Active language, how can these

operations be made easier for the user? For starters, many timing combinators

have been added to make organizing animations much simpler. Perhaps the most

important of these is the flicker function, of type:

flicker :: (Over a) => [Active a] -> Active a

This function takes a list of Active objects and combines them into one Active

object, with each animation in the list being executed one right after the other.
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Each of the successive animations is also placed on top of the previous ones, so

that parts of a scene can be built up independently and still displayed together.

This is again helpful in terms of increasing the amount of abstraction in a scene.

Now, independent object animations can be built up completely separate, which

allows for greater flexibility in changing certain aspects of a scene without affecting

others, or managing the ordering of the scene without affecting what happens

during each of the individual animations.

In addition to ordering the animations, the amount of time each takes to

animate is also essential to a scene. The way this is primarily controlled in Active

is with the taking function, of type:

taking :: R -> Active a -> Active a

The taking function stretches or shrinks the length of an animation based

on the R value. This R value can be thought of for now roughly as the amount

of seconds the animation should take. If this animation is combined with other

animations and then the taking function is used again, however, then the old

values are just used to determine what percentage of the new time should be

spent on the different sub-animations. Generally, taking is easiest to use in close

conjunction with the flicker function, though it doesn’t have to be. This keeps

most of the timing information in one place, even if one doesn’t directly affect the

other. A typical example of how these functions are used might be:

let anim = flicker [ animStep1

, taking 3 animStep2

, taking 0.5 animStep3

]
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In addition to timing, many other types of combinators are also included in

Active to help make common animation tasks simpler. The function used to create

many these combinators is the addActive function:

addActive :: (UI -> a -> b) -> Active a -> Active b

addActive fn act = (fmap fn age) <*> act

This function is a simple abstraction which helps to create many of the stan-

dard animation functions in Active. It takes a function of type UI -> a -> b,

which represents how to change an object over time. Typically for animation,

these a’s and b’s are boards of some type. The Active a, in that case, would

contain the previous animations on the Board. The input function will use the

UI time values to modify the Board over time. addActive is especially helpful

in adding new animations to existing ones (already an Active) without having

to explicitly turn each function into an Active first. What happens, however,

when starting with just a Board and an initial animation to be applied? Because

Active is an applicative functor, the pure function can be used to simply lift the

Board into the Active world (with the Pure constructor). addActive can then

be used like normal to start adding animations to it.

addActive is also helpful in creating animation combinators. It is used to

create many predefined functions which combine elements of both Active and

ChalkBoard, in order to make some common animation tasks simpler. For in-

stance, moving boards over time is a very common animation task. The user

shouldn’t need to create their own version of this same animation function over

and over in every project. Instead, the Active extension to ChalkBoard provides

this move-over-time combinator, using the ChalkBoard move function:

activeMove :: (R,R) -> Active (Board a) -> Active (Board a)

activeMove (x,y) = addActive $ \ui -> move (ui*x,ui*y)
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Other common actions defined using addActive are the remaining transfor-

mation functions (activeScale and activeRotate), as well as functions for

making an Active appear/disappear (activeAppear, activeTempAppear, and

activeDisappear). All of the Active versions of the ChalkBoard transformations

(move, scale, and rotate) are versions of those functions that are applied over

time. The appear/disappear functions tell a given Active whether it should only

be visible once its time value is greater than 0 (activeAppear), when its time

value is between 0 and 1 (activeTempAppear), or up until its time value is 1

(activeDisappear). Unless one of these functions is applied, all Active’s will be

visible for the duration of the scene, regardless of when their animations actually

occur. Example usage of these functions can be seen in Section 5.3.1.

5.3 Case Study

In order to test the features and usability of Active, a pre-existing anima-

tion was recreated in the Active/ChalkBoard system. This was done both to see

how close Active and ChalkBoard could get to the original, as well as how dif-

ficult it would be to do so. The animation chosen for this experiment was an

animated proof of the Pythagorean Theorem that can be found on Wikipedia at

http://en.wikipedia.org/wiki/Pythagorean theorem. This example looked nice,

served a useful purpose, and was exactly the type of animation that should be

easy to create in the Active/ChalkBoard system. It also was complicated enough

to be a good test of the system’s features, without being too complicated as to

prevent new users, who haven’t seen any of these features before, from following

along. In addition to the included snippits, the full source code of this example

can be found in Appendix A.
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In creating this and other examples, a general structure for ChalkBoard an-

imations using Active has begun to appear. First, the individual pieces of the

animation are constructed. This stage includes building each of the separate

Active (Board a) objects that will make up a part of the final scene. These

individual animation chunks could be such things as objects moving, rotating,

changing colors, or a ton of other possibilities.

The second stage of construction is stringing all of these smaller pieces together

into a coherent whole using functions such as flicker. After the animation is

complete, it can then be played back, saved, or manipulated however the user

wishes. While creating animations using this structure is by no means the only way

to do so, it has proven to be effective for the examples built thus far. Therefore,

this case study will follow the same structure, explaining how each stage was

completed and some of the functions that were used. In general, a basic template

for creating an animation in this way looks like the following:

let animStep1 = ...

animObject = ...

animStep2 = ... f animObject ...

animStep3 = ... g animObject ...

let wholeAnim = flicker [ animStep1, animStep2, animStep3 ]

5.3.1 Stage 1: Building Animation Pieces

In starting the Pythagorean example, construction is first begun on all of the

individual animation pieces that will be used in the scene. The first of these is a

basic 3-4-5 triangle in the middle of the screen:
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let triangle345 = triangle (-0.2,0.15) (-0.2,-0.15) (0.2,-0.15)

triLines = pointsToLine [(-0.2,0.15), (-0.2,-0.15),

(0.2,-0.15), (-0.2, 0.15)] 0.004

mainTriangle = (choose (alpha black) transparent <$> triLines)

‘over‘

(choose (alpha yellow) transparent <$> triangle345)

The 3-4-5 triangle is constructed by giving the points (-0.2,0.15), (-0.2,-0.15)

and (0.2,-0.15) to the triangle constructor. This creates a Board Bool of the

triangle. A black outline around this triangle is also needed to match the original

animation. To do this, the pointsToLine function is used, which takes a list of

points and a line width, drawing a line between all adjacently listed points. Finally,

both Board Bool objects are then given their colors by using the choose function.

This makes the lines black over a transparent background (so the triangle can be

seen behind them) and the triangle yellow with a transparent background (to see

the other objects in the scene).

While this code does create a simple triangle, the triangle itself is never actually

displayed in the animation. Instead, this base triangle is transformed in many

different ways to create all of the other triangles that are displayed in the scene.

For instance, the initial triangle shown in the animation is achieved by scaling

mainTriangle by 1.5. The animation for shrinking and moving this new triangle

into its final position is achieved by adding Active functions:

let movingTriangle = activeMove (0.15,0.2) $ activeScale (2/3) $

pure $ scale 1.5 $ mainTriangle
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First, the triangle is lifted into the Active world using pure. Then, animation

functions can be added to it. In this instance, an activeScale of 2/3 and an

activeMove of (0.15, 0.2) are applied. Snapshots of the resulting animation are

shown in Figure 5.1.

Figure 5.1. movingTriangle animation

As a quick note, all of the font for this animation was actually added in last

and is contained within the second let clause in the source code. For this case

study, only the creation of the actual, shape-based animation will be covered, and

not the insertion of font. This is because the only interesting problem involving

the font is when to make the font labels appear and/or disappear. How to do this

is already shown numerous times in the shape-based animation, however, and so

the repetition was left out.

Moving on the with example, the next step is to create three identical but

rotated triangles, as displayed in the Wikipedia graphic:

let otherTriangles = [ activeAppear $ pure $ position i $ mainTriangle

| i <- [1..3] ]

position i = rotate (-i*pi/2) $ move (0.15,0.2)

These three triangles are created using the list comprehension in otherTriangles,

which simply rotates a moved version of the original mainTriangle using the
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position function. These triangles are then made to appear when their anima-

tions start using activeAppear. This function makes it so that these animations

are only displayed when they begin animating, instead of for the entire duration

of the scene. Figure 5.2 shows each of the new triangles being added individually

to the animation.

Figure 5.2. otherTriangles animation

The next part of the scene is simply adding in a missing piece so that the

full area can be clearly identified. A small yellow square is added to the middle

so that the larger square can be seen to have a size of cxc. This larger square,

therefore, has an area of c2, as indicated by the accompanying text. The result of

this small portion of the animation can be seen in Figure 5.3.

Figure 5.3. fillSquare animation
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Figure 5.4. slideLeft and slideRight animations

Next, the top triangles need to slide down to match up with the lower triangles,

as seen in Figure 5.4. An outline of the old triangles also needs to remain behind

so their starting positions can still be see (like in the original on Wikipedia). This

is done in two parts. The first part is to fade the existing triangles to leave behind

as outlines, and the second is to create the new triangles that will actually move:

let fadedTris = [ position i $

choose (withAlpha 0.6 white) transparent <$> triangle345

| i <- [0,1] ]

slideLeft = activeAppear $

(activeMove (-0.3,-0.4) $ pure $ position 0 $ mainTriangle)

‘over‘ (pure $ head fadedTris)

slideRight = activeAppear $

(activeMove (0.4,-0.3) $ pure $ position 1 $ mainTriangle)

‘over‘ (pure $ last fadedTris)

The first part is done similarly to the creation of otherTriangles above. In

this instance, however, white triangles with alpha values of 0.6 are placed over the
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two triangles so that they will appear faded. For the second part, the sliding trian-

gles must be created. This is done by moving copies of the original mainTriangle

to the initial positions, where the triangles were before. activeMove is then

applied to each to animate the movement of the triangles down to their final

locations, one on the left side and one on the right side.

The final step of the animation is simply changing the organization of the

resulting shapes. Now that the triangles are in their final positions, two new

squares can be drawn that cover the entire area. These squares have side lengths

of a and b, and thus areas of a2 and b2. This in effect concludes the proof that a2

+ b2 equals the original area of c2.

In order to animate this part, the same general strategy as fading out the two

triangles in the last step is used. The main differences are that this time yellow

squares with alpha values of 0.9 are used so that the new squares will be a darker

yellow instead of a lighter one, and that lines are also drawn around the new

squares in order to make them more clear:

let newSquares = (move (0.15, -0.15) $ scale 0.4 $ square)

‘over‘ (move (-0.2, -0.2) $ scale 0.3 $ square)

newLines = pointsToLine [(-0.05,-0.35), ... , (-0.05,-0.05)] 0.004

fadeInSquares = (fadeIn 1 black newLines)

‘over‘ (fadeIn 0.9 yellow newSquares)

fadeIn :: O RGB -> UI -> Board Bool -> Active (Board RGBA)

fadeIn rgb a brd = fmap fn age

where fn ui = choose (withAlpha (o (ui*a)) rgb) transparent <$> brd

The squares to be faded in are created as Board Bool shapes in ChalkBoard,

like normal, and moved to the right locations. They are then faded in over time

using the predefined fadeIn function (included for completeness). This function

takes an RGB color, an alpha value, and a Board Bool, such as the newly cre-

ated squares. It then creates an Active (Board RGBA) which fades in the shape
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defined in the Board Bool from transparent to the given RGB and alpha values.

The lines around the squares are also faded in over the squares at the same time,

using the same function. This final piece of the animation is shown in Figure 5.5.

Figure 5.5. fadeInSquares animation

5.3.2 Stage 2: Combining Animation Pieces

In this example, each part of the animation is created separately. The smaller

animation pieces often use some of the same basic structures repeatedly, and

this piecemeal construction strategy lends itself well to reuse. For instance, the

originally defined maintriangle, which is never directly displayed, is rotated and

moved around to create most of the other triangles used in the scene. While longer

Active’s can definitely be created directly using the mvActive function defined in

Section 5.1, it is generally much cleaner and easier to construct simple animations

and then organize them into a series using one of the predefined combinators, such

as flicker.

