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1. Introduction: Concept of Learning

The paradox of understanding learning begins with the seemingly indefinable

concept itself.  The dictionary reveals that learning is to “1. gain knowledge or skill 2. acquire

as a habit or attitude” [Websters, 1982].  These definitions and concepts are rather vague as is

the current understanding of learning.  This has led many to argue that the search for the

laws of learning is a never-ending task because they simply do not exist.  Exploring the

philosophical implications within the definition of learning–though a fascinating Platonic

discourse–is not the author’s intent.

For the sake of this discussion, learning shall be defined as merely an adaptive

change in behavior.  Using this simple definition, intelligence can easily be assigned.

Consider that “behavior is usually considered intelligent when it can be seen as adaptive”

[Balkenius, 1994].  Superior intelligence can be assigned when the adaptive behavior

improves our domain knowledge.  Inferior intelligence can be assigned when the adaptive

behavior worsens our domain knowledge.

Balkenius has an excellent example of perceived intelligence [Balkenius, 1994].  A

squirrel gathering, hiding, and storing food for the winter would appear to be an intelligent

activity.  Upon further inspection we find that the squirrel forgets where 80% of his food is

hidden, stores far more food than would ever be needed, and most oftentimes takes food

hidden by another squirrel.  No longer does this activity seem intelligent, but, simply

random.  Such counter-examples exemplify the notion that  “intelligence is in the eye of the

beholder” [Brooks, 1991].
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2. Biologic and Artificial Intelligence

Artificial Intelligence, throughout its history, has followed the philosophical and

theoretical trends in the biological learning fields rather closely.  The fundamental difference

between the studies of animal intelligence and that of artificial intelligence is that the field of

artificial intelligence works to build new intelligent entities utilizing the knowledge learned.

These entities are built for research as well as applications, such as assisting in the diagnosis

of medical patients, controlling robotics within factories, guiding robotic rovers on other

planets, and even playing a challenging game against a human opponent.

Alan Turing defined intelligent behavior as the machine having the ability to

perform all human cognitive functions.  This, rather homo-centric, view of intelligence is not

the goal of much of artificial intelligence because most believe that intelligence does not have

to achieve the level of human thought to be considered truly intelligent.

2.1. Biological Learning

The roots in the understanding of biological learning followed the belief that all

behaviors could be simplified into stimulus and response pairs.  However, over one hundred

years of research has yet to form the general rule of learning based upon these stimulus-

response pairs.  Other researchers, such as MacFarlane in 1930, set out to prove that learning

was more abstract [MacFarlane, 1930].  He taught rats to swim their way through a maze in

order to find the goal of a food treat.  After the rats were adept at swimming the maze and

discovering their food every time, the maze was drained of water and the rats were allowed

to again run the maze in search of food.  Every rat was able to recall the proper path through
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the maze even though it was no longer swimming but running.  He had proven that the

knowledge learned by the rats was not merely a response to the stimulus of swimming.

Through this research, MacFarlane and others showed that learning is not simply a complex

memorization of stimulus-response pairs.

Other biological responses or actions are not learned at all, but are instictual: handed

down from generation to generation by genetic code.  For this discussion, instinct is defined

as any fixed reaction to a given stimulus (e.g. a “tick will bite everything that has a

temperature above +37°C and smells of butyric acid” [Lorenz, 1977]).  Using this definition of

instinct gives rise to the belief that learning may be nothing more than slight parameter

adjustment of pre-programmed motor reactions.  An example of this theory can be displayed

with a newborn child.  The child will smile at anything resembling a human face (from true

faces to masks and cardboard cutouts).  As the child develops, however, these visual cues

must begin to become more and more resembling that of a true human face to elicit the

child’s response.

Researchers from each of these two theories worked for years to prove their beliefs

and attempt to disprove the other side; however, as research continued, it led to the

realization that there is more than one type of learning and that neither is mutually exclusive

of the other.  This has led to the now more widely held belief that there is only one general

learning system comprised of several (possibly many) learning methods.

As attention turned from attempting to fit all learning into stimulus-response or

adaptive instinct, researchers began to focus on the role of reinforcement learning in the

1950’s.  During this time, it was found that reinforcement learning is based upon causing

adaptive behavior with stimulus reinforcement: a rat that learns the maze to be rewarded

with food is simply being given a stimulus to learn.  Some argue that this stimulus
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reinforcement (or punishment) forces the actual learning (as opposed to adaptation).

Premack showed, however, that oftentimes, this stimulus is not so much as forced learning,

but that the stimulus serves only to “reinforce a less probable activity.”  For example, the rats

that swam the maze, though, not necessarily hungry learned to swim the maze not out of

need or of the capacity to learn, they swam the maze simply to get their treat.

The reinforcement learning theory is quite different from the mechanical view of

stimulus-response and is more generalized.  Some argue that reinforcement learning is, in

fact, the oft-sought single general learning system.  Most researchers, however, would argue

that reinforcement learning “plays a role in some but not all learning” [Balkenius, 1994].

To understand the forms of learning is an important step in the eventual

understanding of how learning as a whole occurs in biological organisms.  Though many

theories are (or have been) presented separately by researchers, taken as a whole they can

help us to understand the rather abstract learning process that occurs.

2.2. Artificial Intelligence

It is interesting how development of general artificial intelligence theories tend to

closely follow the their respective theories and development of researchers in biological

learning.  All primary threads of AI research can be mapped into one of the three learning

methods understood by biologic researchers.

Stimulus-Response actions are very much common place in rule based systems.

Simple look-up tables or expert system rules dictate a response or chain of responses for a

given stimulus or stimuli-chain respectively.  Neural Networks, on the other hand,

theoretically attempt to model biological brains (utilizing a collection of synaptic nodes) such
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as a Hopfield neural network (once it has been suitably trained) tend to follow the instinctual

model of parameter adjustment to a pre-programmed set of motor-controls and responses.

Genetic Algorithms—in general—also fit into this parameter adjustment of instinctual

responses.

Thorndike defines law of effect to mean, “learning of a response is governed by the

effects of that response.”  The first to follow this belief in an Artificial Intelligence

representation and implementation was Arthur Samuel with his Checkers Program.  Sutton

and Barto [Sutton, 1990] have explicitly made mention of the parallel between the behavioral

research in reinforcement learning and the temporal difference algorithm they have

developed and deployed in adaptive control.

2.3. Machine Learning

Machine Learning is the concept of adapting the theories of Artificial Intelligence to

that of a physical (typically discrete) machine.  A broad definition for machine learning can

be given as, “a machine learns whenever it changes it structure, program, or data (based on

its inputs or in response to external information) in such a manner that its expected future

performance increases” [Nilsson, 1996].  In addition to the research of animal learning, other

fields have contributed philosophy and research to machine learning (as shown in table 2.1).
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Subject Contribution

Statistics Common statistical problems attempt to resolve the value of an
unknown function at some point given some sampling of previous
points.  This is considered because “decisions” are made only with
data from the problem domain.

Brain Models One important discipline of machine learning is that of Neural
Networks which attempt to model or mimic the basic structure and
workings of biological brains.

Control
Theory

Adaptive controls attempt to control some process in an environment
with unknown parameters that must be estimated (typically in real
time) during the span of the process.

Psychological
Models

Much of the work performed by Sutton and Barto in the realm of
Reinforcement Learning is based upon trying to model how rewards
encourage learning.  “Reinforcement Learning is an important theme
in machine learning research” [Nilsson, 1996].

Evolutionary
Models

Genetic Algorithms attempt to model the evolutionary change as a
species tries to “adapt” to the problem domain(s).

Table 2.1, Disciplines Contributing to Machine Learning

Within the application of Machine Learning, there are three classifications of the type

of learning taking place (as shown in table 2.2).

Classification Description

Supervised
Learning

The expected values, ƒ, are known over n samples for the training set,
S.  The learning model can then be “taught” to adjust itself until it
produces a result consistent with ƒ.  This is typically applied to
Hopfield Neural Networks.

Unsupervised
Learning

For this case, only the training set, S, is known for which, the expected
values, ƒ are not known.  In this case, the learning model must learn to
typically maximize ƒ for the set S.

Hybrid (or
intermediate)
Learning

The learning model is shown subsets of the training set, S, in both
supervised and unsupervised learning.

Table 2.2, Learning Type Classifications
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Utilizing the philosophies of learning, incorporating the mathematics of statistics, the process

of control-theory and utilizing a choice of learning method, what can the machine actually

learn?  Though there are many applications in use of such ideas and technologies, there are a

typical variety of structures that machines can learn (as listed, [Nilsson, 1996]):

• Functions

• Logic Problems and Rule Sets

• Finite State Machines

• Grammars

• Problem Solving Systems

It is the problem of teaching a machine to best fit (or approximate) a non-linear

function that most of our discussion will center.

2.4. Role of Game Playing in Machine Learning

Game playing has been a popular research topic in Artificial Intelligence and

Machine Learning because the problem typically has well-defined goals, is easily

represented, and has strict-rules.  This is not to say that game play is easy.  The computer

must deal with the uncertainty of its opponent while also managing a search space, which is

oftentimes infinite (in the realm of computer time and memory).  Finally, once a computer

has excelled at a challenging game against strong human components, others typically

perceive it as exuding intelligence.

The first groundbreaking machine playable game was Samuel’s Checkers Program.

His program “learned” a value-function (as represented by his linear function approximator)

and applied a training function that is very similar to what became temporal difference

within reinforcement learning.  Arguably, the most successful game-playing machine is
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Tesauro’s TD-Gammon, which fully employs the methods of temporal difference to achieve a

master’s level skill at the game of backgammon.

Samuel chose the game of checkers because he argued that checkers allows an

emphasis on learning techniques without complex rules to steer the concentration of the

learning method.  The characteristics with which he believed checkers displayed intelligence

by a machine were:

• Non-deterministic

No known algorithm guarantees a win or a draw because the state space is too large

to exhaustively search.

• Definite Goal

Winning the game, with intermediate goals along the way.

• Activity rules are definite and known

All responses must be allowed by the rules, thus keeping the possible space much

smaller.

• A background of knowledge exists

This is important for supervised learning.  If you can teach the program what is good

and bad (with known inputs and outcomes), your learning will be more accurate.

• Activity is understood by many people

By playing the game of checkers, even a child would be able to understand exactly

what the computer has learned and achieved.

To this day in research, games continue to attract tremendous attention because the

ability to plan, reason, and choose an option is perceived as intelligent.  Additionally, these

exact skills are extremely well suited for translation to develop “real-world” applications.
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3. Samuel’s Checkers Program

The game of Checkers (also referred to as Draughts) was originally developed in

ancient Egypt.  It is a basic game played between two players and does not involve an

element of chance.  The game is played using only the black tiles of a standard chessboard as

shown in figure 3.1.  Each opponent begins with twelve pieces.  Each piece may move only

forward to its diagonally bordering, unoccupied tile.  If an opponent’s piece borders a

player’s piece and the opposite tile is unoccupied, a player may “jump” the opponent’s piece

and therefore remove it from the game.  If a player’s piece reaches the opposite side of the

board, it is crowned a “king” and is allowed to traverse in either forward or backward

direction.  The player that takes the entirety of the opponent’s pieces wins.

Figure 3.1, Checkers Board

All popular computer checkers programs employ the use of a search tree.  In each of

these trees, nodes represent possible positions within the game and branches represent

possible moves from each position.  Each level of the tree represents a position with possible

moves based upon the opponent’s move.  For the game of checkers, to construct the entire



10

game tree would require 1040 non-terminal nodes.  Assuming one had a rather fast computer,

capable of solving 3x10
9 nodes

sec , it would require 1021 centuries to find all possible

positions.

3.1. Samuel and Checkers

Arthur L. Samuel, a researcher at IBM began work in 1952 on developing a program

which could play checkers at the level of a human opponent.  By 1955, Samuel had developed

a program employing the first heuristic search method to play the game of checkers.

Samuel’s Checkers Program was developed to run upon an IBM 700.  He would oftentimes

sneak into the production facility after-hours to run his program, as IBM would not give him

computer time.

Samuel laid out the checkers board representing each possible location with a single

bit within the 36-bit word of the IBM 700.  Starting at the lower, right position numbered as 1,

the next position left 2, and so forth for all possible 32 positions on a checkers board.  Each

player was then assigned two words containing that player’s current position.  The first word

contained the location of all of the player’s standard pieces.  The second word contained the

location of all of the player’s “kings.”  To make a move, a simple bit-shift could be performed

upon the bit representing the piece to move.  To move forward and to the right, 4 right bit

shifts would move the proper checker.  To move forward and left, 5 right bit shifts.  Samuel

further created one additional word for all occupied spaces on the board.  These five words

sufficiently describe the state-space of the checker’s game.

An evaluation function to judge where the computer (and opponent) stand within

the game had to be created.  The linear polynomial model that Samuel employed is based

upon the summation of weighted parameters.  Such parameters include: piece advantage
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(number of pieces vs. opponent’s), simple boolean tests (do I have a “king”?), and others.

The selections of these parameters were initially set a priori.  Later, the computer was allowed

to use those parameters with the most influence on the outcome of the game.

3.2. Searching the Space

With a representation and an evaluation function, a search tree is setup for each

move and its possible scores.  Employing a simple Depth-First Search (DFS) when searching

for the best move, the machine cannot simply choose the move with the maximum score (our

assumed goal), instead, from that position, it must traverse back up the tree to ensure that the

goal chosen is attainable.  The uncertainty in the attainability of this goal is due to the

opponent’s moves (which are presumed to maximize his own position while minimizing our

position). This procedure, developed by Shannon came to be known as the MINIMAX search

[Shannon, 1950].

The MINIMAX search examines each of our possible moves.  For each of those

moves, it again applies the evaluation function to each of the possible moves made by our

opponent after our potential move.  Choosing the node with the minimum score, we traverse

back up to the previous node and assign it the minimum value.  Thus, traversing back to our

root node, we choose the branch with the maximum score.  This is the maximum score we

choose that would minimize our opponent’s score.

For example, in figure 3.2, Player 1 may choose to move piece 1 forward left, forward

right, or piece 2 forward right.
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Figure 3.2, Player 1 Possible Moves

For each move Player 1 makes, there are a resultant number of moves that are

available to Player 2.  For every possible move available to Player 2, we employ our

evaluation function to determine the “score” of Player 2 at each of these potential points in

the game as shown in figure 3.3.

Figure 3.3, Player 2 Moves and Scores

Thusly, we choose the minimum score on each branch for Player 2 and assign the

parent’s node that minimum value as shown in figure 3.4.



