CS 210 - Fundamentals of Programming I

Fall 2011 - Programming Assignment 6

20 points

Out: November 2, 2011

Due: November 14, 2011 (Monday)

Note: Although this assignment is due after Written Exam 2, the material used in this assignment will be on the exam. Please do not wait until after Written Exam 2 to start this assignment.

Problem Statement

In computer graphics, direction is represented using mathematical vectors of three dimensions written as $\langle x, y, z\rangle$. For vectors \mathbf{u} and \mathbf{v} represented as $\left\langle u_{x}, u_{y}, u_{z}\right\rangle$ and $\left\langle v_{x}, v_{y}, v_{z}\right\rangle$, respectively, the following arithmetic operations on 3-D vectors are defined:

Operation name	Operator notation	Result
Addition	$\mathbf{u}+\mathbf{v}$	$\left\langle u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right\rangle$
Subtraction	$\mathbf{u}-\mathbf{v}$	$\left\langle u_{x}-v_{x}, u_{y}-v_{y}, u_{z}-v_{z}\right\rangle$
Scalar multiplication	$k \cdot \mathbf{v}$	$\left\langle k \cdot v_{x}, k \cdot v_{y}, k \cdot v_{z}\right\rangle$
Dot product	$\mathbf{u} \cdot \mathbf{v}$	$u_{x} \cdot v_{x}+u_{y} \cdot v_{y}+u_{z} \cdot v_{z}$
Cross product	$\mathbf{u} \times \mathbf{v}$	$\left\langle u_{y} \cdot v_{z}-u_{z} \cdot v_{y}, u_{z} \cdot v_{x}-u_{x} \cdot v_{z}, u_{x} \cdot v_{y}-u_{y} \cdot v_{x}\right\rangle$
Magnitude	$\|\mathbf{u}\|$	$\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}$

A unit vector is defined as a vector with magnitude of 1 . The cross product of two vectors is a vector that is said to be orthogonal to both argument vectors.

Assignment

Note: because this assignment will be graded by linking it with a driver program written by the instructor, all names and identifiers given below (in Courier font) must be used exactly as shown. In addition, function prototypes must declare any parameters in exactly the order listed. If this is not done, the submission system will not be able to compile your library and test it, and the submission will not be graded.

The assignment is to implement a personal library for a type and functions to model 3-D vectors and their operations. The type definition and function prototypes must be stored in a header file named vector. \mathbf{h}, and the function definitions must be stored in a source file named vector. \mathbf{c}, in the same manner as the rational number library completed in the inclass exercise. The vector library must meet the following design specifications:

1. The type of a vector must be called vector_t. It must have three double-precision components named \mathbf{x}, \mathbf{y}, and \mathbf{z}.
2. A function make_vector must be provided. This function receives three double values representing the x, y, and z components of a vector and returns a vector_ \boldsymbol{t} result with those component values.
3. A function vec2a must be provided. This function receives a vector_t object and passes back a string
containing the string representation of the vector. The format of the string representation must be $\langle\mathbf{x}, \mathbf{y}, \mathbf{z}\rangle$ with no spaces and three places past the decimal point. E.g. <3.000, -4.000,5.125>.
4. Functions for the arithmetic operations defined above must be provided:

- vec_add that receives two vectors and returns their sum
- vec_sub that receives two vectors and returns their difference
- vec_scale that receives a vector and a scaling value, and returns the vector multiplied by the scaling value
- vec_dot that receives two vectors and returns their dot product
- vec_cross that receives two vectors and returns their cross product
- vec_magnitude that receives a vector and returns its magnitude

5. The following additional functions must be provided:

- vec_unitvector that receives a vector and returns a unit vector that represents the same direction as the argument
- vec_unitnormal that receives two vectors and returns a unit vector that is orthogonal to both of the them.

Notes:

- Although the submission system will provide its own main program, you should write your own driver program that tests your vector library.
- It is recommended that each function be tested thoroughly after it is written. In other words, do not try write all of the library code first, then try to test it.
- Thorough testing is more than one test.

REMINDER: Your program must compile for it to be graded. Submissions that do not compile will be returned for resubmission and assessed a late penalty. Submissions that do not substantially work also will be returned for resubmission and assessed a late penalty.

Follow the program documentation guidelines in the C Programming Style Guideline handout. As stated in the syllabus, part of the grade on a programming assignment depends on how well you adhere to the guidelines. The grader will look at your code and grade it according to the guidelines.

What to Submit

Electronically submit a zipfile containing files vector. \mathbf{h} and vector. \mathbf{c} as explained in the handout Submission_ Instructions for CS 210. To zip multiple files together, select all files using Ctrl-Left-Click, then Right-Click to zip as usual. The submission system will start accepting assignments on Wednesday, November 9.