This usage of functions like flicker is the second major stage in creating

an animation. With flicker, animations can be strung together, one after the

other, stacking newer parts onto the older ones. The length of time each individual

animation component takes to be performed can be specified using the taking
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function, often inside the list of animations given to flicker, as described in

Section5.2. The general structure, using this case study as an example, often

looks something like:

let anim = flicker [ taking 0.5 $ background

, taking 1 $ firstABC

, taking 1 $ movingTriangle

...

, taking 1 $ fadeInSquares ‘over‘ thirdABC

, taking 3 $ finalABC ‘over‘ formula

]

This usage of flicker and taking manages the majority of the ordering and

timing for animations. It returns a single Active (Board a), which can then

be used to display the animation, or reused to create an even bigger animation,

hierarchically. In terms of displaying the animation, this will largely be done the

same way for most animations:

playObj <- byFrame 29.97 anim

let loop = do

mbScene <- play playObj

case mbScene of

Just scene -> do

-- To Screen:

drawChalkBoard cb $ unAlphaBoard (boardOf white) scene

loop

Nothing -> return ()

loop

First, the Active (Board a) must be turned into a Player using the byFrame

function (which also takes a desired frame rate). The Player is then passed to

the play function repeatedly to retrieve the next image of the animation (or

Nothing, if the animation is finished). Finally, this retrieved image can be used
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in any way that ChalkBoard can use a Board. Traditionally, the image is dis-

played on the screen using drawChalkBoard or also saved into a video file with

frameChalkBoard. After this, the process of calling play on the Player must be

repeated to extract the next image. This is usually placed into a simple loop, as

shown, which extracts and then displays the returned frame. In the future, Active

will hopefully include many of these basic cases as predefined functions so that

animations can be played automatically, though obviously there are many other

actions that can be taken with the returned Board, if the user desires.

Finally, the complete animation created in this case study can be seen on-

line at http://www.youtube.com/watch?v=UDRGhTFu17w. It was produced as

a video by simply saving each of the returned boards to a video file using the

frameChalkBoard command after opening a default ChalkBoard write stream.
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Chapter 6

Active Transformations

6.1 Design Considerations

One of the main challenges in animating transformations is being able to gener-

ically represent the various classes of transformations. A transformation anima-

tion system needs to be able to render arbitrary Abstract Syntax Trees (ASTs)

and animate transformations over that AST. Additional information from the user

beyond their original transformation system will be needed, but the task in hand

is to minimize this necessary information and require as simple of changes as pos-

sible. The key issue is how to observe and track what is happening to the user’s

AST during their transformations, and especially how that relates to the printed

version of the AST so that these changes can be appropriated animated.

One way of accomplishing this observation is by indexing the nodes of the

AST. Indexing gives the system a way to look inside the AST and track changes

as they are made. Every iteration of our Active Transformations system has taken

advantage on this concept.
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One basic form of indexing is explicitly adding an index to each node:

data Expr = Lit ID Int

| Add ID Expr Expr

| Mul ID Expr Expr

This simple indexing has changed and improved in our system through different

iterations, but the idea of increasing the visibility inside the AST and tracking

the changes as they are made has always been the same.

One sub-system that takes advantage of indexing is the ChalkDoc system. A

ChalkDoc is a data structure used to hold all of the information necessary to

print a given AST to the screen, as well as some additional data to help animate

changes to that AST. A ChalkDoc must be generated for every AST instance to be

displayed. This generation requires slightly modifying the AST’s show function,

a concept that will be addressed later in Sections 6.3 and 6.4.

One especially important piece of information ChalkDocs contain is which part

of the AST generated each string present inside it. This allows us to treat the

printed strings much like AST nodes, since the generating AST node is always

known. The strings printed by the same node can then often be grouped up

and treated as one element. The system can then use this ability to see exactly

where a certain part of an AST was before and after a transformation step, and

animate the changes between the two states. For instance, if a variable v is being

replaced with the expression 1 + 1, this new expression is larger and will require

additional screen space. If there is other text surrounding the original variable, v,

this text must be expanded to fit the new expression. The AST index and other

information stored inside the ChalkDocs allow us to see that the text around the

replacement is the same in both the before and after ChalkDoc, regardless of its

new position. This text can then be animated, moving into its correct position as
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a less-emphasized ’text displacement’ rather than as the main transformation.

The same abilities of this system are also exploited for the actual transforma-

tions. In the example above, say the expression 1 + 1 is being inlined from a let

clause. The expression should be copied from there and moved to its final location,

but how can the system know this from just the before and after ChalkDocs? The

inlined expression and the original expression in the let clause, though identical,

must have different indexes. This is necessary for maintaining an AST without

repeated indexes, so that nodes can be told apart. It makes knowing when a node

is copied much more difficult, however. A naive thought could be to analyze the

new expression and see if it appears anywhere else in the AST. This approach is

obviously flawed though, because having two identical expressions does not guar-

antee that one was inlined, or that they are related at all. Our system, by the

necessity of being generic, has no idea that inlining is being performed, or even

what inlining is. If it required knowledge of the transformation in order to know

what to do, it would only work for those transformations that it had knowledge

of. Instead, our solution to this problem is to introduce a generic Transformation

Algebra.

This Transformation Algebra helps to clarify AST changes that may otherwise

be ambiguous. The goal of this Algebra is to describe any transformation a user

could want in as few terms as possible. The Transformation Algebra and how it

works is discussed more thoroughly in Section 6.2.

With this new Transformation Algebra, solving our initial problem is straight-

forward. If the user is somehow allowed to insert these algebra terms into their

transformation code, the system can then be told that the expression 1 + 1 is

being copied to a new location and perform the appropriate animation.
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The Transformation Algebra again takes advantage of the AST indexing to

identify which nodes should be copied, or have other such actions performed on

them. Using these indexes, the applicable pieces of the ChalkDoc can be identified

and animated according to each term in the algebra.

In general, it is the combination of these three features (Indexed ASTs, Chalk-

Docs, and the Transformation Algebra) that allows the Active Transformations

system to correctly animate user transformations. Some of the implementation

details for these features can be found in Section 6.5, but first let us explore the

specifics of these systems, difficulties faced in creating them, and improvements

that were made to them.

6.2 Transformation Algebra

When thinking about the operations the Active Transformation system needs

to animate, it is helpful to first consider the structure being animated. In essence,

we wish to animate a tree. Different kinds of trees may have different ways in

which they are printed, or different operations that are performed on them, but

the Active Transformation system attempts to animate all of these possibilities.

As a generic system, it must therefore be able to animate nearly any change

that can occur over nearly any tree. This is an enormous space, however. There

are many different operations that could be performed on a tree, depending on

the specific tree and situation. What we need to do is determine a basic set of

fundamental operations over trees that can be combined to create any of the other

operations. For our purposes, this most-basic set of operations will be called our

Transformation Algebra, where the operations form an algebra over all possible

transformations that can be applied to a tree. It is important to remember,
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however, that a transformation is a change to a tree, which therefore doesn’t

include traversals or other observation operations.

When thinking about a generic tree, what are the most basic operations that

can be performed on that tree? The two most-basic operations that may come to

mind are adding elements and deleting elements, or Add and Delete. As long as

the proper connections are made, a node can be added or deleted anywhere inside

a tree. When certain additions are legal or not, and how these connections are

changed, is dependent on the type of tree. The role of the Active Transformation

system, however, is simply to be able to animate any such change that might be

made.

In theory, all changes to a tree can be made in terms of Add and Delete. When

swapping two subtrees of a parent, for instance, both trees could be deleted and

then added again on the opposite side. Expressing this change in terms of Add and

Delete, however, misses out on the point of the operation. It completely ignores

the fact that the trees being added are the same as the ones that were deleted,

and that they switched places. This information is lost and doesn’t play a role in

the modification if it is only expressed in terms of Add and Delete.

In animating changes to an AST, this loss of information is important. Because

we are animating a move from one state to the next, we care about how these

changes are made, not just the final result. If the system is trying to animate a

tree-balancing operation, and the two subtrees of a given node are supposed to

swap, simply deleting both and then inserting them again is not going to give the

audience the correct impression of what is happening. In order to understand this

algorithm, and how the changes are being made to the AST, it is important to

see that the subtrees are actually swapping. Not only should our system be able
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to provide an animation to represent a change to an tree, it should be able to

provide an animation that shows how this change is happening.

This leads to the next fundamental operation for animating tree changes, the

Move operation. With this operation, how the above changes are occurring can be

described more accurately. In swapping two subtrees of a node, the left subtree

is moving to the right subtree position, and the right subtree is moving to the

left subtree position. This same Move operation can be used in many other ways,

moving different nodes and subtrees all around a tree in different situations.

The Move operation still isn’t quite enough, however, in some situations where

movement is involved. Take, for instance, a node of a binary tree with only one

left subtree. What if we want to copy this left subtree and use it for the right

subtree also? In this type of situation, a Copy operation is needed.

The difference between a Move and a Copy is whether the original node is

completely moved to a new location, or instead whether a copy of that node is

moved to the new location without affecting the original. While the situation

above describes why this might be useful, the last sentence may hint at another

possible way of implementing our algebra. What if, instead of a Move operation,

we simply used a Copy followed by a Delete? Unfortunately, this is not ideal for

much the same reason as why Move shouldn’t be expressed in terms of Add and

Delete.

While the reader may note that, for a given step from one tree to the next,

a Move could easily be created by doing a Copy and a Delete, the distinction is

necessary because we are again not just interested in the final state of the tree,

but in how it got to that final state. The point of this Transformation Algebra is

to describe the actual transformation itself and how it moves from one state to the
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Add Add a subtree to the AST
Delete Delete a subtree from the AST
Move Move a subtree from one location in the AST

to another
Copy Create a copy of a subtree inside the AST and

move it to another location

Table 6.1. Initial Transformation Algebra

next, not simply to create the next state. If the system always does a Copy and

then a Delete, this will not have the same look or effect in an animation as when

explicitly using the Move operation. The difference is visible in the animation, and

therefore the Move term is necessary in order to show how the user’s transformation

actually works.

The four operations discussed so far make up the initial Transformation Alge-

bra, summarized in figure 6.1.

While this version of the Transformation Algebra appears to work and be

correct, it is not the same as the version implemented in our system. The Active

Transformation system can automatically detect and animate all Add and Delete

operations, so these do not need to be included in our implementation of the

algebra. How this automatic detection is done is described in Section 6.5.

In addition, a Break operation is also included in our implementation of the

algebra. What this Break operation does is tell the system to end the current

animation step. For instance, the system could animate an Add and Delete at

the same time, or it could break them apart into two separate animations when

the Break command is given. The Break command also stores a snapshot of the

current AST. These intermediate ASTs are used to search for updated subtrees, as

described in Section 6.3, as well as to help automatically detect adds and deletes.
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The system inserts some Break operations automatically, however, so additional

input from the user is only required for customizing animations.

The implementation of this Animation Algebra is described in Section 6.5.

6.3 Indexed AST Improvements

Given the general architecture for the Active Transformation system, presented

in Section 6.1, one important decision to be made was how to index a user’s generic

AST. The first approach was a little simplistic, but worked for a lot of situations

and was the easiest to implement, making it a decent place to start for an initial

prototype while working on other features. The main idea was to simply add an

index to each node of a user’s AST. It required the user to create an alternate AST

datatype that incorporated this index, and then provide a function for indexing

from their original AST into this new indexed AST.

The thought behind this version of the indexing was simple. Given these

indexes, the system tried to avoid the problem of storing an internal representation

of the user’s AST at all. While this would eventually prove not to be possible,

the indexing itself has still proven useful, as described in Section 6.1, and enabled

the creation of other systems based around indexing.