13

Figure 3.4, Potential scores of each move

We can then evaluate our potential moves based upon the minimum score that is

achievable by our opponent.  We maximize this score and make our move.  In this case,

Player 1 chooses to move piece 1 forward right because it will maximize his position while

minimizing his opponent’s maximum position.  This example proceeds only two levels (or

ply’s) deep; however, the process is repeated as the search continues descending the tree.

Employing MINIMAX search (which utilizes DFS) would require a tremendous

amount of processing capability, in fact, an upper bound of O B
d( )  (where B represents

branches and d the depth of the tree) nodes must be searched.  Samuel applied what came to

be known as Alpha-Beta pruning of the MINIMAX search tree.

In the earlier example of MINIMAX, Player 1 first examined the Piece 1, forward left

move.  The best score (which minimized his opponent’s move) achieved by his move was six.

Examining the Piece 1, forward right move returned a result of eight, which was better.  In

the final case of Piece 2, forward right, the best score is two, worse than eight; therefore, this

branch may be “pruned” and eliminated from searching further.  This is the concept of α−β

pruning.
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As we descend the search tree, we set α to be the best value for our score and β to be

the best (minimum value) that we can force upon our opponent.  While searching the tree, if

any branch is found to be worse than the current α or β value, we can back up to our parent

and move onto the next branch thus eliminating an entire branch from our search tree.

This pruning of our branches eliminates much of the unneeded time involved in

searching and gives us O B

d

2
 

 
  

 

 
   nodes that will be searched.  This allows us to double the

amount of look-ahead in the same time allotment as the standard MINIMAX procedure.

Another modification was made to the search method to assist in the time that is

required by DFS.  The problem with DFS is that the order in which the offspring are

examined can prove to be crucial. Unfortunately, α−β pruning will not assist the search in the

case in which the best result lies upon the last branch searched.  By searching a child with a

better score first, the results will be found quicker, allowing α−β pruning to trim out the

results.  Samuel ordered each offspring in the search employing what he titled the

“plausibility analysis.”  The search scored each of the children nodes with the evaluation

function and then ordered each of these nodes.  The search would then return to the parent

node and use the α−β pruning with respect to these ordered, calculated child nodes.

Because of the search space and time restrictions placed upon Samuel with such an

early computer, the search tree is further limited in the number of ply to search forward.  The

ply limitation algorithm he developed followed six basic rules:

1) Always search a minimum of 3 ply.

2) The search stops at ply 3 unless any of the following occur:

a) The next move is a jump.

b) The last move was a jump.
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c) An exchange of pieces is possible.

3) The search stops at ply 4 unless 2a or 2c are then met.

4) Continue searching unless at any ply no jump is offered.

5) The search stops at ply 11 if one side is ahead by more than two “kings.”

6) The search stops at ply 20 regardless of conditions

By limiting the ply levels available for searching and employing the α−β pruning, the

program is required to search a path that follows a more winning (direct) route rather than

allowing the machine to explore paths which are known to lead away from the goal of

winning.

By utilizing this search method, the computer would be capable of calculating a

game of checkers; however, it would not “learn” about strategy, moves, etc.  It would simply

try to maximize its score while minimizing its opponent’s.  Any average human opponent

could develop a basic strategy around this simple, fixed game play.

3.3. Methods of Learning

Samuel began work on developing a system to allow the machine to adapt to

mistakes and strategies presented to it during game play.  The first component of this

method, rote-learning, was a very basic system to store results of previous games.  After

failing to get substantial results, Samuel developed a second algorithm he called, learning by

generalization.

In rote learning, the objective is to allow the computer the ability to search much

further into its search tree.  This is accomplished by storing the best move found every time

the DFS α−β pruning search is employed.  During play, if the same move is encountered
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again, the result is already computed, allowing the computer to begin searching deeper into

the tree.  If a particular move was found during a 3 ply search, the second time that node is

encountered, the computer can begin its search at the third ply, thus enabling it to search

much deeper into the tree.  Every time the same move was encountered, it was “rewarded”

by increasing its value slightly to encourage further exploration.

The problem Samuel found with this method is that no sense of direction was given

to the search routine.  The machine did not recognize that other paths (though equal or lower

in ply-value) may lead to a quicker victory.  In order to try to compensate for this problem,

each calculated score was weighted based upon the ply-value required to achieve the score.

Thus, if the machine is losing, it will take the path that maximizes the number of moves, and

if winning, it will take the path with fewest moves.

Samuel played this algorithm against himself, human players of varying abilities,

itself, and book games.  During all of these games, the computer stored 53,000 positions.

Samuel found that the machine had very strong opening and closing games (where the

number of possible positions and moves is much lower) and that the middle game was

extremely weak.  He estimates that over one million positions would have to be stored in

order for the machine to have a strong middle game.

Samuel began work on a more adaptive system by focusing not on the mechanics of

searching but on the evaluation function itself.  The evaluation function is the most important

component of the game play and it is in combination with the rote-learning that Samuel

achieved his legendary results.  The evaluation function must quickly and accurately

measure the current state of the game while also giving a reasonable interpretation toward

the possibility for the position to “win the game.”  Samuel developed a system using a first-

order linear polynomial.
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 Samuel’s learning by generalization “learns” by adjusting the weights of various

chosen parameters, which are used to calculate the current position’s score.  This evaluation

function was a basic linear polynomial of the form shown in equation 3.1.

v = ω1 p1 + ω2 p2 +… + ωn pn (3.1)

These parameters are selected for the game of checkers and are set up a priori to the

execution of the game.  Samuel deemed thirty-eight different parameters to be important to

the outcome of the game.  At any single calculation, sixteen were used by the linear

polynomial while twenty-two were in reserve.  The machine arbitrarily chose these sixteen

parameters along with their weights at the initial stage.  After each cycle, if a particular

parameter’s weighting coefficient fell below the threshold, its counter would be increased.

Once a parameter’s counter reached a set maximum (Samuel chose eight), that parameter

would be taken from the polynomial and placed at the end of the reserve queue.  The top

parameter in the reserve queue was then removed and added into the polynomial.

A sampling of the parameters that Samuel applied to pi include:

• ADV

Advancement of the piece

• EXCH

Exchange of pieces

• MOB

Mobility of the piece

• THRET

Currently a threat to an opponent’s piece or pieces.  (If pi is a THRET for some i,
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assume Q leads to position R; therefore, pi is equal to the value of THRET for R minus

the value of THRET for Q.)

Although the use of an a priori list of parameters is somewhat simplistic, at the time,

no other method for computer-generated terms had been found.  Additionally, due to the

underlying complexity of the strategy of checkers, no one knows which parameters create the

minimum group required to play a winning game.  Finally, a fraction of the parameters

created for representations by Samuel were combined into a single non-linear parameter

used within the linear evaluation function.

To enforce the learning, Samuel played the computer against itself.  The first player,

called α, would adjust the weights during each turn.  The second player, β, would leave the

weights untouched; however, it used the same evaluation function that was being modified

by α.  During play, α would perform its standard look-ahead calculations as performed by

the α−β pruning MINIMAX.  This value would be stored and the move made.  On the next

turn, α would use the evaluation function on its current position and compare this with the

stored value.  If the difference were positive, the weights of the polynomial would be

adjusted.

Samuel found that these calculations and adjustments had to be made after each

move; otherwise, instability would become prevalent.  This instability was due to the fact that

the determination of the opponent’s move is not made with the scoring polynomial; however,

the anticipation of the opponent’s move is calculated with the scoring polynomial during

MINIMAX.  Samuel including another means to help stabilize the polynomial by only

updating the parameter weights if the delta between the stored value and the new value was

above a minimum threshold.  This minimum was recomputed at each cycle and was set to

the average value of the coefficients for the terms of the utilized parameters.
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The final stabilizing feature (and one which becomes key in reinforcement learning)

was to scale the weight based upon the number of cycles that the parameter has been used.

This aided in keeping stability when a parameter term is first used (and thus, possibly a large

delta) and after it has been in used for many iterations.  The correction value is computed as

shown in equation 3.2.

Cn = Cn −1 −
Cn−1 ± 1

n
(3.2)

This correction value forces those weights that have been in use longer to be worth

more than those that have recently been added.

Samuel’s game as described became a good starting point in solving checkers.  When

the machine would compete against itself (using the α - β pairing as described), α changed

the top of its parameter list 14 times and lost 4 of 7 matches.  Throughout the trials, α

continued this pattern and repeatedly played quite poorly.  After approximately twenty-five

games, the machine would begin to play at a “better-than-average” level; however, the

learning at that point became “erratic and none too stable” [Samuel, 1959].

The program was also fooled by terrible play of the opponent.  It seemed to be

learning to play like its opponent as opposed to learning to beat it.  Samuel found that

changing the weighting coefficients less drastically when the delta was positive as compared

to when it was negative helped to stabilize the program.  In a positive delta case, only

parameters that contributed negative terms in the positive scoring polynomial were updated.

In the negative scoring polynomial case, only parameters that contributed positively were

updated.
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The program was found to be adding and removing parameters too frequently and it

caused very unstable evaluations.  Samuel increased the removal count threshold from eight

to thirty-two to try and keep parameters more stable.

The program did not assign proper credit to the moves it had made.  If a spectacular,

high scoring move was performed, credit was given to the previous move as opposed to the

series of moves that laid the groundwork for the spectacular move.  Samuel never found a

precise method for correcting the incorrectly assigned credit; however, the fix applied to the

program allowed the remembered moves to increase until the delta exceeded its arbitrary,

minimum value and then apply the update to that historical position.  This, however, may

assign credit falsely to a move along the chain.

The final instability found lied within the way the α−β pairing was played.  If α

played poorly and worsened its parameters, but, simply by chance, scored a victory over β,

then in the next game, β would utilize these poor parameters and α would never improve its

game play.  Simply by only updating the parameters used by β if a minimum number of

victories were achieved by α solved this problem.

It was with this system that Samuel performed further testing, playing book games

against the computer, many games against itself, and games against humans.  It eventually

achieved a master level beating all but the expert level players.  Samuel showed that the

generalization scheme could be an effective learning method.  The memory requirements for

such as system were modest (even by 1955 standards) and operating times remained fixed

and constant.  Finally, even with an incomplete set of parameters, the computer was able to

learn to play a very high level game of checkers.
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Samuel’s method of learning by generalization was one of the first applications of what

is now referred to as Reinforcement Learning.  Specifically, the method he developed is quite

similar to the temporal difference learning employed within the field of Reinforcement

Learning.  Samuel assigned “rewards” for various parameters deemed as important to the

game (by increasing their weight).  Samuel’s algorithm always attempted to increase its piece

advantage; however, because the function was never given a reward to the generalization

function, it could (and, in fact, did) get worse with time.
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4. Reinforcement Learning

The entire concept of reinforcement learning is built upon the principal of learning

through our interaction with a given environment.  This idea utilizes the concepts observed

in the study of biological learning.  A rat that runs through a maze, learning its way around

each turn until it finally reaches the destination, is rewarded with a treat, and freed from the

maze is a primary example of the basic tenets of reinforcement learning.  The two most

important features of reinforcement learning are:

• Trial-and-Error Search:

Discovery of actions within the environment that yield results.

• Delayed Reward:

An action may affect the subsequent action or any subsequent rewards.

It is the trial-and-error search, which provides us with another key to reinforcement

learning.  The learner must “trade-off between exploration and exploitation” [Sutton, 1998].

The learner needs to explore new territories that it has never seen, but, also exploit the

knowledge that it has already gained.  To help with exploration, the learner should (at

randomly selected intervals) choose a non-greedy (or non-exploitative) path to seek new

answers.  We call this an exploratory move “because they cause us to experience states we

might otherwise never see” [Sutton, 1998].

The standard reinforcement model (shown in figure 4.1) is based upon an agent (A)

with an environment (E).  The agent at some point (t) takes an action (L).  Upon the agent’s

completion of action L, the state of the environment (S) may change.  This change in the state
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is given to the agent via a reward (R).  Poor decisions are given smaller rewards (or possibly

a correction) than wise decisions.

Figure 4.1, Standard Reinforcement Model

Sutton and Barto define four primary components of the reinforcement learning

system [Sutton, 1998]:

• Policy

Defines how the agent is to react to a given situation.

• Reward Function

Ranks possible actions from the policy on their reward to the agent.  The reward

function essentially maps our state with a given policy and scores it upon its ability

to reach the goal.

• Value Function

Defines the total number of rewards the agent can accumulate between the current

state and the goal.  Without rewards, we would not have a value; however, it is the

values with which the agent is most concerned simply to achieve more reward.

• Environment Model

An estimator that can mimic the environment the agent is acting upon.  Given a state

and policy, the environment model should give us a reasonably accurate

representation of the new environment.
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Therefore, the job of the agent within its environment is to create a policy which

maps its actions to the environmental states that will achieve (typically maximize) the desired

goal (or long-term) state. What the rat running through a maze example shows us is an agent

interacting with its environment (the maze) making decisions to reach its goal in the face of

uncertainty on what lies around the next corner.  This uncertainty is much more akin to a

true environment as opposed to a supervised learning model.

In supervised learning techniques, the agent is presented with known examples and

outcomes until the agent sets its policy to match the cases it was given; unfortunately, the

agent tends to learn only what is has been shown or “taught” by the supervisor.  The

reinforcement learning agent learns through its interaction with the environment.  It is this

interaction which distinctly distinguishes reinforcement learning from supervised learning in

two ways:

• There is no feeding of known input and expected output.

• The evaluation of each policy action is “concurrent” with learning in the supervised

method.

Many research and industrial applications have begun to be implemented utilizing

reinforcement learning techniques.  In fact, reinforcement learning is becoming quite popular

with researchers because it “serves as a theoretical tool for studying the principles of agents

learning to act”  [Kaelbling, 1996].  Some of the applications which have proven

reinforcement learning to be a practical computational tool:

• Robotics

• Industrial Manufacturing

• Job Scheduling

• Combinatorial Search Problems

• Computer Game Research
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4.1. History

Although the concept of reinforcement learning has been researched in both biologic

and artificial intelligence for years, it has been primarily in the last ten years that

reinforcement learning has gained more acceptance in machine learning.  Samuel was the

first to employ what would now be called temporal difference learning; however, no one

carried on with his thoughts and methods until the resurgence of reinforcement learning in

the late remaining years of the 1980’s.

The subject of reinforcement learning as it is now researched is a combination of

three differing research studies:

• Trial and Error Learning

The focus of trial and error learning is quite common in psychology where it was

presented by Thorndike that actions followed by a reward (or punishment) cause the

action to be remembered by the agent for proper selection in the future.  This is more

precisely Thorndike’s law of effect discussed earlier.  The first most important

characteristic of the law of effect is that it is “selectional, meaning that it involves

trying alternatives and selecting among them by comparing their consequences”

[Sutton, 1998]. The second important characteristic is that it is “associative, meaning

that the alternatives found by selection are associated with particular situations”

[Sutton, 1998].

• Optimal Control & Dynamic Programming

Optimal Control systems began in the late 1950’s as a means to solve the problem of

controlling a dynamic system to minimize the dynamics over time.  Most of this

work continued upon the foundations laid by Hamilton and Jacobi in the previous

century.  Richard Bellman furthered this approach to use the system’s state and a

function valuator to create an equation for the system.  The methods that Bellman
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invented came to be known as Dynamic Programming.  Bellman furthered his

research in optimal control and developed a discrete stochastic version that came to

be known as the Markovian Decision Processes.  All of these methods and theories

have provided a pivotal theme to the theory of reinforcement learning.

• Temporal-Difference Methods

In temporal-difference, learning is “driven” by repeated estimates of the same

valuation.  Temporal-Difference parallels the concept in biological learning of

secondary reinforcers, which are paired with primary reinforcers and exhibit the same

qualities.  Arthur Samuel was one of the first to include ideas of temporal-difference

by incorporating these concepts into his checkers program.  During the 1960’s, most

work began shifting toward supervised learning until 1972, when Klopf continued

with some of the earlier works.  In the last ten years, interest and work in temporal-

difference has increased.  Temporal-Difference plays a smaller role in reinforcement

learning than the other two threads; however, its inclusion is important and unique

to the concept of reinforcement learning.

4.2. Classes of Reinforcement Learning Methods

Sutton and Barto define three “fundamental classes of methods” which can be

employed for the solution of Reinforcement Learning problems.  The first, dynamic

programming (DP), is well understood and developed from a mathematical viewpoint;

however, it requires an accurate and complete model of the environment.  Because of the

stochastic nature of game play, there is not a complete model of the environment.  The

second is based upon Monte-Carlo (MC) methods.  These algorithms are conceptually simple

and, as opposed to dynamic programming, do not require a complete model of the

environment; unfortunately, Monte-Carlo methods are not well suited to solving incremental

(step-by-step) computations.  This leads us to the third, and the focal point of our discussion:
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the temporal difference method.  Temporal Difference (TD) does not suffer from the

requirement of a complete, accurate environment and it is rather well suited for incremental

computation; however, temporal difference methods are far more difficult to analyze and

solve.

Every form of reinforcement learning discussed satisfies the Markov property.  A

Markov property is simply a state that retains all relevant information.  A problem that is

bound by the Markov property requires only the previous state and an action to achieve a

subsequent state.  At any state, s, and any action, a, the probability of each next state, s', in a

finite Markov Decision Process is given by equation 4.1.  The expected value of the next

reward is shown in equation 4.2.

Pss '
a = Pr st +1 = s' st = s, at = a{ } (4.1)

Rss'
a = E rt +1 st = s, at = a, st +1 = s'{ } (4.2)

These two quantities detail the important facts of the Markov Decision Process for

reinforcement learning.
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4.3. Temporal Difference

Temporal Difference learning is the concept that is unique and key to the current

concept of reinforcement learning.  Temporal difference methods take ideas from both

Dynamic Programming and Monte Carlo methods to form the framework of its method.

From DP, TD methods can utilize previously learned estimates for updating their current

estimate without the requirement of a final solution.  From MC, TD methods do not require

the complete model of the environment for making their decisions–environmental stimulus is

sufficient.

The most interesting characteristic with TD is the fact that TD uses past experience to

predict its next estimation.  The states are represented with Vπ , a state at some time interval,

t, to be st , and the estimate at a given time of our states to be V st( ) .  We begin with the

simple, constant-α MC method for changing environments as in equation 4.3.

V st( ) =V st( ) + αδ t (4.3)

where,

δt = Rt −V(st ) (4.4)

We define Rt  to be the actual value found after time, t, and α as a constant step-size

parameter.  The problem with this Monte-Carlo method is that we must wait until the end of

the entire episode to find our Rt  value that would allow us to update our estimation:V st( ) .

Temporal Difference uses a separate goal from MC, replacing the Rt  value with a more
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immediate goal.  The basic TD algorithm, called TD(0), uses the basic form of 4.3 with δt  as

defined in equation 4.5.

δt = rt +1 + γV(st +1) − V(st ) (4.5)

So, the target for temporal difference is for the next time step, as opposed to the

completion of the goal.  We represent our next time step target with rt +1  as our immediate

reward, and γ as the discount parameter (discount for estimation).  This concept of using the

previous estimation and results to generate the next estimation is similar to DP and is

referred to as the bootstrapping method.

This combination of the MC sampling technique with the DP bootstrapping is the

fundamental theme throughout the temporal difference method.  The expected value from

our experience of π  is utilized with the current estimation at time t.  To illustrate, let us look

at the estimated value from the MC method as shown in equation 4.6.  Next, we inspect the

estimated value from the DP method as shown in equation 4.7.

V
π

s( ) = Eπ Rt st = s{ } (4.6)

V
π

s( ) = Eπ rt+1 + γVπ
st +1( )st = s{ } (4.7)

What the TD method does is to employ the estimated value from the DP method;

however, we do not know the current estimation in our experience because it has not been

performed yet.  Thus, we substitute V
π  with Vt .  This is the key to utilizing our expected

value with our current estimation and what makes temporal difference a powerful tool to

utilize.
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To demonstrate the advantage of temporal difference over the Monte Carlo method,

we shall examine a sample Markov Decision Process.  This is an example modified from

Sutton [Sutton, 1998].  Suppose we have a robot exploring the floor of a building looking for a

particular room.  It comes to a section of the floor in which it can make a series of decisions.

See figure 4.2 for a visual layout of the environment.  At any point, the robot may randomly

(with equal probability) select to go to the next or previous point until it reaches one of the

two rooms.

Figure 4.2, Robot Exploration as a MDP

If it reaches room 2, it will be rewarded.  If it reaches room 1, it will receive no

reward.  In this simple example, we wish to properly find the estimated value of return for

each step along the way.  There are 6 potential positions (5 stepping points and a final point).

Therefore, the proper estimate of reward for each point A through E is 1
6, 1

3, 1
2, 2

3, and 5
6 .

We initialize every step to have an estimated return value of 1
2 .
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initialize V[s] to 0.5
current := C
Repeat until current = a room

next := random(next, previous)
if next = room 2 then r := 1
else if next = room 1 then r := 0
V[current] := V[current]+α*(r+γ*V[next]-V[current])
current := next

end

Code 4.1, Pseudo-Code for TD(0) MDP

We then program the robot to attempt the problem by updating the estimates with

both temporal difference (See code 4.1) and constant-α MC (see code 4.2).

TD(0) vs. MC

0
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0.1
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0.2

0.25

0.3

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Episodes

RMS
Error

MC (a=0.05)

MC (a=0.01)

TD(0) (a=0.05)

TD(0) (a=0.1)

TD(0) (a=0.15)

Figure 4.3, Comparison of TD and MC MDP results

As shown in figure 4.3, over several different α values, TD(0) is consistently better

than MC.   It is also apparent that the constant-α values for the MC method must be very

small as they become very unstable as it grows larger. Though both refine their estimations to

reasonably close values of the proper estimate, TD(0) has a smaller error.  Furthermore, TD(0)
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converges much quicker due to the fact that it is allowed to update its values during each

episode as opposed to waiting for the series of episodes to terminate before computing the

changes as is required with MC.

initialize V[s] to 0.5
current := C
repeat until current = a room

next := random(next, previous)
if next = room 2 then r := 1
else if next = room 1 then r := 0
push current onto S
current := next

end
for all n in S

V[n] := V[n]+α*(r-V[n])
end

Code 4.2, Pseudo-Code for MC MDP

TD gives us several distinct advantages:

• Does not require a model or a priori knowledge of the surrounding environment: key

to game play.

• Need only to wait until the end of each time step rather than until the end of the

entire trial as is dictated by Monte-Carlo methods.

• Has been proven to converge for any fixed policy π.  In fact, in constant-α, stochastic

tasks, TD has been shown to converge even faster than MC methods [Sutton, 1988].

4.4. Temporal Difference with Eligibility: TD(λ)

Eligibility traces allow us to utilize the entire spectrum of learning methods from the

Monte-Carlo (which stores all actions, then updates after completion) to TD(0) which stores

none of the actions, but, simply updates after each action.  Eligibility traces assign credit (or

blame) for each action taken within a particular state allowing us to bridge between

information and actions taken.  We can apply eligibility traces to any of the reinforcement
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methods; however, it is when TD(0) is combined with eligibility traces to form TD(λ) that we

are concerned.

Eligibility traces are employed to provide the benefits of both TD(0) and MC within

one algorithm.  With TD(0), we can only update based upon the immediate reward of the

action we have just taken.  What if there is a delayed reward?  It will not be recognized until

that reward is achieved.  On the other hand, with MC, we can only update once we have

achieved the goal state and received the reward (if any).  What if the reward was achieved

before reaching the goal state (or minor rewards were given along the path)?  We will update

every step we took along the path giving it the same reward regardless of whether it

contributed or not.  Eligibility traces will allow us combine the best of each algorithm without

falling into the traps of each respective method.

To combine the two, we would simply credit rewards back n steps: greater than one,

but less than every step taken until termination.  The process of updating only one step

backward is equivalent to TD(0) and similarly, updating only once we have every step is

equivalent to MC.  In MC, the only return we use is the reward plus the estimated value of

the next state as shown by equation 4.8.  Equation 4.8 also includes the discount value for

discounting the estimates of next states (the discount is set to 1 for our examples, i.e. no

discounting).

Rt = rt +1 + γVt (st +1) (4.8)

Now, because MC is based upon a single step (the final reward step) to update its

previous steps, we must expand this return function to include n steps.  Equation 4.9 shows

the return for an n-step algorithm.
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  Rt
(n) = δt = rt +1 + γ1

rt +2 + γ 2
rt +3 +K+ γn −1

rt +n + γ n
Vt (st +n ) (4.9)

What if the episode was to hit a goal before the nth step?  In that case, the standard

MC return, equation 4.8, is employed.  However, this situation helps us to understand why

such an n-step method is not practical.  The n-step method suffers the same restriction that is

placed upon the MC methods: it must wait a certain (n) number of episodes before

calculating the return.  For real-time applications (such as control), this latency is can become

problematic.  Therefore, we must apply the benefits of the n-step method without the

requirement of waiting for the steps to occur.

We define the eligibility trace to properly decay a state’s contribution to the current

state as it moves further into the past (i.e. a state’s eligibility is the “degree to which it has

been visited in the recent past” [Kaelbling, 1996]).  Within each iteration, every state decays

by γλ, and if we are updating the current state, its eligibility is incremented by one.  Updating

the standard TD(0), equation 4.3, to include the eligibility trace, results in equation 4.10.

V(st ) = V(st ) + αδ tet (st ) (4.10)

Where δt is defined in equation 4.5 and et (st )  is the eligibility value for state st .

Equation 4.11 defines the eligibility trace:

et (s ) =
γλet −1 s( ) +1 if  s  is  our  current  state  (s

t
)

γλet −1 s( ) otherwise

 
 
 

(4.11)

The new parameter, λ, is defined as the trace-decay parameter.   This parameter defines

how quickly the weighting of each state as it contributes to the current state will fall off in

time.  For larger λ, states are heavily weighted even as they have drifted further back into the
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history.  In fact, though it is computationally more expensive to utilize the generic TD(λ), it

has been shown to converge considerably faster for systems using a larger λ [Dayan, 1992].

Now we have included a way to historically weight states without waiting for the reward to

be given (as is the limitation of the MC and n-step algorithms).  We can continually update as

with the standard, TD(0); however, we may properly credit previous states with any rewards

achieved.

In fact, through simple inspection, we can see that the TD(λ) algorithm is simply a

generic form that combines both TD(0) and MC at its extremes.  First, allow us to examine the

case in which λ is 0 and γ is 1.  In this case, our eligibility trace is reduced to equation 4.12.

Substituting the eligibility back into equation 4.10, we arrive at equation 4.13 which is simply

the TD(0) case as shown in equation 4.3.

et (s ) =
1 if  s  is  our  current  state  (st )

0 otherwise

 
 
 

(4.12)

V(st ) = V(st ) + αδt

1 if  s  is  our  current  state  (st )

0 otherwise

 
 
 

(4.13)

Conversely, if we examine the case in which λ is 1 and γ is 1, we see that the

eligibility never decays and every state will eventually be rewarded by the final reward.

Thus, we may consider the TD(1) case to be the Monte-Carlo method as described in equation

4.3 and 4.4 with one major caveat: TD(1) is performed on-line, that is, it occurs during the

episodes without waiting until a goal has been reached.  Thus, with the TD(1) method, you

can utilize MC methods without waiting until the final goal to update the states.

Revisiting the robot-walk example from the last section, we can now implement the

TD(λ) algorithm (as shown in code 4.3), and test it in various cases of λ.  At  λ=0, we should
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expect to achieve the same results as the TD(0) case, and at λ=1, we should achieve very

similar results to the MC method; although, because it is still performed on-line it will

converge quicker than the standard MC method.  It is at various values of λ that we should

achieve faster convergence and better results.  It will also introduce us to the problem of

choosing the proper trace-decay parameter value for the problem at hand.  Some general

domain knowledge is required for proper selection of the decay value.  For the simple robot

walk, we would suspect that a higher λ (though less than 1) would lead to a faster

convergence because every step is important to our walk.  In a game of chess, however, a

typical game that may last through 40 moves per player, a faster decay may be more valuable

as the initial pawn moves may not have contributed much to the current state.