The biggest problem with this initial approach comes up in the Move and

Copy terms of the Transformation Algebra. While the system knows which top-

level nodes are affected, based on the information provided in the Transformation

Algebra, it has no way of finding the complete subtrees of these nodes. Consider

the following example:

let a = (\x -> (+ x 1)) 3 in

a
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In this case, the expression to be inlined is an application, but the only string

printed by that application node is likely a single space. There is no way from

the ChalkDocs alone to figure out which strings belong to the subtrees of that

application (namely, the lambda expression and the constant, 3). This observation

quickly led to the conclusion that the Active Transformation system needed to

have an internal representation of the user’s data structure.

A first attempt at this internal representation was to reuse the work done for

Data Reify [12]. This package already had the ability to generically create graphs

that could represent our structure, given the user implement a rather simple class

instance. This graph structure was quickly found to be non-ideal for our purposes,

however, given that this system only uses trees. Having to look up the next node

of an AST in an association list for every step down the AST made traversal

O(n2) instead of O(n), and deletion of a node once that node has been found

O(m2) instead of O(1) (where m is the number of nodes in the subtree).

For the final, more-efficient attempt, a similar approach to Data.Reify is used,

but this approach is based even more on the work of Generics.Regular [25]. Instead

of using either package explicitly, however, the Active Transformation system re-

quires a new class instance of its own that is slightly easier for the user to imple-

ment (and will also not require any additional packages). This final approach is to

convert the user’s data structure into an explicitly recursive type using functors.

In terms of user implementation, this is quite straightforward. All the user has

to supply is a mapping between their initial data structure and a new Functor

version of that structure. Implementing this doesn’t even require the user to know

that their Functor type is being used recursively. All they need to do is create

a new version of their data structure with a functor hole in every place that the
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original structure was recursive. They then complete a Traversable instance for

the new data structure and the new MuRef class for their original data structure:

class MuRef a where

type DeRef a :: * -> *

toFunctor :: a -> DeRef a a

The DeRef type function in this class says that the original datatype can be

converted into the new Functor version of the datatype, and toFunctor provides

this conversion (much like from in the Regular class). This conversion converts

one node of the old structure into one node of the new Functor version. Internally,

this function is used recursively to construct a private representation of the AST

for tracking changes. This internal representation of the AST is created by placing

the user’s Functor type inside a structure very similar to the standard Mu type

commonly used as a fixed point for explicitly recursive types [19]. The traditional

Mu is defined as:

data Mu f = In (f (Mu f))

The Active Transformation version of Mu is essentially the same thing, but with

an extra field used for indexing. The name used for the new structure is therefore

IndexedAST instead of Mu, since placing an AST inside the structure results in an

indexed version of that AST.

To solidify exactly what is required when implementing the MuRef class and

the indexed AST system in general, an example instance for a list data structure

can be found in Section 6.4.

With this final system in place, how has the user implementation changed

from the original indexing of ASTs? For one, the need for users to index their

own structures has been removed. This is rather helpful, especially in cases where
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multiple ASTs may need to be indexed or new AST nodes added. It allows the

user to avoid implementing a system to keep track of all these indexes. Replacing

this index function with a toFunctor function simplifies what the user has to

implement, and means there is less opportunity for mistakes to be made because

all of the indexing work is done internally.

More importantly, the ability to store an internal representation of the user’s

AST has been gained. This allows the system to track changes to the AST and

make those same changes to the internal representation. This is important in our

project for two related reasons.

The first reason is that it solves the problem of finding a subtree from a given

node index. Now, if the inlining of the application described at the beginning

of this section is displayed, the system can find the correct subtrees and all the

indexes contained within them. From there, the system can easily find the strings

that correspond to these indexes in the ChalkDoc, which will allow it to success-

fully move the subtrees to their new locations on the screen.

The second reason is that it allows us to take snapshots of the AST at different

points in the transformation, and track incremental changes as they are made to

the AST. This is absolutely essential in recursive transformations (as most code

transformations are) because, in addition to simply finding AST subtrees, the

system needs these subtrees to be up to date. In recursive transformations, one

AST is passed into the function, and one AST is returned. All that is visible are

the initial and final versions of the AST. In an animation system, however, we

are interested not only in the result, but in how we got to that result. If there

are a lot of small steps made by the transformation, these individual steps are

normally lost. This can be especially detrimental when changes are nested and
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might not make sense without seeing the incremental stages. Take, for instance,

the following code segment:

let a = let v = 1 in

v in

a

Applying an inlining transformation to this code segment results in the follow-

ing stages:

let a = let v = 1 in

1 in

a

let a = let v = 1 in

1 in

let v = 1 in

1

In this example, the v is inlined first, followed by the a. If the system doesn’t

have an updated version of the AST after the v inlining occurs, however, we run

into problems. If the system looks in the original AST for the subtree to be

inlined for a, it won’t include the newly inlined 1. The animation would then fail,

likely moving everything correctly except the 1, but therefore displaying a highly

inaccurate animation result, such as:

let a = let v = 1 in

1 in

let v = 1 in

Keeping track of incremental changes to the AST internally solves this problem

and allows us to find correct subtrees at any given point during animation. It

allows us to capture information that is normally lost in a recursive transformation

and use that data to create correct animations of all the individual steps.
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6.4 List Example

A list data structure is a good starting example for the overall system. It’s

simple to follow and has a few differences from other, code-based examples that

make it worth looking at. Assuming the user already has a Haskell transformation

system that operates over lists, they will likely have a datatype similar to:

data List a = Cons a (List a)

| Nil

The user would also likely have some sort of Show function written, their trans-

formation functions (such as append, etc.), and perhaps some example instances

of their lists and transformations on them. These functions will all need to be

slightly modified, so starting with a copy of the originals would be a good idea if

the user wishes to retain both functionalities.

The alternate, Functor version of the list data structure (required by MuRef),

would look something like:

data L a x = C a x

| N

In our implementation, the type variable x will be used as a recursive hole, but

the user need not worry about that. They only need to implement the MuRef class

for List and Traversable for L (as well as Functor and Foldable, but these are

trivial given Traversable). The instance for MuRef would look like:

instance MuRef (List a) where

type DeRef (List a) = L a

toFunctor list = case list of

Cons a l -> C a l

Nil -> N
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Here, L a is identified to be the Functor version of List a, and a means of

converting from List a to L a is given. This is very similar to the Regular class

in Generics.Regular [25], but note that only converting to the Functor is required.

Converting the other direction is an optional second class, and only necessary if

the user ever wishes to unindex an indexed AST for some reason.

Using this MuRef instance, the system is able to convert and index the user’s

AST internally, turning it into an IndexedAST (L a), as described in Section 6.3.

In order to completely manipulate this new Functor version of the user’s data

structure, however, it must be given additional instances:

instance Functor (L a) where fmap = fmapDefault

instance Foldable (L a) where foldMap = foldMapDefault

instance Traversable (L a) where

traverse fn list = case list of

C e l -> liftA (C e) (fn l)

N -> pure N

Note that traverse isn’t recursive and only applies the function one level deep.

The user should just assume that L a x isn’t recursive and implement traverse

as such.

Now that the data structures are set up properly, the user can move on to the

other functions that must be adapted. The first of these is the Show function. The

Active Transformation system needs this function to return [ASTSymbol] instead

of a String. Most of these changes are very simple however. The user must

simply associate an AST index with each string that is printed. In this example,

the user may have an original print function similar to:
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myPrint :: Show a => List a -> String

myPrint l = case l of

Nil -> "[]"

Cons e l2 -> "[" ++ show e ++ print’ l2 ++ "]"

where print’ l = case l of

Nil -> ""

Cons e l -> ", " ++ show e ++ print’ l

The extra top level is needed here to add the outside brackets normally seen

around lists and to print the first element without a comma. The new, adapted

version of this function will be rather similar with a couple of main exceptions. In

addition to the normal changes, however, this particular example also has a special

case. Extra characters are printed that don’t directly correspond to any node of

the data structure, but are simply used for printing at the top level. Because of

this, a new index must be generated for these strings that isn’t used anywhere

inside the AST. The new function might look something like:

makePrint :: Show a => IO (IndexedAST (L a) -> [ASTSymbol])

makePrint = do

topID <- newID

let gTopID = giveID topID

let print iast = case getAST iast of

N -> gTopID "[]"

C e l -> gTopID "[" ++ giveID (getID iast) (show e)

++ print’ l ++ gTopID "]"

print’ iast = let gID = giveID (getID iast) in

case getAST iast of

N -> gID ""

C e l -> gID ", " ++ gID (show e) ++ print’ l

return print

As you can see, makePrintFn actually generates the needed print function.

This is done in order to create a new index with newID, which requires the IO

77



monad. Once this index is created, the rest of the function can just be created

like normal and returned, giving us our modified print function.

Now as for the function itself, notice that it takes an IndexedAST (L a) as an

argument. It must therefore use the getAST and getID functions in order to grab

the AST portion or index portion, respectively. The other main difference (apart

from some cleanup functions to make the code shorter), is the use of the giveID

function. This is the function that should be used to change a String into an

[ASTSymbol]. It is used anywhere a string is normally returned in order to asso-

ciate an index with that string. While this does make the code a little bit bulkier,

it is usually a very straightforward change that can be made systematically.

One small caveat with this system, however, can sometimes appear when

strings are combined that may need to be treated separately. For instance, the

string ", " and the string generated by show e must remain separate and both

be given the same index separately. This is because it is possible that the strings

may need to be animated independently. If that element becomes the front of the

list, for instance, the comma will need to disappear. If the strings are combined,

however, then they must be treated the same and the system will display a slightly

weird result. In general, it is safer to keep strings separate unless it is known that

they will always be displayed together.

Another note, returned to in Section 6.6, is that the built-in function for

newlines should be used at all times. This function, newline, takes an index

for the newline to be associated with and begins a new line in the output. It is

important that this function is used instead of newline escape sequences inside

the strings because the strings are never actually printed, they are simply used to

create the graphics that are displayed on the screen.
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With the modified version of the user’s print function, the last modification

that must be made is to the actual transformation functions. Take, for instance,

the following append transformation:

append2 :: List a -> List a -> List a

append2 f s = case f of

Cons e l -> Cons e (append2 l s)

Nil -> s

Turning this function into a version accepted by our animation engine may

result in something like:

appT :: IndexedAST (L a) -> IndexedAST (L a) -> Transform (L a)

appT f s = case getAST f of

C e l -> changeM f $ liftM (C e) (appT l s)

N -> replace f s

As indicated by the type signature, the lists should all be in their indexed,

functor forms, and the new transformation must now use the Transform monad.

Again, the getAST function is used to return the data structure portion of this

IndexedAST. Because the transformation is now in a monad, liftM is used to

complete the structure of L a inside the monad. The two main return-style func-

tions of the Transform monad are change and replace (with monadic versions

changeM and replaceM).

The change function is used to indicate that subtrees of the node may be modi-

fied, but that the node itself is basically the same and should retain the same index.

In this example, the current node, f, is modified to liftM (C e) (appendT l s).

The current node remains the same as it was (with element e), but other nodes

further down the list are changed. Here, the monadic version, changeM, is used

simply to keep the code in one line, making it look closer to the original. The

same code could also be written using change as:
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C e l -> do

rest <- appendT l s

change f (C e rest)

The replace function is the other main return-style function of the Transform

monad. It is used when the current subtree should be completely replaced by an-

other subtree. In this example, once the end of the first list, f, has been reached,

the nil node should be replaced with the list being appended, s. Looking at the

original transformation, append2, shows that both of these cases in appT are ac-

tually quite similar to their original forms, except that they require extra DSL

functions with the current subtree as a first argument.

This last change completes all necessary modifications to the user’s code. A

main function could now be written to create and run specific animations:

main = do

let ex1 = Cons 1 $ Cons 2 $ Cons 8 $ Cons 1 Nil

ex2 = Cons 5 $ Cons 6 Nil

ex3 = Cons 10 $ Cons 11 $ Cons 13 $ Cons 12 Nil

printFn <- makePrint

iex2 <- index ex2

iex3 <- index ex3

let anims = [flip appT iex2, flip appT iex3]

animate "Arial.ttf" printFn ex1 anims

The core library function is this snippet is the animate function, which be-

gins the animation of the user’s transformations. It takes a FilePath to a font

to use, the print function created above, a starting AST on which to perform

transformations, and finally, a list of transformations to apply. Notice, that these

transformations must all be of type IndexedAST f -> Transform f, where in

this case f is L a. Therefore, ex2 and ex3 must be indexed (using the library’s
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index function) and passed as arguments to the appT functions. In this way, each

instance of appT is partially applied and only needs its final argument, the list to

be transformed. The call to animate will then begin animations with ex1 as the

list to be transformed, first appending ex2 to it, followed by ex3.

6.5 Implementation

Given all of the changes the user must implement, the next question becomes

how our system takes advantage of these modifications in order to animate the

transformations. The first step is to take the user’s starting AST and transform

it into our internal, indexed representation. This conversion can be done rather

succinctly, given the new datatype and class instances supplied by the user, using

our IndexedAST type and index function:

data IndexedAST f = IndexedAST ID (f (IndexedAST f))

index :: (MuRef a, Traversable (DeRef a)) => a -> IO (IndexedAST (DeRef a))

index ast = putIDs $ toFunctor ast

where putIDs f = traverse (putIDs . toFunctor) f >>= newIAST

newIAST :: f (IndexedAST f) -> IO (IndexedAST f)

newIAST ast = do

id <- newID

return (IndexedAST id ast)

The only function in this definition that hasn’t been introduced yet is the newID

function. This function simply returns the next unique id available and keeps track

of all the indexing information behind the scenes, similar to newUnique or other

such functions.

Working through the index function, nodes of the user’s initial type are recur-

sively turned into their Functor counterparts. The current Functor style node
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is then passed through using traverse, as defined by the user, and the process

is repeated. On the way back up the recursion, all of the nodes are placed in-

side an IndexedAST, which both acts as a fixed point for the recursive type and

indexes each of the nodes. This process creates an indexed version of the user’s

AST, which can be freely traversed by the system in order to apply changes made

during transformations.

6.5.1 The Transform Monad

The changes to the AST will be made inside of the Transform monad, which

all user transformations must be written in. An example of using this monad was

given in Section 6.4, but the specific functions and internals of the monad have

not been defined. The type of the monad is:

type Transform f = Transform’ f (IndexedAST f)

type Transform’ f = StateT (IndexedAST f) (WriterT [Transformation f] IO)

The Transform monad is therefore a state + writer monad on top of IO. The

state in this instance is the internal representation of the AST, which is updated

whenever the user makes changes to it in their transformations. The writer monad,

then, is a listing of the Transformation Algebra terms that have been applied over

the course of the transformations, including the order in which they were applied.

The Transformation Algebra is represented internally as the type:

data Transformation f = Move ID

| Copy ID ID

| Break (IndexedAST f)

The Break term contains an IndexedAST. This IndexedAST corresponds to

the current state of the internal AST at a given point in time. The Break term,

therefore, will hold snapshots of the AST as the transformation progresses, so
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that the system can retain information about all the incremental modifications.

Using these AST snapshots, the system prevents data about the transformation

from being lost in order to animate all of the individual steps correctly and in the

right order.

The functions that add these algebra terms into a user’s transformation are:

addMove :: ID -> Transform’ f ()

addMove id = tell $ [Move id]

addCopy :: ID -> ID -> Transform’ f ()

addCopy id1 id2 = tell $ [Copy id1 id2]

addBreak :: Transform’ f ()

addBreak = do

ast <- get

tell $ [Break ast]

Any of these functions can be inserted, where appropriate, into a user’s trans-

formation in order to add the Transformation Algebra terms necessary to correctly

display the animation. In general, only the Move and Copy terms will need to be

inserted into a user’s transformation when nodes of an AST are being moved or

copied from one place to another. This is because a Break is already inserted by

default whenever the replace function is used.

This behavior can be seen in the definitions for the return-style Transform

functions, given below:

change :: Functor f => IndexedAST f -> f (IndexedAST f) -> Transform f

change oldNode newAST = return $ setID (getID oldNode) newAST

replace :: Functor f => IndexedAST f -> IndexedAST f -> Transform f

replace old new = do

modify $ changeSt (getID old) new

addBreak

return new
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changeSt :: Functor f => ID -> IndexedAST f -> IndexedAST f -> IndexedAST f

changeSt oldID new st = if (oldID == getID st)

then new

else setID (getID st) $ fmap (changeSt oldID new) (getAST st)

Here, the two return-style functions of the Transform monad, replace and

change, are defined. If the node returned should completely replace the node that

was there previously, the replace function is used. If the node being returned is

basically the same as it was before (and should therefore retain the same index),

but perhaps with some of its sub-nodes changed, then the change function is used.

The only undefined function in this snippet is the setID function, which simply

gives the current Functor node an ID in order to become an IndexedAST.

There are alternate versions of both of these functions, called changeM and

replaceM respectively, which can be used when the second argument is already

inside the Transform monad. The examples below and in Section 6.4 show when

either of these alternates might be useful.

The last Transform command that may be useful is the newNode function:

newNode :: f (IndexedAST f) -> Transform f

newNode ast = liftIO $ newIAST ast

This function is used when a new node should be created, and will therefore

require a new index. Take, for instance, working with a list of Int’s. A cons

transformation can be created that that takes an Int and a previous list, and

returns the new list. Inside the transformation function, the newNode command

would be used in order to create the new IndexedAST node:

cons :: Int -> IndexedAST (L Int) -> Transform (L Int)

cons i l = replaceM l $ newNode (C i l)

Note that although newNode is of type Transform f, just like replace and

change, it should not be used as a return-style function because it does not
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modify the internal state of the AST. One reason for this is because multiple nodes

could be built up with newNode, which could then be combined and returned. The

system doesn’t know at what position in the AST to put the new node initially,

so it doesn’t modify the state yet.

6.5.2 Creating Animations

Using all of the Transform monad functions together, the user is able to write

transformations that enable the system to internally retain essential information

about the transformations. This extra data is all contained within the list of

Transformation Algebra terms created with the writer part of the Transform

monad. This list is then broken apart at every Break term, and each sub list is used

to create the animation for a single step of the (often recursive) transformation.

Creating these single step animations is divided roughly into three parts:

• Constructing the ChalkDocs of both the before and after AST for a trans-

formation step

• Automatically detecting the adds, deletes, and ”text displacement” between

the two ChalkDocs

• Animating any other terms that appear in the Transformation Algebra.

The first bullet begs perhaps a more basic question of what a ChalkDoc actu-

ally is. A ChalkDoc is simply a combination of pieces that are useful in printing

an AST to the screen. Its type is simply:

type ChalkDoc = [(String, Board UI, (Float,Float), ID)]

The String term is fairly self explanatory, as the ChalkDoc is simply a list

of all the String segments that are used in printing out the AST. The ID is also
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straightforward, as it is the index of the AST node that generated the String.

The Board UI, then, is the first somewhat interesting term.

As mentioned in Chapter 4, a Board is the fundamental type of our drawing

system, ChalkBoard [22] [23]. In ChalkBoard, the principal type, Board, is a two-

dimensional plane of values. A color image in ChalkBoard, therefore, is a Board

of color, or Board RGB. In this instance, the Board is holding values of type UI,

which represents only those values on the unit interval between 0 and 1 (inclusive).

This can be thought of as an image of our current String in grayscale.

The last term of the ChalkDoc type is the tuple, (Float,Float). It represents

the (x,y) location of where the Board UI will be printed on the screen. This can

be highly useful information when comparing and matching different ChalkDocs

to each other, and is absolutely essential when determining how to move a Board

across the screen during certain animations.

So, given this structure, how is a ChalkDoc created? This is done with the

user’s modified print function. This print function uses giveID to associate an

AST index with every string printed. The definition of giveID is:

giveID :: ID -> String -> [ASTSymbol]

giveID id str = [(str,id)]

These pieces of information can then be used to gather the other two fields

of the ChalkDoc. The Board UI is generated by including the ChalkBoard font

package, Graphics.ChalkBoard.Font, and using the provided label function to

generate a Board UI from an input string and font. The position of the Board UI

on the screen must then be discovered. This can be done by pretending to line up

the Board UI graphics across a line on the screen, one after the other, until the

end of the line or a newline string is reached. The next line is then started and

handled in the same way.
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After constructing the ChalkDocs for the current transformation step, the next

item at hand is to automatically detect any adds or deletes that might have oc-

curred during that step. While the internal AST is updated with this information

automatically, a slightly different approach is taking for printing these changes.

This is because parts of an AST that remain unchanged can sometimes print

differently based on other factors, such as their sub-nodes (the comma in comma-

separated lists, for instance). While examples of this are somewhat uncommon,

the best way to make sure the system catches all of these printing changes is to

examine them on the string output level instead of the AST level.

First, all AST nodes (and subtrees) included in the list of Transformation

Algebra terms must be removed from the ChalkDoc. These elements are dealt

with explicitly by the animation system, so they are not included in the automatic

detection phases. This removal is performed by the following functions:

removeTree :: Foldable f => IndexedAST f -> ID -> ChalkDoc -> ChalkDoc

removeTree iast id cdoc = let maybeIAST = getSubAST id iast in

case maybeIAST of

Nothing -> cdoc

Just iast’ -> let ids = getAllIDs $ iast’ in

filter (\(_,_,_,id’) -> not $ elem id’ ids) doc

getAllIDs :: Foldable f => IndexedAST f -> [ID]

getAllIDs iast = F.foldl fn [(getID iast)] (getAST iast)

where fn ids iast’ = F.foldl fn ((getID iast’):ids) (getAST iast’)

getSubAST :: Foldable f => ID -> IndexedAST f -> Maybe (IndexedAST f)

getSubAST id iast = if (id == getID iast)

then Just iast

else F.foldl fn Nothing (getAST iast)

where fn mb iast’ = if (id == getID iast’)

then Just iast’

else F.foldl fn mb (getAST iast’)

In these functions, F.foldl corresponds to the Foldable version of foldl
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instead of the prelude version. The functions take advantage of the fact that the

user’s Functor version of the structure is Foldable in order to find the subtree

to remove and the indexes of the nodes in that subtree. Elements with an ID

contained in this list are then filtered out of the ChalkDoc, resulting in a ChalkDoc

with the given subtree removed.

Once all subtrees contained in the list of Transformation Algebra terms have

been removed, the system can examine the remaining before and after ChalkDoc

structures for differences. Any elements that are present in the first ChalkDoc

but not the second are deletes, and elements that are present in the second but

not the first are adds. The final part of this step is to discover all of the text

that has been displaced. This is done by examining the two ChalkDoc structures

for elements that are present in both, but that have a different location in one

versus the other. The difference between these locations can then be used to

animate the text moving from its current location to its final location. The adds

and deletes can also be animated simply, by fading the involved Board in or out,

respectively. This set of animations (fades and moves) can be constructed very

easily with predefined functions in ChalkBoard. They can even be constructed

independently and combined later, making the actual animation process quite

trivial once the correct boards have been identified.