TD(λ)
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0.25

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Episodes
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Error

TD(0.0) a=(0.1)
TD(0.3) (a=0.1)

TD(0.5) (a=0.1)
TD(0.7) (a=0.1)

TD(0.8) (a=0.1)

Figure 4.4, Comparison of Different λ values for TD(λ) and MDP Robot
Walk

As shown in figure 4.4, the results of TD(λ) with a constant α=0.1, are consistently

better than either TD(0) or MC as shown in figure 4.3.  In fact, one can see that the λ=0 case is



37

identical to the TD(0) case for α=0.1.  Not only does the TD(λ) case converge quicker, but, it is

less susceptible to worsening its estimates over time as we saw in the previous example with

the MC method.

initialize V[s] to 0.5
initialize e[s] to 0.0
current := C
repeat until current = a room

next := random(next, previous)
if next = room 2 then r := 1
else If next = room 1 then r := 0
δ := r + γ*V[next] – V[current]
e[current] := e[current] + 1
push current onto S
for all i in S

V[i] := V[i] + α*δ*e[i]
e[i] := γ*λ*e[i]

end for
current := next

end

Code 4.3, Pseudo-Code for TD(λ) implementation

4.5. Samuel’s Checkers and Temporal Difference

Samuel’s Checkers Program—as described in Chapter 3—was one of the first

computer programs developed with the key aspect of reinforcement learning: the value of a

state is dependent upon the value of its subsequent states.  In Samuel’s simple rote-learning

method, he initially stored the value of the Depth First Search at each node and attached with

it a ply-value.  Therefore, if the score were achieved with more ply levels (or moves) it was

discounted more than a move with the same score that required fewer moves.  So, the rote-

learning score was based somewhat upon the fact that the state was dependent upon the

subsequent states of the game.  It was with his second method, learning by generalization that

Samuel came closest to the modern notion of reinforcement learning.
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 In his learning by generalization method, Samuel adjusted the weights of each game

characteristic that contributed to the current state.  So, after a move by both players, the

program would search for the best possible state to achieve.  It would then backup the score

of this move to the last state and adjust the weights to guide it.  This would happen after each

move so that at any state, the linear function would more accurately predict the following

state.  Samuel’s backup method is the same in concept with Temporal Difference Learning;

however, it lacked an important characteristic: rewards.

Samuel’s learning by generalization method pushed the linear value function to be

consistent and accurate; however, he had no way to bind the function to the actual value of

the states.  This is enforced in the standard Temporal Difference methods by tying rewards

and discounting from these terminal reward states.  Samuel tried to introduce consistency to

his method by giving states with strong piece advantages a rather large, fixed weight.

However, by simply introducing a large weight within the evaluation function itself, the

function tried to fit the other weights in line with the single large term.  This led to the

program actually becoming worse with age.  Samuel would “kick-start” the program by

resetting some of the larger adjusted weights back to zero.

4.6. Gradient Descent with TD(λ)

Oftentimes, the values being adjusted are not state values, but weights (or

parameters) of a non-linear function which attempts to estimate or predict our state.  These

functions allow us to generate a fairly good approximation of the larger state as opposed to a

table type state (as was employed by the MDP robot-walking example previously).

However, the problem becomes, how does the TD(λ) method allow us to alter these weights

as opposed to table entries?
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Firstly, we must now think of Vt  as representing a parameterized function as

opposed to a table.  We declare that the vector   

r 
θ t  is our parameter list.  Therefore the non-

linear function, Vt , is completely dependent upon   

r 
θ t , and changes from state to state as   

r 
θ t

and the inputs change.  This allows us to approximate many different functions, which are

suitable for many applications.  The most popular of these functions in approximation are

those that fall into the gradient-descent methodology.  Fortunately, TD(λ) lends itself very

well to solving the gradient descent problem.

Quite simply, gradient-descent methods attempt to reduce the error between the

estimated value and the actual returned value.  So, on each iteration, we choose an action, a,

and estimate our resultant state as computed by our differentiable function Vt .  Upon

arriving at our new state, we find that the estimate, Vt , is different than the actual value, V
π .

We must, therefore, adjust our parameters,   

r 
θ t , in the direction that would most reduce the

error.  The generalized gradient descent method for adjusting   

r 
θ t  is shown in equation 4.14.

  

r 
θ t +1 = α V

π
(st ) −Vt (st )[ ] ∇ r 

θ t
Vt (st ) (4.14)

The gradient-descent method therefore adjusts   

r 
θ t  by a value that is “proportional to

the negative gradient of the squared error” [Sutton, 1998].  So, by applying equation 4.14 to

the general TD(λ) form as seen in equation 4.10, we come up with equation 4.15.  No longer

are we adjusting the actual values of Vt , but, now we are adjusting the parameters,   

r 
θ t , so that

the function will return a more accurate estimate.

  

r 
θ t +1 =

r 
θ t + αδ t

r 
e t (4.15)
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Where δt is defined by equation 4.5 and   
r 
e t  is the eligibility trace for each component

of   

r 
θ t , defined by equation 4.16.

  

r 
e t = γλr 

e t −1 + ∇ r 
θ t

Vt (st )

where 
r 
e 0 =

r 
0 

(4.16)

The most immediate application of equations 4.15 and 4.16 is, of course, the multi-

layer neural networks employing backpropagation.  We can directly relate   

r 
θ t  to the weights

in Back-Propagation [Hertz, 1991] and Vt  to our neural activation.  In fact, as we shall see in

section 6.4, these two equations map directly to the updating of the weights neural nets using

the back-propagation to compute the gradient descent of the eligibility traces.
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5. Tesauro’s TD-Gammon

Backgammon is an ancient game believed to have been developed more than one

thousand years before Chess.  It is played with blots (“checkers”) on a board as shown in

figure 5.1.  Each player alternates rolling two dice and moving their blots in opposing

directions.  The first player to move his blots around and off of the board is the winner.  A

“gammon” is awarded if an opponent can move his blots off of the board without having lost

any blots to his opponent.  A “backgammon” is awarded if a player moves his blots off of the

board without having lost any blots to his opponent and is able to keep all of his opponent’s

blots in the far quadrant of the board.

Figure 5.1, Backgammon Board

If a player lands on (or “hits”) an opponent’s single blot, the blot is sent to the bar in

the center of the board.  The person who has their blot “sent” must then re-enter the board

before making any other moves.  Additionally, by placing more than one blot on a point, the

opponent is blocked from placing any of his blots onto that point.  Finally, an opponent may

offer to double the current stakes of the game.  If the opponent accepts this “doubling cube,”
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he is given the right to make the next double offer; whereas, if he resigns the double, he

forfeits the current stakes.  The points at the end of the game are calculated using the current

value of the doubling cube multiplied by 1 for a standard win, 2 for gammon win, and 3 for a

backgammon win.

The strategy complexity added to the game in hitting, blocking, and doubling make

Backgammon a very challenging game for humans to play, let alone for a computer to

master.  In fact, due to the stochastic nature that comes from the dice roll, there are over 1020

possible states in the game of backgammon.  This proves much too complex for a table

lookup.  Deep tree searching algorithms fail for Backgammon as well because of the random

dice rolls.  There are 21 possible dice rolls and an average of 20 moves per dice roll.  This

would mean for every single ply there is an average branching ratio of around 400.  This

would not be feasible on even the largest of computers.

5.1. Tesauro’s Neurogammon

Neurogammon was Tesauro’s first major work on the game of Backgammon.

Tesauro employed a standard Hopfield Neural Network with back-propagation (as

described in section 6.3) to attempt to give a generalized sense of direction for playing

Backgammon.  The initial setup contained no hidden layers, 459 input nodes, and 1 single

output node.  Each board location (of which there are 26) is represented by a number of input

nodes.  Other input nodes represent varying board situations.  This initial setup tended to

favor piling up as many pieces onto one point as the computer could. Tesauro and Sejnowski

experimented with varying sizes of the neural network including adding hidden layers of

varying node sizes.
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Training the network was performed with supervised learning of approximately

3,200 positions and moves.  These moves were generated by backgammon experts and

repeatedly shown to the network.  Learning was accomplished with approximately 50 cycles

through the training set.  Of course, the largest disadvantage to this was that the computer

could not learn the game as it played.  It learned the game based upon what it was shown (or

taught).  Tesauro (who is regarded as an expert player) continued to train the computer with

his own moves and later served as the evaluation on how well the computer could play

against a quality human opponent.

After training, the network was shown to have developed a generalized sense based

upon the moves with which it was taught as opposed to simply memorizing those moves.

The game was tested against other computer backgammon programs as well as against

human opponents.  It was able to best the other computer programs around 60% of the time,

but, a human opponent only around 30% of the time.  It made obviously stunning errors as

well as some rather surprisingly “thoughtful” strategic moves; however, overall, it was an

average to novice backgammon player.  Even though (against human opponents) the

Neurogammon was not very successful, it did win the “backgammon championship at the

1989 International Computer Olympiad” [Tesauro, 1989].

5.2. Tesauro’s TD-Gammon

Tesauro later began work to build his backgammon game based upon the new

learning paradigms built around reinforcement learning.  He focused his attention upon the

temporal method of learning: the agent observes the input parameters and decides upon the

output.  It is then rewarded or scolded by the consequence of its actions as opposed to

Neurogammon that required a teacher to correct it.  Although Tesauro had been interested in

temporal methods, the primary problem had been the delay in reinforcement proved to be
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difficult for proper credit assignment and that evaluations in previous models had tended to

be linear.  Two advancements allowed Tesauro to test the capabilities of TD(λ) and to

compare to the previous Neurogammon work:

• Many non-linear approximation functions had been developed

• Advancement of temporal methods (particularly TD(λ) by Sutton [Sutton, 1998])

Tesauro constructed a standard Hopfield neural network with 198 input units, 40

(later 80) hidden units, and a single output unit.  The output unit represented merely an

estimation of the probability of winning based upon the input.  For the input layer, four units

represent the number of blots white possesses at a single point and four units represent black

at the same point.  For the 24 points, there are 192 input units used.  Two more input units

represent the number of blots white and black has on the bar.  Two additional units represent

the number of blots that white and black has removed from the board.  Finally, two units

specify whether it is white or black’s turn.

The input was fed into the network which then used a standard feed forward to

compute the output: a value from 0 to 1 representing the probability that the specified player

would win.  TD-Gammon then utilized the gradient descent method of TD(λ)—as shown in

Section 4.6 and Section 6.4—to update the network after each move and observed state.   The

initial weights were set to randomly small values, so the network had no  a priori knowledge

of backgammon or the strategy.  TD-Gammon was then played against itself allowing the

neural network to observe and predict for each player of the game.

This first version of TD-Gammon did not perform a multi-ply look-ahead search to

determine the best possible move to make.  Rather, it evaluated each available position due to

its die roll and chose the position that would lead to the greatest probability of victory.  In

later versions, Tesauro implemented a 2 ply look ahead to improve the results to which the
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computer could use to choose the better move.  Each version of TD-Gammon was tested

against world class backgammon players and the immediate results were somewhat

astonishing.

The initial version was trained for 300,000 games and played against Neurogammon.

This version consistently bested Neurogammon.  The most amazing result of this was that

after only tens of thousands of games, Tesauro found a great deal of learning had taken place.

This initial version 1.0, played at a high intermediate level without any assistance.  Later,

modifications were made to subsequent version to give the network more input as to the

progress of the game.  These versions achieved a grand-champion level playing very

competitive games to the top human competitors in the world.  Table 5.2 shows the results

for each version of TD-Gammon.

Training
Games

Opponents Result

TD 1.0 300,000 Robertie, Davis, Magriel Lost by 13 points in 51 games
(-.25 ppg)

TD 2.0 800,000 Goulding, Woolsey,
Snellings, Russell, Sylvester

Lost by 7 points in 38 games
(-.18 ppg)

TD 2.1 1,500,000 Robertie Lost by 1 point in 40 games
(-.02 ppg)

Table 5.2, Results of TD-Gammon

Version 2.0 of TD-Gammon was shown at the 1992 World Cup of Backgammon

Tournament playing against some of the best players in the world.  In fact, Wilcox Snellings

and Joe Russell were both former World Champions.  Bill Robertie played the most number

of games against TD-Gammon, and, in fact, played a tournament against version 2.1 of TD-

Gammon.  Robertie trailed TD-Gammon for the entire tournament until the very last game,

in which he was able to beat the computer and narrowly win the tournament by a single
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point.  Robertie later stated that  TD-Gammon 2.1 plays at a “strong master level that is

extremely close…to equaling the world’s best human players.” [Tesauro, 1995]  He went on

to state that due to the tireless computation of the computer, it would be favored against the

best players during a long, grueling match play.

Kit Woolsey, who (as of 1995) was rated the number 3 player in the world, wrote a

favorable write-up of TD-Gammon.  Woolsey analyzed the game play of TD-Gammon and

offered the following personal comments to Tesauro [Tesuaro, 1995]:

“There is no question in my mind that its positional judgment is better than mine.  Only on
small technical areas can I claim a definite advantage… [TD-Gammon’s] strength is in the
vague positional battles where judgment, not calculation, is the key.  There, it has a definite
edge over humans… [Its] judgment on bold vs. safe play decisions, which is what
backgammon really is all about, is nothing short of phenomenal.”

One extremely powerful example of the game play of TD-Gammon is in opening

positional play.  For 30 years, the standard human opening move (called “slotting”) was to

setup your piece for possible hitting, but, allowing for an attack position.  TD-Gammon

introduced a different strategy (now called “splitting”) which avoids the “slotting” maneuver

and is now considered a superior strategy.  In fact, most world-class players now employ the

“splitting” strategy for the opening move.
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5.3. Tesauro’s Conclusions

The results of utilizing the standard neural network to compute the gradient for non-

linear function approximation as applied to the game of backgammon was an astonishing

success that even surprised Tesauro.  It was the first major display of what is possible using

reinforcement learning combined with the non-linear computation available via the neural

network.  Due to his work, Tesauro realized three important insights in TD(λ) based game

play.

The absolute error of each calculation made by the function estimator (neural

network) was often around a tenth of one point.  This is a rather large and substantial error in

the estimation of the game; however, because every calculation has a similar error, the

relative accuracy of the neural network was very high.  In a task in which estimations are

weighed and compared to each other, each estimation having very little (if any) relative error

meant that results were very accurate within each other.  This would suggest that the

absolute error observed is simply a systematic error which therefore “cancels out in move-

making decisions” [Tesauro, 1992].

The game of backgammon lent itself very well to the temporal difference method.

Due to the stochastic nature of the game, during training against itself, the evaluation

function would see a very wide array of possible states and outcomes. This forces the learner

to more dramatically fit itself to a non-linear function describing the game.  In more

deterministic games (such as chess), the learner may focus on one particular strategy and

never explore the environment; therefore, for deterministic applications of temporal

difference, the learner must be forced to explore.  However, simply forcing random

exploration can not guarantee success by the learner.  In the game of backgammon, the game
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always progresses forward as determined by the dice roll until a player reaches the end.  In

chess, a random player could, conceivably, consistently choose moves to avoid the other

player forcing the game to last almost infinitely.  Finally, non-deterministic games tend to

have a much smoother continuous evaluation function; whereas, deterministic games

typically have a more discontinuous evaluation function.