Finally, the last step in creating animations with the Active Transformation

system is animating all of the terms of the Transformation Algebra. This is rather

similar to the last problem. Instead of finding all the indexes and then removing

those elements from the ChalkDoc, however, we want to find them and keep only

those elements. This is done separately for each term in the Transformation

Algebra, so that each can be animated according to the given term and indexes,
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and then combine all of the animations together. ChalkBoard is extremely helpful

here, because it facilitates this modularized building of animations. The Active

Transformation system can simply walk through the list of algebra terms for

the current transformation step, animate each one, and then combine them all

together. For example, the following function is used to construct the animation

for any given Move or Copy term in the list:

moveAnim :: Traversable f => IndexedAST f -> IndexedAST f -> ID -> ID ->

ChalkDoc -> ChalkDoc -> Active (Board UI)

moveAnim iast1 iast2 id1 id2 cdoc1 cdoc2 =

foldr over (pure $ boardOf 0) moves

where moves = map anim $ zip3 brds locs1 locs2

(_,brds,locs1,_) = unzip4 $ findTree iast1 id1 cdoc1

(_,_,locs2,_) = unzip4 $ findTree iast2 id2 cdoc2

anim (b,l1,l2) = activeMove (locDiff l1 l2) (pure b)

locDiff (x1,y1) (x2,y2) = (x2-x1,y2-y1)

findTree :: Foldable f => IndexedAST f -> ID -> ChalkDoc -> ChalkDoc

findTree iast id cdoc = let maybeIAST = getSubAST id iast in

case maybeIAST of

Nothing -> []

Just iast -> let ids = getAllIDs $ iast in

filter (\(_,_,_,id1) -> elem id1 ids) cdoc

The moveAnim function constructs a Move when passed the same ID for id1 and

id2, or a Copy when the indexes are distinct (there are a couple other differences

between the two in different parts of the system, however, such as in removal from a

ChalkDoc, since the original node of a Copy must stay in place). In this function,

findTree is used to find the original ChalkBoard Board’s and their locations

before and after the transformation (given the before and after ChalkDoc’s, cdoc1

and cdoc2). Each Board can then be animated by taking the difference of its

two locations and using the Active command activeMove, which will move each

Board into its new location over time. These separate animations for each Board
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are then combined using foldr and the ChalkBoard over function. The return

type, Active (Board UI), shows that all of the separate images have now been

combined into a single animation. When multiple Transformation Algebra terms

are present for a given step in a transformation, the resulting animations for each

term will be combined in much the same way as these animations are here.

6.6 Code Example

Given the implementation details, let us turn now to a slightly more compli-

cated example to see how this system works in practice, using a programming

language AST instead of a list. This will hopefully showcase the capabilities and

utility of the system a bit more, as well as display a much more substantial case

where the system has proven useful.

Let us use, for this example, a simplified version of the Haskell Core language

(simplified for the sake of showing the implementation details, not out of neces-

sity). The AST for the language may look something like:

data Expr = Ap Expr Expr

| Lam Var Expr -- single argument lambdas

| Case Expr (Alts Expr)

| Let (Bind Expr) Expr

| Con Con [Expr]

| Prim Prim [Expr]

| Var Var

| Lit Literal

data Bind x = Bind Var x -- non-recursive bindings

data Literal = LitI Int

| LitF Float

type Var = String

type Con = String

type Prim = String
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In this original system, Traversable instances for Bind and Alts already

exist for ease of use. These instances and the rest of the implementation can all

be found in Appendix B. If the instances had not already existed and were instead

explicit over Expr, they could easily be changed to the versions above and given

such instances trivially.

From this original structure, a new, Functor version of the data structure

must be created:

data Expr’ x = Ap’ x x

| Lam’ Var x

| Case’ x (Alts x)

| Let’ (Bind x) x

| Con’ Con [x]

| Prim’ Prim [x]

| Var’ Var

| Lit’ Literal

The new version of Expr reuses the original structures for Bind and Alts, as

well as many of the other sub-structures, as there is no reason for these to be

recreated. Given this new data structure, we must now provide both a MuRef

instance for Expr and a Traversable instance for Expr’:

instance MuRef Expr where

type DeRef Expr = Expr’

toFunctor expr = case expr of

Ap e1 e2 -> Ap’ e1 e2

Lam v e -> Lam’ v e

Case e alts -> Case’ e alts

Let bind e2 -> Let’ bind e2

Con c es -> Con’ c es

Prim p es -> Prim’ p es

Var v -> Var’ v

Lit l -> Lit’ l
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instance Functor Expr’ where fmap = fmapDefault

instance Foldable Expr’ where foldMap = foldMapDefault

instance Traversable Expr’ where

traverse f expr = case expr of

Ap’ e1 e2 -> liftA2 Ap’ (f e1) (f e2)

Lam’ v e -> liftA (Lam’ v) (f e)

Case’ e alts -> liftA2 Case’ (f e) (traverse f alts)

Let’ b e2 -> liftA2 Let’ (traverse f b) (f e2)

Con’ c es -> liftA (Con’ c) (traverse f es)

Prim’ p es -> liftA (Prim’ p) (traverse f es)

Var’ v -> pure $ Var’ v

Lit’ l -> pure $ Lit’ l

These instances are rather straightforward and not complicated to write. They

complete all of the necessary data structure level changes to the code.

Next up is the Show function. The simple Show function for the original system,

defined in Appendix B, is modified slightly to become the necessary print function

in the Active Transformation system. The new function may look something like:

tshow :: Int -> IndexedAST Expr’ -> [ASTSymbol]

tshow depth iast = case (getAST iast) of

Ap’ e1 e2 -> gID "(" ++ tshow (depth+1) e1 ++ gID " " ++ tshow (depth+1) e2 ++ gID ")"

Lam’ v e -> gID ("(\\" ++ v ++ " -> ") ++ tshow (depth+1) e ++ gID ")"

Case’ e as -> gID "case " ++ tshow (depth+1) e ++ gID " of" ++ newline id

++ tshowAlts (depth+1) as id

Let’ b e -> gID "let " ++ sBind b ++ gID " in" ++ newline id ++ tabs (depth+1) id

++ tshow (depth+1) e

Con’ c es -> gID ("(" ++ c) ++ concatMap sList es ++ gID ")"

Prim’ p es -> gID ("(" ++ p) ++ concatMap sList es ++ gID ")"

Var’ v -> gID v

Lit’ l -> gID (show l)

where sBind (Bind v e) = gID (v ++ " = ") ++ tshow (depth+1) e

sList e = gID " " ++ tshow depth e

gID = giveID id

id = getID iast

tshowAlts :: Int -> Alts (IndexedAST Expr’) -> ID -> [ASTSymbol]

In this instance, the changes may appear to be a little tedious, but are at

least rather straightforward. The main difference between this function and the

original is the use of gID (a shorthand version of giveID (getID iast)). This
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is inserted to associate the current index with the strings that the current AST

node is outputing. The other changes are a little smaller, such as using the new

Expr’ constructors in the case instead of the Expr ones, changing the types of

the functions, and using the newline function to create new lines instead of the

escape sequence. The tabs function used here is another built-in function that

takes the number of tabs desired and an ID to associate them with.

While this function is relatively easy to construct using a pre-existing Show

function, it is certainly an area where improvement could be made in the future

by including pretty printing combinators. This inclusion would definitely make

the system easier to use, and allow users to reuse previously constructed pretty

printers. The interesting work in pretty printing, however, has already been done

[18] [30] and therefore has not been a large focus for the Active Transformation

system yet.

With the modified Show function ready to go, the next task is to adapt the

transformation functions used in our system. One such transformation may be

the removal of dead code, given here in its original form:

rmDeadCode :: Expr -> Expr

rmDeadCode expr = case expr of

(Ap e1 e2) -> Ap (rmDeadCode e1) (rmDeadCode e2)

(Lam v e) -> Lam v (rmDeadCode e)

(Case e as) -> Case (rmDeadCode e) (fmap rmDeadCode as)

(Let b e) -> let (Bind v _) = b in

if (varUsed v e)

then Let (fmap rmDeadCode b) (rmDeadCode e)

else rmDeadCode e

(Con c es) -> Con c (map rmDeadCode es)

(Prim p es) -> Prim p (map rmDeadCode es)

_ -> expr

varUsed :: Var -> Expr -> Bool
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This is a pretty standard definition of dead code removal for functional pro-

grams. The only unknown function in this definition is varUsed, which simply

determines whether a given variable is used in the given expression or not.

This transformation, in order to work in the Active Transformation system,

needs to be adapted slightly to operate inside the Transform monad, and therefore

retain all of the information needed for animating. This updated version, written

similarly to the original, may look like:

rmDC :: IndexedAST Expr’ -> Transform Expr’

rmDC iast = case (getAST iast) of

(Ap’ e1 e2) -> changeM iast $ liftM2 Ap’ (rmDC e1) (rmDC e2)

(Lam’ v e) -> changeM iast $ liftM (Lam’ v) (rmDC e)

(Case’ e as) -> changeM iast $ liftM2 Case’ (rmDC e) (traverse rmDC as)

(Let’ b e) -> let (Bind v _) = b in

if (varUsed v e)

then changeM iast $ liftM2 Let’ (traverse rmDC b) (rmDC e)

else replaceM iast $ rmDC e

(Con’ c es) -> changeM iast $ liftM (Con’ c) (mapM rmDC es)

(Prim’ p es) -> changeM iast $ liftM (Prim’ p) (mapM rmDC es)

_ -> return iast

Though it may not appear so at first, this code is actually structured very

similar to the original. The liftM and changeM functions are used in much the

same way as they were in the list example in Section 6.4, liftM letting us retain

a similar shape while operating inside the monad, and changeM being used to

designate a node where only its sub-nodes are changed. As might be expected,

all instances of Expr are changed to Expr’, and traverse and mapM must also

be used over fmap and map because of the monad. These straightforward changes

are the large majority of modifications that need to be made. It should perhaps

be noted, however, that all instances of Expr in varUsed must also be changed

to Expr’, but otherwise it remains the same (since it does not modify the data

structure).
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Notice the use of replaceM, which works as discussed in Section 6.5. This is

the only place where a modification is made to the data structure. In this case,

the current let node is replaced with its in expression because the let variable is

unused within that expression. In all other cases, the function is simply recursing

on all available subtrees of the current node. If we wish, we can take advantage of

this behavior to make the code cleaner by using the built-in Transform function,

recurse:

rmDC :: IndexedAST Expr’ -> Transform Expr’

rmDC iast = case (getAST iast) of

Let’ (Bind v _) e | not (varUsed v e) -> replaceM iast $ rmDC e

_ -> recurse iast rmDC

This code makes explicit when changes are actually occurring to the AST.

It tells the system when to replace the current node with another, and when to

simply keep recursing. Although this new incarnation does not strictly resemble

the original function, it can be useful and make implementation much quicker.

recurse is especially helpful in transformations where only one or two cases will

result in a change to the AST, and has the secondary benefit of making these

changes quite explicit without needing to worry about or focus on excess recursive

calls.

Although recurse is non-fundamental to the way our system works, it can

certainly make using the system easier. recurse is defined as:

recurse::Traversable f=> IndexedAST f->(IndexedAST f->Transform f)->Transform f

recurse iast f = changeM iast $ traverse f (getAST iast)

Having completed dead code removal, this new transformation system can

already create animations, but before we do so, let’s add in another transformation
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to make the example a little bit more interesting. A simple form of inlining for

the language (which always inlines everything) could be:

inline :: IndexedAST Expr’ -> Transform Expr’

inline iast = case (getAST iast) of

Let’ (Bind v e1) e2 -> do

ie1 <- inline e1

ie2 <- inline e2 >>= replaceVar v ie1

change iast $ Let’ (Bind v ie1) ie2

_ -> recurse iast inline

replaceVar :: Var -> IndexedAST Expr’ -> IndexedAST Expr’ -> Transform Expr’

replaceVar var val iast = case (getAST iast) of

Lam’ v e | v == var -> return iast

Case’ e as -> changeM iast $ liftM2 Case’ (rep e) (repAlts as)

Let’ (Bind v e1) e2

| v == var -> do

re1 <- rep e1

change iast $ Let’ (Bind v re1) e2

Var’ v | v == var -> do

newIAST <- liftIO (reindex val)

addCopy (getID val) (getID newIAST)

replace iast newIAST

_ -> recurse iast rep

where rep = replaceVar var val

Much of the bulkiness in replaceVar, defined fully in Appendix B, comes from

checking all the cases where a variable might occur and cause recursion to stop.

Like dead code removal, most changes from the original versions of these functions

are simply due to being inside a monad.

recurse is also useful again, limiting the number of cases that need to be

specified. If no changes are being made and recursion doesn’t stop, then all of

those cases can be lumped together.

This example also shows how to use more of the Transform monad functions.