The final interesting lesson learned is that the neural network’s backpropagation

tends to learn more highly linear concepts during the initial training.  Once these concepts

tend to be properly weighted, the network begins adjustment of values that focus more on

the non-linear aspects of that which it is learning.  In the case of backgammon, the network

tended to learn within the first learning iterations topics such as hitting, playing safe, and

building up new points.  It was later during training that the computer began to develop

strategy and more non-linear concepts.  In fact, it was found that having only learned the

basic linear concepts of the evaluation, TD-Gammon was better than a typical beginning

human player.

Tesauro found that theoretically, there are a number of limitations that could inhibit

temporal difference learning.  The algorithm may not necessarily converge for a predication

and control task and even when it does converge, it could get stuck in a rather poor local

minimum.  Theoretically, as the problem size increases, the learning time required may

become too great that the solution may be too resource intensive.  However, with these initial

theoretical concerns, Tesauro found that the method always at least converges to a local

minimum with the output of the solution typically very good.  He found that as you increase

the number of hidden units, the results tended to improve.  The network, he discovered did

not suffer greatly in training time as the size and complexity of the problem was increased.

In fact, after the work of TD-Gammon, he does not believe that this could be a problem.

Finally, the most exciting outcome of the work was the indisputable fact that the
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network—trained against itself with zero knowledge about the game of backgammon—was

able to learn quicker and achieve a vastly superior game knowledge and playing ability than

Neurogammon (which was trained with a huge number of expert moves).  This fact alone

would suggest that a number of applications and research could be conducted on the

utilization of learning non-linear functions with a neural network and temporal difference

reinforcement.
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6. Tic-Tac-Toe and Reinforcement Learning

Tic-Tac-Toe is a basic, children’s game thought to date back to ancient Egypt.  In fact,

the Romans played a similar game called Terni Lapilli that was extremely popular; although,

there is some discussion as to whether it was identical to modern Tic-Tac-Toe.  It is believed

that Terni Lapilli used three pieces (as opposed to the two in modern Tic-Tac-Toe) and was

more complicated than Tic-Tac-Toe.  For Terni Lapilli to be as popular as it was, it would

almost certainly be more complicated that Tic-Tac-Toe.

Tic-Tac-Toe is played on a board with 9 positions.  There are three possible states for

each position: blank (no player has laid their piece), X (player X has laid their piece), or O

(player O has laid their piece).  A typical game would appear as in figure 6.1.  The player

with the X pieces goes first, putting a piece in any unoccupied space.  The player with the O

pieces makes their move in the same fashion.  The first player to lay their pieces in a line

(across, down, or diagonally) wins the game.  If all spaces are occupied and no player has

completed a line, then the game ends in a draw.

Figure 6.1, Tic-Tac-Toe Board

The strategy of Tic-Tac-Toe is extremely simple.  If X begins the game by placing his

piece on any of the corners, O must place his piece in the center to prevent X from winning
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the game (as long as O continues to block X).  In fact, the player in the O position is at a

disadvantage because he is almost always playing defense, reacting to the move that the X

player has made.

Because there are three pieces (blank, X, O) and nine possible positions, the number

of states is bounded by O 3
9( ) = O 19, 683( ).  In actuality, there are far fewer states because

many of the states are winning (or terminal) states.  Additionally, many of the states within

the upper bound are unachievable due to the basic rules (e.g. O could never have more pieces

on the board than X).  Needless to say, a table-based implementation will require storage

space to hold several thousand states.

6.1. TD(λ) Implementation

The first attempt to solve the Tic-Tac-Toe problem used the standard TD(λ) method

without gradient descent.  In fact, it is the same algorithm as used to test the Markov

Decision Problem in section 4.4.  The game was set up so that one of three types of player

could be assigned to each position: human, random, TD(λ).  All states were initially set to

zero, thus the initial TD(λ) player had no a priori knowledge about any state.  If a player won,

it was granted a reward of 1.0.  If the player lost, it was corrected with a reward of –1.0.

Various experiments were performed with varying rewards for a draw game before

eventually settling upon a reward of 0 to both players in a draw game.

TD(λ) is a table-based implementation storing the value estimations for every state

encountered.  As discussed previously (and we shall see), this is not the best solution for a

game domain type problem; however, it provides us with a good comparison (and even
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possible teacher) to the neural network based temporal difference estimator in section 6.5.

The TD(λ) player implementation updates its estimates as shown in code 4.3.

The program controlled game play by giving the current player an opportunity to

move based upon its policy.  If the move resulted in a game winning move, that player was

rewarded and the other player given a correction.  The board was reset and a new game

would occur repeating until the number of games specified had been completed.  The

random player would randomly select from the available board positions and place its piece.

TD(λ) employed a more cohesive selection process. TD(λ) would select a random number

between 1 and 20.  If it chose the number 7, it would randomly choose from available board

positions (just as the random player).  This helped to force the TD(λ) player into exploration

mode so that it would occasionally try a non-optimal move.  This randomness was tested

with an increased and decreased interval and was found to have little effect either way over

the 1 out of 20 chance.  The random element was required though to increase the number of

states for which it had an estimate.  For the majority of the choices, TD(λ) would examine

each available board position and compare the state estimate given by the TD(λ) estimation

with each of the others.  The best estimate resulted in that move being made (see code 6.1 for

the pseudo-code representation of the policy employed).  If no move was better than the

other, then a random move would be made.  After the move was made and the opponent

made their move, TD(λ) would make another move and compare the results of its move with

the expected results of the previous move and apply the process as shown in code 4.3 to

update the last state.
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sub Estimate-Policy
if random() = 7 then

move := random open board position
else

foreach possible in open board positions
if estimate(possible) > max then

max := estimate(possible)
move := possible

endif
end

endif

if move is empty then
move := random open board position

endif
end

Code 6.1, The Policy for a State-Estimation Player

Learning took place by running one player as random and the other player as the

TD(λ) player.  The TD(λ) player was typically used as the O player because O is a more

difficult position.  Some tests were also performed allowing TD(λ) to play as X against a

random player.  Finally, TD(λ) was allowed to play against itself as both X and O to develop

strategies against another learning player.

6.2. Results of TD(λ)

With TD(λ) playing as the O position, the random player was selected to play the X

position.  The program was run for one and one-half million iterations to (hopefully) explore

every state and calculate an accurate estimate for that state.  The first comparison was to find

the optimal α value with which to perform our learning (using λ=0.5 and rewarding a draw

with 0).  Three values were tested for α: 0.05, 0.10, and 0.15.  The program was set up to run

for 500,000 iterations, save the states to disk, and run again for three iterations.  This would

allow the pseudo-random number generator to reset and the game to avoid continual
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repetition of the same moves.  In fact, it usually gave a large “boost” in the win percentage

because it was no longer playing catchup to the initial default estimation states.

Figure 6.2 shows the case for α=0.5 through the first 750,000 iterations.  As shown,

after approximately 85,000 iterations, the TD(λ) player had finally surpassed the random

player in the percentage of wins per 1,000 games.  The TD(λ) player continued to improve

until approximately 550,000 iterations at which point, it never bettered its percentage.  By the

500,000 mark, it was losing fewer games than draw games.  This meant that the TD(λ) player

did a good job of trying to win the game, and failing that, would try to prevent a win by the

random player.  In fact, after one and one-half million iterations, TD(λ) had stored 2,217

states and was winning the game 51.8% of the time, would tie the game 29.5%, and lost 18.7%

of the games played. The α=0.5 case was a very continuous learning function with little

chatter as shown in figure 6.2.
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Figure 6.2, Percentage of Victories (λ=0.5, α=0.05)
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Figure 6.3 shows the case for α=0.10.  In this case, TD(λ) learned quicker and was

able to surpass the random player in about 72,000 iterations.  Again, as it was reset at the

500,000 mark, it began to perform better; however, as shown in figure 6.3, it was chattering

some after it had leveled off at approximately 550,000 iterations.  After one and one-half

million iterations, TD(λ) had stored 2,226 states and was winning the game 50.5%, drawing a

tie 30.3%, and losing 19.2% of the games played.  Although α=0.10 was able to correctly

estimate the majority of states required to beat the random player quickly, it was apt to

worsening its state estimation position as time continued.
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Figure 6.3, Percentage of Victories (λ=0.5, α=0.1)

Finally, figure 6.4 shows the case for α=0.15.  This case showed that the larger the

learning rate parameter, the estimations became more unstable.  The TD(λ) player took 92,000

iterations to finally best the random player.  As the graph shows, it was very prone to

overshooting its estimates during updates.  After one and one-half million iterations, TD(λ)

had stored 2,291 states (the most of any of the other tests); however, it was winning the game



56

only 49.8%, drawing a tie 29.5%, and losing 20.7% of the time.  This learning rate parameter

gave the worst results of the three, with α=0.05 giving the best results, just as it had with the

Markov Decision Process in section 4.4.
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Figure 6.4, Percentage of Victories (λ=0.5, α=0.15)

With the learning rate parameter chosen as 0.05, experiments were performed to find

the optimal reward for a draw game.  Initially, a draw game received a reward of 0.  The

reward for winning is, of course, 1.0 and conversely for losing, -1.0.  This gives a function to

which all states lie between –1.0 and 1.0.  However, should a tie be worth a reward of some

value?  Trying four separate values for ties gave some interesting results.
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Figure 6.5, Percentage of Games Ending in a Draw For Each Reward

As shown in figure 6.5, any non-zero draw value heavily weighted the game to play

for a tie as opposed to playing for a win.  For this reason, the draw reward was chosen to be

0.  With a learning rate and a draw reward set, the trace-decay parameter (λ) must now be

decided.  Varying trace decays from 0.0 to 0.6 were tested before deciding that the results

were not improving with each increase in the trace-decay parameter.  As shown in figure 6.6,

the number of games won by the player increased slightly faster for those cases with a higher

λ; however, after several thousand iterations, all λ values settled upon the same curve.
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Figure 6.6, Percentage of Victories for Differing λ

Because the O position is playing a game of defense-first, O typically cannot mount

an offensive strategy to win the game.  With TD(λ) playing O, the random player was always

at an advantage until TD(λ) adapted its states enough to more accurately predict the

outcome.  As a final experiment, TD(λ) was taught to estimate the X player to compare with

the previous O player results.
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Figure 6.7, Percentage of Wins with TD(λ) as X

As shown in figure 6.7, with λ=0.5 and α=0.05, the results were significantly

improved over the case of TD(λ) playing as O with the same parameters.  After being trained

for one and one half million iterations, it had generated 1,489 states.  This was significantly

less than the states generated as the O player, in part, because the X player has such a piece

advantage that it can quickly win a game with a wrong move by the O player.  In fact, after

the training set was complete, X was winning 71.2% of the matches while O won 3.8% and

games ended in a draw 25% of the time.

After all of the training iterations for varying values of α, λ, and draw rewards, it was

time to perform a subjective test to see how well TD(λ) could actually play the game of Tic-

Tac-Toe against a worthy human opponent, as opposed to the random player.  Because the

best results against the random player were achieved with α=0.05 and a draw rewarded with

0, those training sets were utilized against a human opponent: the author.  For varying λ, the

game was played against the human opponent for twenty iterations to test its prowess.
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Number of
Training
Iterations

Number of
States

Games won
by Human

Games won
by TD(λ)

Draw
Games

λ=0.0 10,000,000 2,305 6 4 10

λ=0.2 10,000,000 2,318 9 1 10

λ=0.3 10,000,000 2,316 10 2 8

λ=0.5 10,000,000 2,324 5 5 10

λ=0.6 10,000,000 2,327 6 2 12

λ=0.5
(computer
X)

1,500,000 1,489 0 0 20

λ=0.5
(tie=-0.1)

10,000,000 2,418 6 2 12

Table 6.1, TD(λ) vs. Human Opponent

As shown in table 6.1, the results—though not remarkable—were respectable for a

table based look-ahead method.  The best results for TD(λ) as player O were achieved with

λ=0.5 where the computer and the human opponent each won 5 games while ending in a

draw 10 games; therefore, the match ended in a draw.  The best overall results were achieved

with TD(λ) playing as the X player.  With only 15% of the training iterations and 64% of the

number of state estimations as compared to the O player, λ=0.5 case, it was able to prevent

the human opponent from winning and forcing a tie every time.

After playing hundreds of games against the varying trained sets, some basic

patterns were seen that the TD(λ) player had developed. Firstly, TD(λ) did learn the basic

strategy of Tic-Tac-Toe.  It was able to consistently avoid giving up the power position to the

opponent which made the game more difficult for the opponent to win.  Secondly, it
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ultimately learned only a defensive game rather than a winning game. TD(λ) was able to play

a fairly decent game; however, it was not a truly formidable opponent.

TD(λ) did learn the very basic strategy of Tic-Tac-Toe (arguably, the only strategic

move in Tic-Tac-Toe): when playing the O position, if X takes any of the corners, O must take

the center position or O will lose.  In every single game in which the human opponent was X,

if X chose a corner position, TD(λ) would take the center position to prevent X from winning

the game outright.  In the cases in which TD(λ) played X, it always chose a corner position to

begin with, forcing O into the defensive strategy of taking the center position.  Interestingly,

TD(λ) would never begin the game with a weak position (one of the non-corner border

positions).  Because these positions offer no piece advantage (unless used for the win or a

block), TD(λ) developed a strategy to select the more important positions first.

Unfortunately, TD(λ) became primarily focused upon preventing the opponent from

winning (even with the cases of a draw being rewarded with 0 or –0.1).  Once this realization

was made, it became much easier to beat the computer because winning positions for the

computer could be left open.
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Figure 6.8, Board Position with O’s turn to move. (O would choose a.  over
the winning position b.)

As shown in figure 6.8, if TD(λ) (playing as O) had the opportunity to choose a

winning move or a blocking move, it always elected the blocking move.  This allows a human

opponent to quickly develop a strategy of always placing pieces offensively to win and not

concentrate upon preventing a computer win.  In the cases in which the computer was able to

both block and setup a winning position, the computer would always choose the winning

position.  So, if the computer placed a piece to block and in doing so had two potential

winning moves remaining (always a winning position against any opponent), the computer

would win upon its next move.

In reviewing this problem, I found the major shortcoming of the basic TD(λ) table-

based implementation: the program must have an estimate for every single state in order to

be effective.  In every single case investigated in which the computer chose a defensive move

over the winning move, the winning move’s board estimation was unknown.  Unfortunately,

even after 10 million iterations, there were still states missing from its estimation.  Therefore,

for a more comprehensive state space estimation, more exploration is needed.  By increasing

the random probability of an exploratory move did not assist with this problem.
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Additionally, increasing the number of training iterations from one and one-half million to

ten million made little difference.  In fact, the problem that it may be more inherent with the

random player.  Essentially, the TD(λ) table-based algorithm can only estimate those states

which it sees.  In the case of a random player, with so many combinations, it is unlikely that

the random player would show the TD(λ) player the “wiser” choices to be made.

To attempt exploration of all states, the results of the TD(λ) as the X player were used

to train a new TD(λ) O player.  The results for the O player were not promising.  After one

and one-half million iterations, X won 50%, O won 7%, and the game ended in a draw 43% of

the time.  In playing a game against this trained player, the human opponent won all 20 of

the games.   As a final experiment, TD(λ) as the X player was used to further tune the states

learned from the O player, α=0.05, λ=0.5, tie=0.0 case.  This case was trained for one and one-

half million iterations.  The results were worse than the previous experiment.  The already

trained O player could best the trained X player only 7.1% of the time, while losing 49.9% of

the time.  In fact, in pitting this previously decent opponent against the human opponent, the

computer lost all 20 games.

Upon studying the resulting state estimations of those O players dominated by the

trained TD(λ) X player it was found the O player was—quite literally—beaten into

submission.  It was so difficult for it to win a game initially that the only states it was able to

update and accurately estimate were losing states.  Eventually every move it was making

was leading toward a “reward” of –1.0.  This constant negative reinforcement pushed all

states toward a negative goal, thus, figuratively crushed its spirit.



64

6.3. Back-Propagation and Neural Networks

Neural Networks are a method of fitting a non-linear function to closely approximate

the problem domain.  Neural Networks are composed of neurons that are connected in a

layered network.  For a network, a minimum of two layers is required: an input layer which

is connected to the output layer.  Every layer can have as many neurons as are required.

These neurons are then connected to neurons in the previous (if any) and next (if any) layers.

Each connection to other neurons is weighted.  So, one neuron may have a stronger signal to

a target neuron than a second neuron may have to the same target neuron.

Figure 6.9, Typical Neural Network

As shown in figure 6.9, there is an input layer which “feeds” its activations to the

hidden layer which, in turn, “feeds” activations to the output layer.  On both the input and

hidden layers, a bias is added which is a fixed neuron acting as a constant for the equation

being approximated.  Through back-propagation, a network can be adjusted so that it better

approximates the result that is to be achieved.  Back-propagation is a gradient-descent

method that gradually lessens the output error.  For instance, the error could be immediately

calculated (if the expected results are known) and the weights adjusted accordingly;
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however, to keep the network from becoming unstable, the error is gradually lessened.  Once

the error is known, the weights can be adjusted in the direction of the gradient from the

output layer back down to the input layer, hence the name, back-propagation.

Typically, back-propagation is employed in supervised learning mode.  During

supervised learning, fixed input is fed to the network where the expected output is known.

The expected output is then compared to the actual output of the network.  The error is

computed between the two values, and this error is propagated back through the network.

This process continues until the network has correctly fit its function to generate the correct

results.  The hope, oftentimes, is that by training the network on many different inputs, it will

eventually develop a generic function for most input cases—an example of this is

Neurogammon.

To utilize a neural network, one typically performs three tasks:

• Feed the network the input data and retrieve the resulting output value(s).  The

output is the result of the non-linear function to which our neural network is

computing.

• If training the neural network, compute the error between the expected and actual

outputs

• Propagate the error back through the network, allowing the neurons to adjust their

weights.

This process is repeated until the network no longer needs to be trained.  Typically, a

training session lasts for tens or hundreds of thousands of iterations until the network is

sufficiently trained to generate the correct output for the given set of training input.
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The first step is feed-forward.  The input layer neurons are excited to some activation

by the initial data.  From these new values contained in the input layer, we feed the data

forward to the hidden layer.  The hidden layer’s excited neurons can then feed their data

forward to the output layer.  The activations of neurons on one layer are dependent upon the

weights and the activations of the previous layer.  As we can see in equation 6.1, an activation

is a function of the summation of all weighted neuron activations connected to it from the

previous layer.

ai
n
(t) = ƒ ωij

n−1,n
(t)a j

n−1
(t )

j∈ n−1

∑
 

 
 

 

 
 (6.1)

where,

ƒ x( ) =
1

1+ e−x (6.2)

therefore,

ƒ' x( ) =
e x

1 +e x( )2 = ƒ x( ) 1− ƒ x( )[ ] (6.3)

The term, ai
n
(t) , is defined to be the activation of neuron i on layer n at time, t.

Conversely, ωij
mn is defined to be the weight between neuron i on layer m to neuron j on layer

n.  Equation 6.2 is the standard sigmoidal function for generating a neural activation between

0 and 1.  Equation 6.3 is the derivative of equation 6.2 that will be used during back-

propagation.
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The feed forward step is very fast to compute, and, in fact, once a network has been

trained, it can calculate advanced non-linear functions very rapidly.  During training, after

the activations of the output layer are computed, they are compared to the expected output to

compute the error as shown in equation 6.4.

  
δi

v 
O 

t( ) = desiredi

v 
O 

t( ) − ai

v 
O 

t( )( ) (6.4)

Where desired is the vector of expected outputs at time t, and   
v 

O  is the vector of

neurons on the output layer.  To update the weights, the output layer errors are propagated

to the previous layer.  Once these weights are updated, the error is propagated back to the

weights from the previous layer, and, so forth, until the input layer is reached.  Equation 6.5

is the weight update method.

ωij
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t( ) + α∇
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The gradient of the weights with respect to the error must be found to solve equation

6.5.  The learning rate is defined as α.  Substituting the chain rule into equation 6.5 results in:
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Which reduces to:
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t( ) (6.7)

where,
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n
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The back-propagation process computes σ j
n

t( )  as shown in 6.9.
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(6.9)

The general back-propagation of neural networks has become quite popular for

many tasks that do not fit a standard, linear function or tasks that require constant

modification of the parameters such as visual recognition, speech recognition, and others

(including the aforementioned Neurogammon).

6.4. Temporal Difference and Neural Networks

The temporal difference method for updating states can also be used to help solve a

gradient descent method as shown in section 4.6.  The TD(λ) method for neural networks;

however, is slightly different from the standard back-propagation method.  In the standard

back-propagation, an error is propagated back to every neuron, which, in turn, adjusts its

weights for every other neuron signal that contributed to that error.  In the case of utilizing

TD(λ), the back-propagation is used to generate the eligibility of each neuron.  After each

time step, the temporal difference is computed and adjusts each neuron based upon their

eligibility to the error.  These eligibilities determine which neuron weights contribute to the

current temporal difference, allowing the properly assigned update.
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The TD(λ) gradient descent method follows the same form as with the standard

neural network; however, to correspond with the method, Vi
m

t( ) is used to represent the

activation for neuron i on layer m at time t, and θij
mn

t( ) represents the weight between neuron

i on layer m to neuron j on layer n at time t.  The feed-forward step as shown in equation 6.10

is identical to equation 6.1 with the new variable definitions.
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where, ƒ and ƒ’ are defined by equations 6.2 and 6.3.

Substituting into equation 4.5, the temporal difference error is computed by equation

6.11.

  δi

v 
O 

t( ) = ri t( ) +γVi

v 
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t +1( ) − Vi

v 
O 

t( ) (6.11)

Where ri t( )  is the reward, and γ is the discount parameter.  The weights can be

updated based upon equation 6.12, which is adapted from the temporal difference gradient

descent method, equation 4.15.

  
θij

mn
t +1( ) = θij

mn
t( ) + α δk

v 
O ( )eijk

mn
t( ) where k ∈

v 
O (6.12)

Where eijk
mn

t( )is the eligibility of the connection between neuron i on layer m to

neuron j on layer n to the output layer, unit k.  Therefore, a change to an output unit affects

all other neurons through their “eligibility” to that output node.  The eligibility is determined

by equation 4.16.  Substituting for the gradient results in equation 6.13.
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Where σkj
n

t( )  is computed with the recursive back-propagation method as defined by

equation 6.14:
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Utilizing the gradient descent method as defined in section 4.6, combined with the

standard back-propagation neural-network, a neural-network can employ real-time,

reinforcement temporal difference learning.  This alleviates the need for supervised learning

(one of the major drawbacks to useful neural networks) allowing the network to “learn” on

its own during the tasks it is set up to solve.

6.5. TD(Neural-Net) Implementation

To  implement solving Tic-Tac-Toe with the temporal difference based

backpropagation approach, a neural network player was added to the same code base as

described in section 6.1.  This gives the software four potential players to be tested and

compared: human, random, TD(λ), and TD(Neural-Net).  The TD(Neural-Net) player utilizes

the neural network process described in section 6.4.  The code is based upon Sutton’s pseudo-

code for a temporal based neural network.  The network is a three-layer network with a

single hidden layer.  The hidden layer size was set to eight neurons for each of the results.

Both the input and output layers varied based upon each experiment.  Additionally, the

rewards were varied for each experiment.
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The network was implemented using the standard function provided by Sutton

[Sutton, 1992].  The first step, feed forward, is used to generate an estimate of the current

state using the neural network.  Using equation 6.10, Sutton created a subroutine (as shown

in code 6.2) which will feed the current input layer through the network to calculate the

current output layer.

sub feed_forward
value := 0
for j in hidden_layer

for i in input_layer
value := value + θ[i][j]*V[i]

end for
V[j] := ƒ(value)

end for
value := 0
for k in ouput_layer

for j in hidden_layer
value := value + θ[j][k]*V[j]

end for
V[k] := ƒ(value)

end for
end

Code 6.2, Subroutine for Computing the Output of the Network

As shown in code 6.2, each neuron’s weighted connection to the layer below is

summed and computed with the sigmoidal function as defined by equation 6.2.  After

feeding the input layer through, the output layer can be used as the estimation for

determining the next move.  After a move is made the current state must be compared with

the previous state estimated by the previous move.  In addition to applying any reward

received for the last move, the temporal error from the previous estimation to the current

estimation must be computed using equation 6.11. This error is utilized to adjust the weights

such that the estimation of the last move and the estimation of the current move both follow a

continuous function.
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sub update_weights
for k in output_layer

error[k] := r[k] + γ*V[k](t+1) – V[k](t)
for j in hidden_layer

θ[j][k] := θ[j][k] + β*error[k]*e[j][k]
for i in input_layer

θ[i][j] := θ[i][j] + α*error[k]*e[i][j][k]
end for

end for
end for

end

Code 6.3, Subroutine for Computing the Change in Weights of the
Network

Code 6.3 implements equation 6.12 to update the weights that connect every neuron

in the network.  In code 6.3, α and β are learning rate parameters which scale the error to follow

a slower slope of the gradient-descent.  The weight is changed slightly from its previous

value by how much it contributed to the current error.  How the weight contributed to the

current error is determined by the eligibility.  The eligibilities define how each neuron is

connected to the output layer and how heavily that neuron’s activation contributed to the

error.  The eligibilities are updated after each move as shown in code 6.4.

sub update_eligibility
for j in hidden_layer

for k in output_layer
e[j][k] := γ*λ*e[j][k]+ƒ’(V[k])*V[j]
for i in input_layer

e[i][j][k] := γ*λ*e[i][j][k] +
ƒ’(V[k])*θ[j][k]*ƒ’(V[j])*V[i]

end for
end for

end for
end

Code 6.4, Subroutine for Backpropagation of Eligibility Values

As shown in code 6.4, the eligibility decays with the trace decay parameter, λ.  This

allows move contributions to decay over time (e.g., a move made at the initial point of the

game may be less crucial to a win or loss than a move made at the end).  The eligibility is
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changed slightly based upon is previous eligibility (scaled by the trace decay) and the change

computed by the back-propagation procedure for solving the gradient descent.  Equation 6.3

is employed to compute the derivative of our sigmoidal function.  Because the activation (the

result of equation 6.2) is known, the second form of the derivative using the values known

for ƒ(x) is used.

There were three different networks developed to test how well TD(Neural-Net)

could learn the game of Tic-Tac-Toe.  The first was based directly upon the initial work of

Tesauro with TD-Gammon.  The second, still based upon the concepts of Tesauro’s work was

modified to better estimate the outcome of a Tic-Tac-Toe game.  The third and final, was

based upon TD(Neural-Net), but deviated with a different sigmoidal function and neural

network computation result.  Each network was tested with a constant learning-rate parameter

of λ=0.5.  Additionally, each network used a hidden layer size of eight neurons.  Each

network was trained against itself using varying rewards and lastly trained against a

“learned” player from the TD(λ)-based table implementation in section 6.2.

The first experiment built is very similar to Tesauro’s TD-Gammon.  Two neurons

represent each position on the Tic-Tac-Toe board.  The first neuron is set to one if an X

occupies that position or the second neuron is set to one if it is occupied by an O piece;

otherwise, both are set to 0.  This gives eighteen neurons with odd numbered neurons

representing X and even representing O.  The final two neurons tell the network which

player has the current turn.  The first neuron is set to one for X or the second neuron is set to

one for O.  The output layer consists of a single neuron which represented the probability of

victory for the given state and player.  It is hoped that the neural network would learn to be

an accurate state estimator for any given Tic-Tac-Toe state.  By continually feeding the game

state, the network should return an estimation of the probability of victory.  This allows the
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player to use the estimator to determine the better move.  The rewards for this experiment

were first tried as 0 for a loss, 0.5 for a draw, and 1 for a win.  In the second trial, the rewards

were changed to –1 for a loss, 0 for a draw, and 1 for a win.

The second neural experiment is based upon the first experiment with one change to

the output layer.  The output layer was increased to two neurons to estimate the likelihood of

a win and the likelihood of a draw game.  The input vector was created using the same

process as described in the first neural network.  The estimator is then used differently by the

player.  The player would feed forward a possible state and compare the likelihood of a

victory vs. a draw game.  The player would choose the outcome that had the greatest

possibility of occurring.  The rewards were computed differently in that there were two

output neurons.  If the outcome were a draw game, the neuron estimating a draw would be

rewarded with a 1, and the neuron estimating a win would be rewarded with a 0.  For a

winning outcome, the rewards were reversed.  In the case of a loss, both neurons were given

a reward of a 0 or a –1 depending upon the test trial for obtaining results.