The reindex function is used to reindex the given IndexedAST so that it can

be copied into another part of the AST than it appeared originally. This keeps

indexes from repeating, which is essential in the correctness of animations. The

addCopy function is also used in order to indicate to the system that the new

96



subtree has actually been copied from another location.

As a final piece, the two converted transformations can now be used in a main

function such as this one:

main = do

let start = Let (Bind "a"

(Let (Bind "v" (Lit (LitI 1)))

(Var "v")))

(Var "a")

anims = [inline, rmDC]

animate "Arial.ttf" (tshow 0) start anims

This main function will apply the transformations of inlining and dead code

removal, in that order, to the starting AST that is given, animating all of the

changes on the screen. The starting AST can be any AST in the language, and the

transformations can be any list of transformations converted into the Transform

monad, of type IndexedAST Expr’ -> Transform Expr’. This particular start-

ing AST is one of the examples mentioned in Section 6.3, and snapshots from the

resulting animation can be see in Figure 6.1.

Figure 6.1. Code Transformation Animation
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Chapter 7

Related Works

7.1 ChalkBoard

Functional image generation has a rich history, and there have been many

previous image description DSLs for functional languages. Early work includes

Reade [28], where he illustrates the combinational nature of functional program-

ming using a character picture DSL in ML, resulting in ASCII art, Peter Hen-

derson’s functional geometry [14], Kavi Arya’s functional animation [3], and more

recently Findler and Flatt’s slide preparation toolkit [11]. Functional languages

are also used as a basis for a number of innovative GUI systems, the most influ-

ential one being the Fudgets toolkit [4]. ChalkBoard instead concerns itself with

image generation and not GUIs, and intentionally leaves unaddressed the issues

of interactivity and interactivity abstractions.

Elliott has been working on functional graphics and image generation for many

years resulting in a number of systems, including TBAG [10], Fran [5], Pan [8] and

Vertigo [7]. The aims of these projects are all aligned with ChalkBoard—making

it easier to express patterns (sometimes in 2D, sometimes in 3D) using functional
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programs and embedded domain specific languages, and to aggressively optimize

and compile these embedded languages. Elliott’s ongoing work has certainly been

influential to us, and ChalkBoard starts from the basic combinators provided in

Pan. The main difference from the user’s point of view is the adoption of the

ability to aggressively optimize and compile these EDSLs for faster execution.

There are a number of imperative-style interfaces to graphic systems in Haskell.

Hudak [16] used the HGL graphics Library, which exposes the basic imperative

drawing primitives of Win32 and X11, allowing students to animate basic shapes

and patterns. On top of this imperative base, Hudak shows how to build purely

functional graphics and animations. OpenGL, GLUT and other standard graphics

systems are also available to Haskell programmers, through FFI layers provided

on hackage.haskell.org. The issue remains that these libraries behave like

imperative graphics libraries.

7.2 Active

There have been numerous image description DSLs using functional languages,

many of them capable of animation. A lot of the image description languages

similar to ChalkBoard are described above in Section 7.1.

In terms of animation and the Active DSL, some similar systems that have

been created are Slideshow [11] and the functional system presented by Kavi

Arya [3]. One of the major differences between the Active animation system

and these, however, is the treatment of time. Slideshow is predominately frame-

based because of its goal of generating slides for presentations. Arya’s system,

meanwhile, can cue animations relative to one another or to object interactions.

The Active DSL, on the other hand, is time-based. It allows the user to create
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functions mapped over a known time progression and then affect the time man-

agement of animations separately. While this management often includes cueing

animations relative to others, similar to the two languages mentioned, it can also

include stretching or shrinking animations and moving them forwards or back-

wards in time. A few of the Active combinators can also help provide a simple

framework for reordering animations.

The closest related work to our Active DSL is Hudak’s temporal media DSL [17],

which was also used to specify change over time in a pre-determined manner, but

was used to generate music, not images, and also did not codify the ability to use

applicative functors. The Active DSL is also conceptually close to Functional

Reactive Programming (FRP) [9], even though Active does not attempt to be

reactive in the same sense as FRP. Both Active and (one implementation form of)

FRP are mappings from time to value, however Active does not implement FRP

Events, but rather an Active object has a start and an end. With Active being

designed for presentations and similar educational animations, all of the actions

in the Active DSL are explicitly specified ahead of time by the user, although

they can be in relation to other animations.

Of course, there are many other animation languages and systems. Active is

an attempt to combine the concept of first class functions over time (from FRP),

width in time (like the temporal media DSL), and the idiom of packing such

functions over time (as an analog to stacking boxes in space) to provide a clean

starting idiom for animation specification.
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7.3 Active Transformations

This Active Transformation system draws on a lot of different work from a

variety of topics. One of the most fundamental influences was work done on pretty

printing, such as that by John Hughes [18] and Philip Wadler [30]. While our

print functions don’t take advantage of their combinators yet in terms of output

capabilities, the idea behind the work is similar. The Active Transformation

system attempts to provide a mechanism and combinators for printing over time.

The goal is to make the creation of these animations easy to integrate with a

user’s code in order to provide a simple yet powerful means of expressing the

ideas conveyed in that code, much like how a pretty printer is used.

Another aspect of this project that was heavily influenced by the work of oth-

ers was the data structure portion of the system. As described in Section 6.3,

there were many different iterations of how users needed to adapt their current

transformation system to fit into our framework, and each of these was at least

partially influenced by the work of others. One of the first things we discovered

was that maintaining an internal copy of the data structure was essential to cap-

turing all of the intermediate transformation steps needed to animate a recursive

transformation. Noticing this, we first looked at Data Reify in order to maintain

this internal data structure [12]. This Data Reify implementation proved to be

rather inefficient, however, when all of the structures we needed to represent were

trees. Data Reify didn’t allow us to build anything but graphs internally, so we

began to look more into the work of Generics.Regular [25]. Using this style of

approach, the user simply creates a mapping from their original datatype to a

new Functor datatype. Data Reify, in essence, is a combination of this mapping

and traverse (with some extra requirements), but since we require an instance
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of Traversable, it is easier to abstract this mapping out. Doing so makes it

simpler to implement and allows tree structures to be constructed internally in-

stead of graphs, in effect decreasing the user burden while increasing the system’s

efficiency.

There is also some overlap between the Active Transformation system and

functional Strategic Programming [20]. While we do not support many strategies

in our own work as of yet, we do use a similar generic traversal framework to

strategic programming and so could potentially provide more of these in the future.

This would allow for much quicker creation of transformation functions inside the

framework of our system. We do have some rudimentary work in this area already,

however, with functions such as recurse, as described in Section 6.6.
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Chapter 8

Conclusions and Future Work

8.1 ChalkBoard

We have developed an OpenGL-based accelerator for a simple domain specific

language for describing images. The language supports basic shapes, transparency,

and color images, and our implementation also provides import and export of

images in popular image formats. Our system generates images successfully and

quickly, giving a many-fold improvement over our previous implementations of

ChalkBoard.

In order to capture our DSL, we needed to invent our observable object O, and

create a small, functor-like algebra for it. This idiom appears to be both general

and useful, and merits further study. Lifting this idea into the space of applicative

functors [24] is an obvious next step.

We intentionally chose OpenGL as a well-supported target platform. Most

modern graphics cards are independently programmable beyond what is offered

in OpenGL, through interfaces like OpenCL or CUDA. We use OpenGL because it

offers the hardware support for what we specially want—fast polygon rendering—
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rather than using general computation engines for polygon pushing. In the future,

it would be interesting to consider in what ways these additional computational

offerings could be used while at the same time retaining fast polygon support.

We believe that ChalkBoard is a viable and useful research platform for ex-

perimenting with applied functional programming. Most of the diagrams in this

paper were rendered using ChalkBoard. A precursor to the version of ChalkBoard

discussed in this paper is available on the Haskell package server, hackage, and

development continues on the next version, which should be released soon.

8.2 Active

The Active language is a mathematically-based system where actions are the

results of mapping functions over time values progressing from 0 to 1. It provides

substantial abstraction for the different pieces that go into creating an animation,

such as the drawing, timing, and ordering, and is useful in practice.

The biggest improvement we hope to make to the Active DSL in the future

is the inclusion of more precise combinators for the cueing and timing of anima-

tions. While the current structures have proven extremely useful, there are some

instances in which the current Active API could be improved. Specifically, we

hope to work on structures that will allow users to specify when animations should

be visible. In this type of structure, the default may be for animations to only

appear when they are currently active (progressing from 0 to 1), and have means

of specifying which objects should be visible at other times.

Another improvement we hope to make is to increase the amount of internal

sharing that is done by the ChalkBoard compiler in order to more efficiently create

the animations it generates. In our animations, a lot of the same boards are often

104



reused, just at slightly different positions on the screen. Because ChalkBoard

treats each of these boards as a texture, the potential for reuse of these textures

in animation is very high, they often just need to be remapped onto the scene

at a slightly different location or size. In addition, the ChalkBoard Back End

already has the capability to store and reuse these textures, the tricky part is just

improving the compiler to incorporate this cross-compilation sharing of boards.

8.3 Active Transformation

As can be seen in Sections 6.4 and 6.6, we’ve implemented a couple differ-

ent transformation systems inside the Active Transformation framework already.

While not all of the implemented transformations are included in this thesis, every

required part of both systems has been given and explained. This required code is

relatively short as well as straightforward to implement, often looking very similar

to the original code, or being a direct translation from one to the other. Given

the expressive capabilities of the output animations, and how little the user has

to know about animation to create them, the system appears to have quite a high

ratio of usefulness to user burden. This is one of the main goals we were striving

for when we first began the project, and we believe we have put forth a very solid

first effort in this regard.

There are, however, still some improvements that could be made in this area.

The simplest would be the creation of additional combinators to clean up some

of the user code, both for the print function and their transformations. These

seem to be two of the areas where the code can sometimes get messy with all

of the different requirements placed on the user. Although the current versions

are much, much cleaner than the original Active Transformation system required,
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there is definitely still work that could be done in this regard.

In a similar vein, most of the implementation that the user has to do is actually

so straightforward and tedious that it could potentially be done automatically

using a system like Template Haskell [29]. Using Template Haskell, we could likely

generate the Functor version of a user’s data structure for them, as well as all of

the class instances. We could also take a stab at translating the user’s print and

transformation functions as well, though they may still need some addition input

from the user (such as adding in Transformation Algebra functions). Overall,

the power of Template Haskell may let us reduce the user burden for our system

significantly further, to the point where we merely require a few lines to be added

after a new .hs file is generated.

In other areas of practical system use, we are happy with the current look

and functionality of the system in regards to correctly displaying animations. We

feel that the current display does a pretty good job of differentiating between

text that remains the same, transformations that are occurring, and other ”text

displacement” that must happen in order for the animation to occur. We would,

however, like to offer more customizability for some of these aspects in the future.

A lot of this customizability can be achieved nearly for free by simply abstracting

out the current values we use and placing them into some sort of options list. These

simple changes could allow the user greater control over both what is shown and

how it is animated, and are areas we plan to address in the future.

The efficiency of our system also appears to be sufficient in practice so far. We

have been able to animate all of the transformations we have attempted in nearly

real-time, as well as create videos from these animations without loosing any

speed. While we have noticed slight slow-downs when a large number of different
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strings need to be animated at once, this is mostly due to how the system interacts

with Active specifically and some lingering inefficiencies that need to be worked

out of Active itself. These slow-downs are not very noticeable, however, and all

animations still run in nearly real-time.

8.4 Overall

Overall, through each different piece of this thesis, the goal has remained

roughly the same: to show how functional languages and functional design pat-

terns can be combined effectively and efficiently with computer graphics in order

to create new and interesting opportunities for both. These opportunities should

also have practical applications in the real world.

Beginning with ChalkBoard and Active, I believe this goal has mostly suc-

ceeded. A new, unique system has been created for expressing graphics and an-

imation problems in a very functional and mathematical fashion. This type of

expression can be useful in many situations, such as the Active Transformation

system, and allows for certain types of images and animations to be scripted up

very quickly.