The final neural experiment was still based upon the TD(Neural Net); however, its

function was slightly changed.  Instead of being an estimator for the probability of a win, it

was altered to give an estimation of the expected reward (similar to the method as studied in

Section 6.2).  There was a single output neuron that returned a result from –1 to 1 as the

estimation of the final reward to be given.  In order to achieve a result from –1 to 1, our

sigmoidal function (equation 6.2) must be changed from its standard 0 to 1 form.  Using

equation 6.15, our neuron’s activation will range from –1 to 1.

ƒ x( ) =
1− e−x

1+ e−x (6.15)
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With the derivative being:

ƒ' x( ) =
2ex

1 +e x( )2 = 2ƒ x( ) 1− ƒ x( )[ ] (6.16)

Using equations 6.15 and 6.16 in the feed-forward and back propagation

computations allows the network to vary from –1 to 1.  The rewards were used exactly as in

Section 6.2.  In the case of a win, the player was given a reward of 1 and in the case of a loss, a

–1 was rewarded.  For a draw game, no reward was given.

6.6. Results of TD(Neural-Network)

The procedure to train the neural network is somewhat different than that of the

TD(λ) procedure in section 6.1.  The neural network requires a repetition of the states in order

to begin to develop an estimation for that state.  For this reason, the neural network cannot be

trained against a random player.  The neural network needs a constant stream of games that

are played similarly for it to recognize and adapt its weights.  The best source of endless

games in such a manner is against itself.  For all three of the neural network experiments

described in section 6.5, the neural network was primarily trained against itself to achieve the

results.  In all cases, a test was also run to see how well the network would train against a

known, average player.  The source for average player is the TD(λ) player using results from

section 6.2.

The first neural network is a direct implementation of the system Tesauro created for

TD-Gammon adapted to the game of Tic-Tac-Toe.  With separate input neurons representing

each player and an output neuron intended to return the probability of victory for the given

player, it was trained against itself for 500,000 iterations to test how well it had progressed.
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Figure 6.10, Percentage of Victories for TDNN v1.0

As shown in figure 6.10, the neural network did not seem to improve either of its

players for the first 100,000 iterations (which are consistent for all iterations).  This result was

somewhat surprising as it would be assumed that as the neural network becomes a more

accurate estimator and each player is utilizing that estimator, the number of tie games would

rise dramatically approaching the vast majority of game outcomes.  This did not occur in this

case.  In fact, closer inspection of the neural network at this time shows that the output of the

network has asymptotically approached one.  Every input fed through the network results in

an output activation very close to one.

Inspection of the process used for TDNN v1.0 reveals that the sigmoidal function

returns a result of 0.5 when the input is 0.  Therefore, the initial activation is 0.5.  Upon each

iteration, more neurons are excited, which increases the activation, pushing it further toward

one on the sigmoidal.  The temporal error in that case is positive which forces the network to

try and increase the positive value of each activation.  More excited neurons are fed forward,
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exacerbating the issue.  Because there are no negative rewards given to the network, there is

never a negative temporal error and it therefore is always approaching one.

To try to alleviate this situation, TDNN v1.1 was altered to give different rewards.  A

reward of 1 was given to the network for a winning game, while a “correction” reward of –1

was given to the network for a losing game.  In all other cases, a reward of 0 was given.

TDNN v1.1 was then trained against itself for 500,000 games to see if it could return better

results.
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Figure 6.11, Percentage of Victories for TDNN v1.1

As shown in figure 6.11, TDNN v1.1 did not fare any better than TDNN v1.0.  The

results of TDNN v1.1 continued the trend in which the estimator cannot properly compute

the state for a given board of Tic-Tac-Toe.  The probability of winning function was not

anywhere near approximating a valid probability for the given state.  There appeared to be

no learning of the Tic-Tac-Toe function (if one exists) at all.
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The possibility existed that the network had fallen into an extreme local minimum

and could not work its way out; thus, it was simply playing the same game (or few) over and

over.  I decided to attempt training the network against a player who had already learned the

game.  I used the α=0.05, λ=0.5 case from section 6.2.  This player had faired well in the O

position, so I trained the neural network playing the X position against the TD(λ) player.
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Figure 6.12, Percentage of Victories for TDNN v1.1 vs. TD(λ)

As shown in figure 6.12, the neural network did not perform well against a proper

trainer.  In fact, the network only won about 10% of the games, with another 10% ending as a

draw, and the remaining 80% won by the inferior positioned O player.  This proved to me

that the network was not learning the game as presented to it.

Because of the failed attempts with TDNN v1.0 and v1.1, a change was made to the

algorithm to attempt to better represent the game of Tic-Tac-Toe with the neural network.  In

the case of TD-Gammon, Tesauro’s initial version contained a single ouput neuron to
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estimate the probability of a win.  On later iterations, he added more neurons to represent the

various outcomes of backgammon (victory, gammon, or backgammon).  For TDNN v2.0, I

added a second output neuron to represent the probability of a draw game.  So, for TDNN

v2.0, there were two output neurons, each representing the probability of occurrence.  The

first represented the probability of victory, the second, probability of a draw game.

After testing TDNN v2.0, its results were identical to TDNN v1.0.  In fact, upon

closer inspection of the output layer after complete training, the neuron representing the

probability of a victory always returned a value near zero while the neuron representing a

draw game returned a value near one.  No matter the input, both neurons would return

activations very close to these values.  For similar reasons as the change from TDNN v1.0 to

TDNN v1.1, I altered the rewards for the output neurons.  If a victory was achieved, the

neuron for victory was rewarded with a 1 while the draw game was given a –1.  If a draw

game occurred, the values were reversed.  In the case of a loss, both neurons were given a

reward of –1.
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Figure 6.13, Percentage of Victories for TDNN v2.0

As shown in figure 6.13, TDNN v2.1 seems no different than TDNN v1.1.  In fact, the

results from TDNN v2.1 were no better than TDNN v1.1.  The output layer seemed to have

little effect on how the network responded to learning games presented to it.  Again, a test

was run to see if the network would perform better if trained against an average quality

opponent.  In tests versus the TD(λ) opponent, it was able to better play the opponent as it

could play to a draw game as often as allowing the opponent to win the game as shown in

figure 6.14.
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Figure 6.14, Percentage of Victories for TDNN v2.1 vs. TD(λ)

Because the results for TDNN v1 and v2 were not promising, a test was conducted to

see how well each would perform against a human opponent.  I played against each trained

network for twenty games.  The results of the tests against humans, based upon earlier

results, were not surprising.  As shown in table 6.2, only the player who fared well against

the TD(λ) player was able to play a game that was not dominated.
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TDNN Number of
Training Iterations

Games
won by
Human

Games won
by TD(λ)

Draw Games

v1.0 500,000 20 0 0

v1.1 500,000 20 0 0

v1.1 trained
against TD(λ)

500,000 20 0 0

v2.0 500,000 20 0 0

v2.1 * 500,000 20 0 0

V2.1 trained
against TD(λ)

500,000 13 2 5

Table 6.2, TDNN vs. Human Opponent

Players marked with an asterisk (*) did not even follow the basic rule of Tic-Tac-Toe:

as the O player, if X does not choose the centerpiece, O must take the center.  Every single

player seemed to follow the same pattern.  It would always choose the same positions (if

available) in the same order no matter what the opponent had chosen.  These seemed to

suggest either the computer was not learning anything at all or that the training games rarely

were consistent (or possibly too consistent) to train the network to recognize a pattern.

I decided to break somewhat from the basic method outlined as the TD(λ) gradient

descent method with neural networks.  I changed the sigmoidal function to return a value

from –1 to 1 so that the reward estimation could be accurately predicted as was performed

with the TD(λ) player in section 6.2.  At first, the input layer was altered for TDNN v3.0.  The

input vector was comprised of 10 neurons.  A single neuron represented each board position

and the final neuron represented which player had the current turn.  A –1 represented the O

player while the X player was represented with a 1.  If no player occupied the space, it was

left as 0.  This input vector, however, proved to be flawed because when training against
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itself, the same board position would be presented (with either a positive or negative

activation) for each player with a different reward.  The network would try to correct its error

from a 1 reward, then, attempt to correct the error from a –1 reward resulting in very large

offsetting weights which quickly became too large for a 32-bit processor to handle.

Therefore, TDNN v3.0 was returned to using the standard input vector as used for every

other version.

 As with previous versions, TDNN v3.0 was trained against itself for 500,000

iterations.  The results were more consistent with expectation in that the number of ties was

more recurring than in previous attempts.  The X player still held the major advantage and

won most of the games; however, the number of draw games steadily increased as shown in

figure 6.15.
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Figure 6.15, Percentage of Victories for TDNN v3.0
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Based on how well it trained against itself, the hope was that it would fair well

against a trained opponent.  Playing TDNN v3.0 against the TD(λ) player would test how

well the player had learned the game.  As figure 6.16 shows, however, the results were much

poorer than expected.  In fact, the TDNN v3.0 player did not play as well against a trained

opponent as the earlier TDNN v2.1 had.
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Figure 6.16, Percentage of Victories for TDNN v3.0 vs TD(λ)

Because TDNN v3.0 was based on a concept more similar to that of TD(λ) with a

reward estimator for a given state, it was hoped that it would learn to compute (or estimate)

a given state as opposed to storing a value such as the TD(l) player.  Unfortunately, it was not

able to learn the function.  Even after 1.5 million iterations, it played a rather poor game.  As

table 6.3 shows, the various TDNN v3.0 networks were not able to perform at a level at which

it could compete with a human.
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Trainer Number of
Training
Iterations

Games won by
Human

Games won by
TD(λ)

Draw Games

Itself 500,000 20 0 0

TD(λ) 500,000 20 0 0

Random 1,500,000 20 0 0

Table 6.3, TDNN v3.0 vs. Human Opponent

Inspection of the reward estimations for TDNN v3.0 revealed a similar problem to

what had occurred with TDNN v1.0.  All states fed forward through the input resulted in an

estimation that approached 1.  One primary difficulty with a neural implementation of Tic-

Tac-Toe is that for a given input and a given output, one minor change in the input (changing

the user who is currently at play) must force the network to “invert” the estimation.  In other

words, for a given board state for Player X, the estimation for a reward may be 0.78; however,

feed the same state through the estimation for Player O, and the reward estimation would be

roughly –0.78 because the likelihood for Player O is a loss.

6.7. Tic-Tac-Toe Conclusions

In the Tic-Tac-Toe problem domain, there were two distinctly different results in the

use of the concepts of temporal difference.  In the use of TD(λ) as a linear, table-based lookup

method, the results were extremely positive, particularly, as player X in which the human

opponent could not beat it.  The second use of TD(λ) in the non-linear, neural network case

did not achieve results which would be construed as “learning.”  Although, this was the case,

it does not cast doubt upon the algorithm, more it requires thought as to the application.

Temporal difference methods as described by Sutton [Sutton, 1998] were primarily

focused upon linearly independent input patterns.  In the case of utilizing TD(λ) as a linear
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predictor, it worked quite well.  In the case of utilizing TD(λ) with a non-linear neural

network, the results were very poor.  Possibly this speaks more toward the simplistic game of

Tic-Tac-Toe.  Tic-Tac-Toe is a very basic Markovian process (a state depends only upon the

current state to reach the following) without non-linear aspects such as strategy, middle-

games, etc.  The application of neural networks to real-world problems requires selection of a

proper problem, and the game of Tic-Tac-Toe may very well be a case in which the network

did not fit the problem.  In many cases, a problem that combines prediction and control

would not converge with the TD(λ) algorithm.  It can “get stuck in a self-consistent but non-

optimal predictor/controller” [Tesauro, 1992].

One of the most important considerations in the implementation of a multi-layered

neural network is that of data representation.  A method with which to express the current

state and extract meaningful results from the network as related to that state is different for

every problem.  If expressed incorrectly, the network may not have enough (or too many

minor) data points to accurately understand the state or its outcome.  Tesauro outlines two

classifications [Tesauro, 1992]: a) lookup table in which there enough parameters such that the

network may store the correct output for every state, and b) compact representation where the

parameters are far fewer than the states and the network must derive the underlying task.  In

the second case, which is what was attempted with TD(Neural-Network) for Tic-Tac-Toe, the

representation is all important.  In fact, TD(λ) was described for the first case in which all

states could be stored separately, and may not be suitable in standard form for the case in

which it must compactly represent the model.  Even with the compact model, the gradient-

descent method is only capable of finding local optima for each state, not a global-state

independent optimum.
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Although the TD(Neural-Network) was not successful at implementing the game of

Tic-Tac-Toe, the TD(λ) player did adapt quite well and was able to play a very reasonable

game of Tic-Tac-Toe without an a priori knowledge of the underlying game.  In the linear

case, it was shown to be a very successful algorithm.  In fact, a comparison between the TD(λ)

implementation of Tic-Tac-Toe and of TD-Gammon reveals that an extremely complicated,

non-linear function such as BackGammon performed extremely well utilizing TD(Neural-

Network).  It could, potentially, be implemented utilizing the TD(λ) linear based algorithm;

however, with the number of possible states exceeding even that of Chess, it would be

impractical and require years to train.

The reverse is true for TD(Neural-Network) applied to Tic-Tac-Toe.  Tic-Tac-Toe has

approximately 3,000 viable game states without a complicated game structure.  It shows itself

a very solvable problem with the linear TD(λ) player thus practically proving that it is too

simple a problem to be solved with the multi-layered neural network.  The problem domain

being linear makes it difficult for the non-linear network to fit its hyper-plane to.  The

addition complexity of properly assigning all parameters within the neural network (trace

decay, discount, learning rate, and others) make it very difficult to properly fit a function to the

game of Tic-Tac-Toe.

The temporal difference methods have had many successful applications in recent

years including robotic control, automated task scheduling, playing games such as

BackGammon and Go at world-class levels, and channel allocation for cellular radio-based

traffic.  The concepts introduced with reinforcement learning and applied via the temporal

difference methods have applications in most problem spaces; however, as was shown with

the two examples exhibited, one must properly choose the temporal difference method for

their particular application.
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7. Conclusions

Mankind has tried to understand the learning process since the earliest days of

history.  To understand how we learn is to understand, possibly, what most gives us our

most human of attributes: the ability of abstraction.  People have dreamt of building

machines that could think independently since the days of Pascal and later Babbage.  To

achieve this goal, researchers have closely followed the advancements of biologic learning

research.  De Morgan eventually applied this research in developing the “laws of thought and

thus took the first step towards AI software” [Hofstadter, 1979].