I do believe there are some drawbacks as well. I believe that this system

requires a big emphasis on this functional way of thinking, as well as a pretty

in-depth knowledge of ChalkBoard, in order to benefit from this quick scripting

of animations. Although I believe the idea of bringing graphics to functional pro-

grammers is sound, I still feel that the system could deal with some improvements

to its usability, and a much easier learning curve.

In terms of efficiency, I feel that ChalkBoard is compares well to most other

functional graphics systems. I do still feel there are some improvements to be made
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in this area, however, and especially when it comes to combining this system with

Active. Active and ChalkBoard are built up separately for the most part, and

I believe the two would benefit greatly from a closer connection. The ability to

reuse parts of ChalkBoard images, as mentioned above, could speed up animation

considerably.

Moving on to the Active Transformation system, I feel that this system really

does show the effectiveness that functional graphics programming can have on

practical, real-world applications. Compilers and interpreters are often written in

a functional style, mirroring the grammars that they implement. Being able to

quickly and easily attach animations to these functional systems could be really

helpful, both in terms of learning the concepts and in terms of debugging.

Building libraries such as this on top of ChalkBoard and Active seems to be the

really big use case for the system. Because ChalkBoard is functional, functional

programmers can easily build libraries on top of the system that perform certain

sets of scriptable animations. In this way, high-level users don’t need to under-

stand the specifics of ChalkBoard while the writers of the libraries can take the

type to learn ChalkBoard in order to take advantage of its quick implementation

time as well as efficient generation of animations.

Overall, I believe this system shows that new opportunities have been created

by efficiently combining functional programming with computer graphics, and

that these systems can have some highly useful applications.
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Appendix A

module Main where

import Prelude as P

import Graphics.ChalkBoard as CB

import Graphics.ChalkBoard.Font

import Control.Applicative (pure)

main = do

font <- initFont "Arial.ttf" 0

let (w,h) = (400,400)

startChalkBoard [BoardSize w h] (\cb -> animMain cb font 0.01 (w,h))

animMain cb font sz (w,h) = do

--Set up the font labels

(aLabel,aSP) <- label font sz ("a")

(bLabel,bSP) <- label font sz ("b")

(cLabel,cSP) <- label font sz ("c")

(areaLabel,areaSP) <- label font sz ("area = c{^2}")

(formulaLabel,formulaSP) <- label font sz ("c{^2} = a{^2} + b{^2}")

--Set up the different parts of the animation

let triangle345 = triangle (-0.2,0.15) (-0.2,-0.15) (0.2,-0.15)

triLines = pointsToLine [(-0.2,0.15), (-0.2,-0.15), (0.2,-0.15), (-0.2,0.15)] 0.004

mainTriangle = (choose (alpha black) transparent <$> triLines) ‘over‘

(choose (alpha yellow) transparent <$> triangle345)

movingTriangle = activeMove (0.15,0.2) $ activeScale (2/3) $

pure $ scale 1.5 $ mainTriangle

position x b = rotate (-x*pi/2) $ move (0.15,0.2) b

otherTriangles = [ activeAppear $ pure $ position i $ mainTriangle | i <- [1..3] ]

fillSquare = activeAppear $ pure $ scale 0.095 $

choose (alpha yellow) transparent <$> square

fadedTriangles = [ position i $ choose (withAlpha 0.6 white) transparent <$> triangle345

| i <- [0,1] ]

slideLeft = activeAppear $ (activeMove (-0.3,-0.4) $ pure $ position 0 $ mainTriangle)

‘over‘ (pure $ head fadedTriangles)

slideRight = activeAppear $ (activeMove (0.4,-0.3) $ pure $ position 1 $ mainTriangle)

‘over‘ (pure $ last fadedTriangles)
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newSquares = (move (0.15, -0.15) $ scale 0.4 $ square) ‘over‘

(move (-0.2, -0.2) $ scale 0.3 $ square)

newLines = pointsToLine [(-0.05,-0.35), (0.35,-0.35), (0.35,0.05), (-0.05,0.05),

(-0.05,-0.35), (-0.35,-0.35), (-0.35,-0.05), (-0.05,-0.05)] 0.004

fadeInSquares = (fadeIn black 1 newLines) ‘over‘ (fadeIn yellow 0.9 newSquares)

--The font parts of the animation

let a = move (-0.25,-0.03) $ makelbl aSP aLabel

b = move (-0.04,-0.195) $ makelbl bSP bLabel

c = move (0.005,0.005) $ makelbl cSP cLabel

positions2 aPos bPos = (move aPos a) ‘over‘ (move bPos b)

positions3 aPos bPos cPos = (move aPos a) ‘over‘ (move bPos b) ‘over‘ (move cPos c)

firstABC = activeTempAppear $ pure $ positions3 (-0.1,0) (-0.03,-0.08) (0.005,0.005)

areaEq = activeAppear $ pure $ move (-0.4,0.35) $ makelbl aSP areaLabel

secondABC = activeTempAppear $ pure $ move (0.15, 0.2) $

positions3 (0.06,0) (0,0.06) (0.05,-0.38)

thirdABC = activeTempAppear $ pure $

positions2 (-0.15,-0.2) (-0.15,-0.2) ‘over‘ positions2 (0.45,-0.36) (0.4,0)

finalABC = activeAppear $ pure $

position2 (-0.15,-0.2) (0.18,-0.2) ‘over‘ position2 (0.03,-0.36) (0.4,0)

formula = activeAppear $ pure $ move (0.15,0.35) $ makelbl aSP formulaLabel

--Set up the animation ordering/timing

let anim = flicker [ wait 0.5

, taking 1 $ firstABC

, taking 1 $ movingTriangle

, wait 0.5

, taking 0.75 $ otherTriangles !! 0

, taking 0.75 $ otherTriangles !! 1

, taking 0.75 $ otherTriangles !! 2

, taking 1.5 $ fillSquare ‘over‘ secondABC ‘over‘ areaEq

, taking 1 $ slideLeft

, wait 0.5

, taking 1 $ slideRight

, taking 1 $ thirdABC

, taking 1 $ fadeInSquares ‘over‘ thirdABC

, taking 3 $ finalABC ‘over‘ formula

]

--Pick the animation you would like to see and turn it into a play object

playObj <- byFrame 29.97 anim

--Start the video write stream

sid <- startWriteStream cb $ ffmpegOutCmd "pythagorean-test.avi"
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--Run the animation

let loop = do

mbScene <- play playObj

case mbScene of

Just scene -> do

-- To screen:

drawChalkBoard cb $ unAlphaBoard (boardOf (o (RGB 1 1 0.8))) scene

-- To file:

frameChalkBoard cb sid

loop

Nothing -> return ()

loop

--Close the video write stream and exit

endWriteStream cb sid

exitChalkBoard cb

--Create a font board at the right size

makelbl :: Float -> Board UI -> Board (RGB -> RGB)

makelbl size lbl = color black $ scale (0.7) $ scale (1/(size*25)) $ lbl

color :: O RGB -> Board UI -> Board (RGB -> RGB)

color rgb brd = (\ ui -> withAlpha ui rgb) <$> brd
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Appendix B

{-# LANGUAGE TupleSections #-}

{-# LANGUAGE TypeFamilies #-}

import Control.Monad (liftM, liftM2)

import Control.Monad.Trans (liftIO)

import Data.Foldable (Foldable, foldMap)

import Data.Traversable (Traversable, traverse, fmapDefault, foldMapDefault)

import Data.Functor

import Control.Applicative

import IndexedAST

import Transform

import ChalkDoc

import Animate

------------------------------------------------------------------------------------------------

--------------------------------- Original Core-Like Language ----------------------------------

------------------------------------------------------------------------------------------------

data Expr = Ap Expr Expr

| Lam Var Expr -- single argument lambdas

| Case Expr (Alts Expr)

| Let (Bind Expr) Expr

| Con Con [Expr]

| Prim Prim [Expr]

| Var Var

| Lit Literal

instance Show Expr where

show = show’ 0

type Var = String

type Con = String

type Prim = String

data Bind x = Bind Var x -- non-recursive bindings

data Literal = LitI Int

| LitF Float
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instance Show Literal where

show (LitI int) = show int

show (LitF float) = show float

data Alts x = C [Calt x]

| L [Lalt x]

| CwDef [Calt x] (Default x)

| LwDef [Lalt x] (Default x)

type Calt x = (Con, [Var], x)

type Lalt x = (Literal, x)

type Default x = (Var, x)

instance Functor Bind where fmap = fmapDefault

instance Foldable Bind where foldMap = foldMapDefault

instance Traversable Bind where traverse f (Bind v x) = Bind v ‘liftA‘ f x

instance Functor Alts where fmap = fmapDefault

instance Foldable Alts where foldMap = foldMapDefault

instance Traversable Alts where

traverse f as = case as of

C cas -> C ‘liftA‘ cs cas

L las -> L ‘liftA‘ ls las

CwDef cas defalt -> liftA2 CwDef (cs cas) (def defalt)

LwDef las defalt -> liftA2 LwDef (ls las) (def defalt)

where

cs = traverse (\ (con, vs, x) -> (con, vs,) ‘liftA‘ f x)

ls = traverse (\ (lit, x) -> (lit,) ‘liftA‘ f x)

def (v, x) = (v,) ‘liftA‘ f x

------------------------------------------------------------------------------------------------

------------------------------------ Functor-Type Additions ------------------------------------

------------------------------------------------------------------------------------------------

data Expr’ x = Ap’ x x

| Lam’ Var x

| Case’ x (Alts x)

| Let’ (Bind x) x

| Con’ Con [x]

| Prim’ Prim [x]

| Var’ Var

| Lit’ Literal

instance Functor Expr’ where fmap = fmapDefault

instance Foldable Expr’ where foldMap = foldMapDefault

instance Traversable Expr’ where

traverse fn es = case es of

Ap’ e1 e2 -> liftA2 Ap’ (fn e1) (fn e2)

Lam’ v e -> liftA (Lam’ v) (fn e)

Case’ e alts -> liftA2 Case’ (fn e) (traverse fn alts)

Let’ b e2 -> liftA2 Let’ (traverse fn b) (fn e2)

Con’ c es -> liftA (Con’ c) (traverse fn es)
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Prim’ p es -> liftA (Prim’ p) (traverse fn es)

Var’ v -> pure $ Var’ v

Lit’ l -> pure $ Lit’ l

instance MuRef Expr where

type DeRef Expr = Expr’

toFunctor expr = case expr of

Ap e1 e2 -> Ap’ e1 e2

Lam v e -> Lam’ v e

Case e alts -> Case’ e alts

Let bind e2 -> Let’ bind e2

Con c es -> Con’ c es

Prim p es -> Prim’ p es

Var v -> Var’ v

Lit l -> Lit’ l

------------------------------------------------------------------------------------------------

--------------------------------------- Original Printer ---------------------------------------

------------------------------------------------------------------------------------------------

show’ :: Int -> Expr -> String

show’ depth e = case e of

Ap expr1 expr2 -> "(" ++ show’ (depth+1) expr1 ++ " " ++ show’ (depth+1) expr2 ++ ")"

Lam var expr -> "(\\" ++ var ++ " -> " ++ show’ (depth+1) expr ++ ")"

Case expr alts -> "case " ++ show’ (depth+1) expr ++ " of\n" ++ showAlts (depth+1) alts

Let bind expr -> "let " ++ sBind bind ++ " in\n" ++ tabs (depth+1) ++ show’ (depth+1) expr

Con con exprs -> "(" ++ con ++ concatMap (\x -> " " ++ (show’ 0 x)) exprs ++ ")"

Prim prim exprs -> "(" ++ prim ++ concatMap (\x -> " " ++ (show’ 0 x)) exprs ++ ")"

Var var -> var

Lit lit -> show lit

where tabs d = concat [" " | i<-[1..d]]

showBind (Bind var expr) = var ++ " = " ++ show’ (depth+1) expr

showAlts :: Int -> Alts Expr -> String

showAlts depth alts = case alts of

C calts -> concatMap (showCalt depth) calts

L lalts -> concatMap (showLalt depth) lalts

CwDef calts (var, expr) -> concatMap showCalt calts ++ tabs ++ var ++ " -> " ++ tabs

++ show’ (depth+1) expr ++ "\n"

LwDef lalts (var, expr) -> concatMap showLalt lalts ++ tabs ++ var ++ " -> " ++ tabs

++ show’ (depth+1) expr ++ "\n"

where tabs = concat [" " | i<-[1..depth]]

showCalt (con, vars, expr) = tabs ++ con ++ " " ++ show vars ++ " -> "

++ show’ (depth+1) expr ++ "\n"

showLalt (lit,expr) = tabs ++ show lit ++ " -> " ++ show’ (depth+1) expr ++ "\n"
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------------------------------------------------------------------------------------------------

--------------------------------------- Modified Printer ---------------------------------------

------------------------------------------------------------------------------------------------

tshow’ :: Int -> (IndexedAST Expr’) -> [ASTSymbol]

tshow’ depth iast = case (getAST iast) of

Ap’ e1 e2 -> gID "(" ++ tshow’ (depth+1) e1 ++ gID " " ++ tshow’ (depth+1) e2 ++ gID ")"

Lam’ v e -> gID ("(\\" ++ v ++ " -> ") ++ tshow’ (depth+1) e ++ gID ")"

Case’ e as -> gID "case " ++ tshow’ (depth+1) e ++ gID " of" ++ newline id

++ tshowAlts (depth+1) as id

Let’ b e -> gID "let " ++ sBind b ++ gID " in" ++ newline id ++ tabs (depth+1) id

++ tshow’ (depth+1) e

Con’ c es -> gID ("(" ++ c) ++ concatMap (\x -> gID " " ++ tshow’ depth x) es ++ gID ")"

Prim’ p es -> gID ("(" ++ p) ++ concatMap (\x -> gID " " ++ tshow’ depth x) es ++ gID ")"

Var’ v -> gID v

Lit’ l -> gID (show l)

where gID = giveID id

id = getID iast

sBind (Bind v e) = gID (v ++ " = ") ++ tshow’ (depth+1) e

tshowAlts :: Int -> Alts (IndexedAST Expr’) -> ID -> [ASTSymbol]

tshowAlts depth alts id = case alts of

C calts -> concatMap sCalt calts

L lalts -> concatMap sLalt lalts

CwDef calts (v,e) -> concatMap sCalt calts ++ sDef v e

LwDef lalts (v,e) -> concatMap sLalt lalts ++ sDef v e

where gID = giveID id

sDef v e = tabs depth id ++ gID (v ++ " -> ") ++ tshow’ (depth+1) e ++ newline id

sCalt (c,vs,e) = tabs depth id ++ gID (c ++ " " ++ show vs ++ " -> ")

++ tshow’ (depth+1) e ++ newline id

sLalt (l,e) = tabs depth id ++ gID (show l ++ " -> ") ++ tshow’ (depth+1) e

++ newline id

------------------------------------------------------------------------------------------------

------------------------------------ Dead Code Removal Original --------------------------------

------------------------------------------------------------------------------------------------

rmDeadCode’ :: Expr -> Expr

rmDeadCode’ expr = case expr of

Ap e1 e2 -> Ap (rmDeadCode’ e1) (rmDeadCode’ e2)

Lam v e -> Lam v (rmDeadCode’ e)

Case e as -> Case (rmDeadCode’ e) (fmap rmDeadCode’ as)

Let b e -> let (Bind v _) = b in

if (varUsed’ v e)

then Let (fmap rmDeadCode’ b) (rmDeadCode’ e)

else rmDeadCode’ e

Con c es -> Con c (map rmDeadCode’ es)

Prim p es -> Prim p (map rmDeadCode’ es)

_ -> expr
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varUsed’ :: Var -> Expr -> Bool

varUsed’ var expr = case expr of

Ap expr1 expr2 -> (varUsed’ var expr1) || (varUsed’ var expr2)

Lam v expr -> if (var == v)

then False

else varUsed’ var expr

Case expr alts -> (varUsed’ var expr) || (varUsedAlts var alts varUsed’)

Let b expr2 -> let (Bind v expr1) = b in

if (var == v)

then varUsed’ var expr1

else (varUsed’ var expr1) || (varUsed’ var expr2)

Con con exprs -> or (map (varUsed’ var) exprs)

Prim prim exprs -> or (map (varUsed’ var) exprs)

Var v -> var == v

Lit l -> False

varUsedAlts :: Var -> Alts a -> (Var -> a -> Bool) -> Bool

varUsedAlts v alts vuFn = case alts of

C calts -> or [if (elem v vs) then False else (vuFn v e) | (c,vs,e) <- calts]

L lalts -> or [vuFn v e | (_,e) <- lalts]

CwDef calts (dv,de) -> (or [if (elem v vs) then False else (vuFn v e) | (c,vs,e) <- calts])

|| if (v == dv) then False else (vuFn v de)

LwDef lalts (dv,de) -> (or [ (vuFn v expr) | (lit, expr) <- lalts])

|| if (v == dv) then False else (vuFn v de)

------------------------------------------------------------------------------------------------

------------------------------------ Dead Code Removal Modified --------------------------------

------------------------------------------------------------------------------------------------

-- With "recurse" function

rmDC :: IndexedAST Expr’ -> Transform Expr’

rmDC iast = case (getAST iast) of

Let’ (Bind v _) e | not (varUsed v e) -> replaceM iast $ rmDC e

_ -> recurse iast rmDC

-- Without "recurse" function

rmDC :: IndexedAST Expr’ -> Transform Expr’

rmDC iast = case (getAST iast) of

(Ap’ e1 e2) -> changeM iast $ liftM2 Ap’ (rmDC e1) (rmDC e2)

(Lam’ v e) -> changeM iast $ liftM (Lam’ v) (rmDC e)

(Case’ e as) -> changeM iast $ liftM2 Case’ (rmDC e) (traverse rmDC as)

(Let’ b e) -> let (Bind v _) = b in

if (varUsed v e)

then changeM iast $ liftM2 Let’ (traverse rmDC b) (rmDC e)

else replaceM iast $ rmDC e

(Con’ c es) -> changeM iast $ liftM (Con’ c) (mapM rmDC es)

(Prim’ p es) -> changeM iast $ liftM (Prim’ p) (mapM rmDC es)

_ -> return iast
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varUsed :: Var -> IndexedAST Expr’ -> Bool

varUsed var iast = case (getAST iast) of

Ap’ expr1 expr2 -> (varUsed var expr1) || (varUsed var expr2)

Lam’ v expr -> if (var == v)

then False

else varUsed var expr

Case’ expr alts -> (varUsed var expr) || (varUsedAlts var alts varUsed)

Let’ b expr2 -> let (Bind v expr1) = b in

if (var == v)

then varUsed var expr1

else (varUsed var expr1) || (varUsed var expr2)

Con’ con exprs -> or (map (varUsed var) exprs)

Prim’ prim exprs -> or (map (varUsed var) exprs)

Var’ v -> var == v

Lit’ l -> False

------------------------------------------------------------------------------------------------

---------------------------------------- Inlining Original -------------------------------------

------------------------------------------------------------------------------------------------

inline’ :: Expr -> Expr

inline’ code = case code of

Ap expr1 expr2 -> Ap (inline’ expr1) (inline’ expr2)

Lam var expr -> Lam var (inline’ expr)

Case expr alts -> Case (inline’ expr) (inlineAlts alts)

Let (Bind var expr1) expr2 -> Let (Bind var (inline’ expr1))

(replaceVar’ var (inline’ expr1) (inline’ expr2))

Con con exprs -> Con con (map inline’ exprs)

Prim prim exprs -> Prim prim (map inline’ exprs)

_ -> code

where inlineAlts alts = case alts of

C calts -> C [(con, vars, (inline expr)) | (con, vars, expr) <- calts]

L lalts -> L [(lit, (inline expr)) | (lit, expr) <- lalts]

CwDef calts (dv, de) -> CwDef [(c,vs,inline’ e) | (c,vs,e) <- calts]

(dv,inline’ de)

LwDef lalts (dv, de) -> LwDef [(lit,inline’ e) | (lit,e) <- lalts]

(dv,inline’ de)

replaceVar’ :: Var -> Expr -> Expr -> Expr

replaceVar’ var val expr = case expr of

Ap expr’ atom -> Ap (replaceVar’ var val expr’) (replaceVar’ var val atom)

Lam v expr’ -> if (v == var)

then Lam v expr’

else Lam v (replaceVar’ var val expr’)

Case expr’ alts -> Case (replaceVar’ var val expr’) (replaceAlts var val alts)

Let (Bind v e) expr’ -> if (v == var)

then Let (Bind v (replaceVar’ var val e)) expr’

else Let (Bind v (replaceVar’ var val e))

(replaceVar’ var val expr’)

Con con exprs -> Con con (map (replaceVar’ var val) exprs)

Prim prim exprs -> Prim prim (map (replaceVar’ var val) exprs)
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Var v -> if (v == var)

then val

else Var v

Lit l -> Lit l

where replaceAlts v val alts = case alts of

C calts -> C [(c,vs, if (elem v vs) then e else (replaceVar’ v val e))

| (c,vs,e) <- calts]

L lalts -> L [(lit, replaceVar’ v val e) | (lit, e) <- lalts]

CwDef calts (dv,de) -> CwDef [(c,vs, if elem v vs then e else replaceVar’ v val e)

| (c,vs,e) <- calts]

(dv, if (v == dv) then de else replaceVar’ v val de)

LwDef lalts (dv,de) -> LwDef [(lit, replaceVar’ v val e) | (lit, e) <- lalts]

(dv, if (v == dv) then de else replaceVar’ v val de)

------------------------------------------------------------------------------------------------

---------------------------------------- Inlining Modified -------------------------------------

------------------------------------------------------------------------------------------------

inline :: IndexedAST Expr’ -> Transform Expr’

inline iast = case (getAST iast) of

Let’ (Bind v e1) e2 -> do

ie1 <- inline e1

ie2 <- inline e2 >>= replaceVar v ie1

change iast $ Let’ (Bind v ie1) ie2

_ -> recurse iast inline

replaceVar :: Var -> IndexedAST Expr’ -> IndexedAST Expr’ -> Transform Expr’

replaceVar var val iast = case (getAST iast) of

Lam’ v e | v == var -> return iast

Case’ e as -> changeM iast $ liftM2 Case’ (rep e) (repAlts as)

Let’ (Bind v e1) e2 | v == var -> do

re1 <- rep e1

change iast $ Let’ (Bind v re1) e2

Var’ v | v == var -> do

newIAST <- liftIO (reindex val)

addCopy (getID val) (getID newIAST)

replace iast newIAST

_ -> recurse iast rep

where rep = replaceVar var val

repAlts alts = case alts of

C calts -> liftM C $ traverse fCalt calts

CwDef calts (v,e) -> liftM2 CwDef (traverse fCalt calts) (fDef v e)

L lalts -> liftM L $ traverse fLalt lalts

LwDef lalts (v,e) -> liftM2 LwDef (traverse fLalt lalts) (fDef v e)

where fLalt (l,e) = liftM (l,) $ rep e

fCalt (c,vs,e) = if elem var vs

then return (c,vs,e)

else liftM (c,vs,) $ rep e

fDef v e = if v == var

then return (v,e)

else liftM (v,) $ rep e
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------------------------------------------------------------------------------------------------

----------------------------------------- Main Function ----------------------------------------

------------------------------------------------------------------------------------------------

main = do

let start = Let (Bind "a"

(Let (Bind "v" (Lit (LitI 1)))

(Var "v")))

(Var "a")

anims = [inline, rmDC]

animate "Arial.ttf" (tshow’ 0) start anims
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