As machine learning techniques progress, those which require the least supervision

and learn on their own are the methods that are typically seen as holding the most promise.

Samuel’s method of searching the tree space for all possible moves in conjunction with an

adaptive state estimator is viewed as an historical revolution in artificial intelligence.  Now,

with faster, cheaper, and larger capacity hardware, programs such as Deep Blue can beat the

top chess player in the world utilizing look-ahead algorithms.  When humans play games,

they employ basic look-ahead algorithms to formulate strategy; however, this is where we

differ from the machine.  A human may abstract, formulate, and strategize whereas the

machine is merely performing a look ahead to find the optimal board position for itself.  How

similar is a look-ahead of board estimations to a human playing the game?  Quite similar as a

matter of fact.  The primary difference, however, is in the state estimation being performed.

Although we do evaluate state estimations, it tends to be highly abstracted (oftentimes,

humans will sacrifice valuable pieces as a way to “trick” our opponent).  This is where TD-

Gammon excelled.
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TD-Gammon introduced the first major successful application of the concept of

reinforcement learning.  By watching the game and comparing where you are with where

you thought you would be in the past allows us to develop a method to learn independently

of a teacher or supervisor.  TD-Gammon was able to learn the game of backgammon in such

a way that it could accurately predict superior board positions (even if it may have appeared

inferior).  In fact, although the estimated probability value by TD-Gammon may have been

incorrect, every estimation was consistent with the other.  This parallels human state

estimation.  Every person estimates their current states differently than another; however,

people are consistent with themselves.  Despite this error in probabilistic calculation, TD-

Gammon, according to top players in the world, was unusually cunning in its move

selections, often seemingly attempting to lull its opponent into a trap.

Although the success of TD-Gammon cannot directly translate to other problem

domains, such as Tic-Tac-Toe, the basic principles of reinforcement learning, developed by

Sutton and employed by Tesauro, have proven to be an important new direction for the

research of machine learning.  As with all other aspects of artificial intelligence, ideas are

“borrowed” from many different disciplines and adapted to fit machine learning model.

Temporal difference with its roots in dynamic control systems has given us a way to learn

on-line; to learn by doing—by exploring.  It is this exploration—inquisitiveness—which

allows humans to broaden their knowledge of the world around them.  It is what makes the

temporal difference method rather unique in the field.  Samuel first realized the importance

of exploration in his work before the concept began to again attract attention in the late

1980’s.  Independent exploration is an extremely important aspect in biological learning.

Curiosity may have killed the cat, but it certainly learned about its environment along the

way.
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Alan Turing created the “imitation game” [Hofstadter, 1979] which we now simply

call the Turing Test.  The premise was that if a computer could “converse” with a human and

the human was incapable of determining whether they had held a conversation with a

computer or another human, then true intelligence has been achieved.  Has TD-Gammon (or

Deep Blue, or other championship game playing algorithms) passed the Turing Test?  An

argument could be made that, indeed, they have certainly passed the test.  If an expert was to

play a remote game of backgammon against another expert or against TD-Gammon and

could not distinguish between the two, then at least for the domain of BackGammon, the test

has been passed.

It is interesting that all definitions of intelligence come back to tests of how well they

relate to human intelligence.  Maybe this is the key to why mankind pushes for machine

learning.  For, the final outcome would finally allow us to “play god” by creating a machine

in the image of ourselves.
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Appendix A. MDP Code

The following is the source code in C++ used to implement the random walk example in

Chapter 4.

/*************************************************************************
 *  This program will perform the MDP random walk with either TD(0),
 *  Monte-Carlo (MC), or TD(l).  It performs a certain number of
 *  iterations (each iteration executes until an endpoint is reached).
 *
 *  Written by Brian Powell
 *  December, 1999
 *  for Master's Thesis
 *  University of Colorado at Denver
 *
 *************************************************************************/
#include <iostream>
#include <math.h>
#include <unistd.h>
#include <vector>

using namespace std;  //introduces namespace std

// Constants defining our solution method
enum {
  gTD_0 = 1,
  gMC,
  gTD_l
};

// The main subroutine for the application
int main()
{
  cout << "Compute our random walking example with TD(0), TD(l), or MC" << endl;

  // Seed the random generator
  srand(getpid());

  // Declare our variables
  int method = gTD_0;           // Which method do we wish to use?
  int num_states = 7;           // How many states do we have(+2 for the goal
states)
  int iterations = 100;         // How many iterations should we perform?
  double alpha = .01;           // The alpha value to use during computation
  double gamma = 1.0;           // The gamma value to use during computation
  double lambda = 0.0;          // The trace decay parameter for TD(lambda)

  // Set everything up: Initialize everything to the .5 estimation
  vector<double> states(num_states, 0.5);
  // Ask the user which method to perform
  cout << "Would you like to perform: " << endl << "1) TD(0)" << endl;
  cout << "2) MC" << endl << "3) TD(l)" << endl << "[1] ?";
  cin >> method;
  cout << "Performing " << ( (method==1) ? "TD(0)" : ((method==2) ? "MC" :
"TD(l)") ) << endl;
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  // If we are using TD(lambda), we need to find out the lambda value to use
  if ( method == gTD_l ) {
    cout << "Lambda Value: ";
    cin >> lambda;
    cout << "using l=" << lambda << endl;
  }

  // Go through all of the iterations
  for ( int iter=0; iter<iterations; iter++ ) {
    // The goal states have no estimation
    states[0] = states[num_states-1] = 0.0;

    // Where we currently our
    int current = (num_states+1)/2;

    // Store the moves we made
    vector<int> moves;

    // Create the eligibility trace
    vector<double> e(num_states, 0.0);

    // Let's print out everything thus far and compute the RMS-error
    double rms_error = 0.0;
    cout << iter << ",";
    for (int i=1; i<num_states-1; i++) {
      double tmp = states[i] - ( (double)i/double(num_states-1) );
      rms_error += tmp*tmp;
      cout << states[i] << ",";
    }
    cout << sqrt(rms_error/double(num_states-2)) << endl;

    // Set the default reward
    double r = 0.0;

    // Randomly walk until we reach an end point
    while ( current && current < num_states-1 ) {
      // randomly decide where to go next
      int next = int(rand()*100/RAND_MAX);
      next = ( next%2 ) ? current + 1 : current - 1;

      // Are we at the reward point?
      if ( next == num_states-1 ) r = 1.0;

      // Perform the action based upon our method
      switch ( method ) {
        case gTD_0:
          // Update our value based upon the immediate reward
          states[current] = states[current] +
                            alpha*(r + gamma*states[next] - states[current] );
          break;
        case gMC:
          // Just push this move onto our stack of moves
          moves.push_back(next);
          break;
        case gTD_l:
          // Update our value based upon the immediate reward and update all
previous
          // eligibilities
          double d = r + gamma*states[next] - states[current];
          e[current] += 1.0;
          moves.push_back(current);
          for (int j=0; j<moves.size(); j++) {
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            int x = moves[j];
            states[x] += alpha*d*e[x];
            e[x] = gamma*lambda*e[x];
          }
          break;
        default:
          break;
      }

      // Move to the next state and continue
      current = next;
    }

    // If we are performing MC, we need to go back through our moves, and update
based
    // upon the final reward
    if ( method == gMC ) {
      current = (num_states+1)/2;
      for (int i=0; i<moves.size(); i++) {
        states[current] = states[current] + alpha*(r - states[current]);
        current = moves[i];
      }
    }
  }

  return 0;
}
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Appendix B. Tic-Tac-Toe Code

The following code is the C++ implementation of the Tic-Tac-Toe problem as described in

Chapter 6.  It consists of several C++ classes fully implemented within their respective header

file and a single main.cc file as the primary program handler.

The files, listed in alphabetic order with source files first are:

• main.cc

• HumanPolicy.h

• matrix.h

• Player.h

• Policy.h

• RandomPolicy.h

• TDlambdaPolicy.h

• TDNeuralPolicy.h

• TDSuttonNet.h
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Appendix B.1. main.cc

The file, main.cc, is the primary entry point and flow control for the Tic-Tac-Toe program.

/*************************************************************************
 *  Tic-Tac-Toe Research Code:  This code implements the game of
 *  Tic-Tac-Toe in any game board size.  It is based upon a Policy object
 *  which dictates how a particular player object plays.  The defined
 *  policies include: random, human, TD-lambda, and TD-Neural Net.
 *
 *  Written by Brian Powell
 *  January, 2000
 *  for Master's Thesis
 *  University of Colorado at Denver
 *
 *************************************************************************/

#include <iostream>
#include <fstream>
#include <math.h>
#include <string>
#include <unistd.h>
#include <time.h>
#include <vector>
#include <map>
#include "matrix.h"
#ifdef macintosh
#include <console.h>
#endif

using namespace std;  //introduces namespace std

// Declarations
enum {
  kEmpty = -1,
  kPlayerX = 0,
  kPlayerO,
  kNoWin,
  kDraw
};

// Type Definitions
typedef matrix< int > tBoard;
typedef map< string, double , less< string > > tBoardMap;

// Global Variables
double  gAlpha = 0.05;
double  gBeta = 0.1;
double  gGamma = 1.0;
double  gLambda = 0.0;
bool    gDebug = false;
int     gGameSize = 3;
int     gInputSize = gGameSize*gGameSize*2+2;
int     gHiddenSize = 8;
int     gOutputSize = 1;
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// Headers Required
#include "Player.h"
#include "Policy.h"

// Prototypes
Policy *create_policy(string name, string file);
int game_over(tBoard &board);
void display_board(tBoard &board);

// Policies we use
#include "HumanPolicy.h"
#include "RandomPolicy.h"
#include "TDlambdaPolicy.h"
#include "TDNeuralPolicy.h"

// "Local" Globals
TDSuttonNet   *gNeuralNet = NULL;

/////////////////////////////////////////////////////////////////////
// Main
//
// The entry point for the program
/////////////////////////////////////////////////////////////////////
int main( int argc, char **argv )
{
#ifdef macintosh
  argc = ccommand(&argv);
#endif

  // Set up
  srand(time(NULL));
  int     iterations = 10;
  string  player1 = "h";
  string  file1;
  string  player2 = "r";
  string  file2;

  // Get the input from the user
  int cur_argc = 0;
  while ( ++cur_argc < argc ) {
    if ( *argv[cur_argc] != '-' ) continue;
    switch ( argv[cur_argc][1] ) {
      case 'a':
        if ( ++cur_argc < argc ) {
          gAlpha = atof(argv[cur_argc]);
        }
        break;
      case 'b':
        if ( ++cur_argc < argc ) {
          gBeta = atof(argv[cur_argc]);
        }
        break;
      case 'd':
        gDebug = true;
        break;
      case 'g':
        if ( ++cur_argc < argc ) {
          gGamma = atof(argv[cur_argc]);
        }
        break;
      case 'i':
        if ( ++cur_argc < argc ) {
          iterations = atoi(argv[cur_argc]);
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        }
        break;
      case 'l':
        if ( ++cur_argc < argc ) {
          gLambda = atof(argv[cur_argc]);
        }
        break;
      case '1':
        if ( ++cur_argc < argc ) {
          player1 = argv[cur_argc];
          if ( cur_argc+1 < argc && *argv[cur_argc+1] != '-' ) {
            file1 = argv[++cur_argc];
          }
        }
        break;
      case '2':
        if ( ++cur_argc < argc ) {
          player2 = argv[cur_argc];
          if ( cur_argc+1 < argc && *argv[cur_argc+1] != '-' ) {
            file2 = argv[++cur_argc];
          }
        }
        break;
      default:
        cerr << "Usage: " << argv[0] <<
         " [-a alpha]\n[-d]\n[-g gamma][-i iter]\n[-l lambda]\n" <<
          "[-1 type [ filename ] ] [-2 type [ filename ] ]\n"
          "where type is one of (h,r,t)" << endl;
        exit(-1);
        break;
    }
  }

  // Create the Policies
  vector< Policy* > policies;
  policies.push_back(create_policy(player1, file1));
  policies.push_back(create_policy(player2, file2));

  // Create the Players
  vector< Player > players;
  players.push_back(Player(kPlayerX));
  players.push_back(Player(kPlayerO));

  // Iterate over the number of times to play
  for (int played=1; played<=iterations; played++ ) {
    // Create the Board
    tBoard board(gGameSize,gGameSize,kEmpty);

    // Reset the policies
    for ( size_t i=0; i<policies.size(); i++ ) {
      policies[i]->reset();
    }

    // Reset the players
    for ( size_t i=0; i<players.size(); i++ ) {
      players[i].reset();
    }

    // Set the first player
    int last = kPlayerX;
    int current = kPlayerX;

    // Set up the winner
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    int winner = kNoWin;

    // Play the game
    while ( winner == kNoWin ) {
      // Tell the player to move
      policies[current]->move(board, players[current]);

      // How are we doing?
      winner = game_over(board);
      if ( winner == players[current].piece()) players[current].winner(true);

      // Learn from this move
      policies[current]->learn(board,players[current],( winner != kNoWin ) );

      // Swap Players
      last = current;
      current = ( current == kPlayerX ) ? kPlayerO : kPlayerX;
    }

    // Update the winner and loser
    if ( winner != kDraw ) {
      players[last].won();
      players[current].lost();
    }
    else {
      players[last].tied();
      players[current].tied();
    }

    // The game is over, tell the loser about the outcome
    policies[current]->learn(board, players[current], true);

    // Display the results
    if ( played%1000 == 0 ) {
      cout << played << " " << players[0].wins() << " " << players[1].wins() <<
" ";
      cout << players[0].ties() << endl;
    }
  }

  // Print Stats
  cout << iterations << " Games Played" << endl;
  cout << "X Won " << players[0].wins() << "( " <<
    double(players[0].wins())/double(iterations)*100.0 << "% )" << endl;
  cout << "O Won " << players[1].wins() << "( " <<
    double(players[1].wins())/double(iterations)*100.0 << "% )" << endl;
  cout << "Tied " << players[0].ties() << "( " <<
    double(players[1].ties())/double(iterations)*100.0 << "% )" << endl;

  // Save the policies (if needed)
  for ( size_t i=0; i<policies.size(); i++ ) {
    policies[i]->save();
  }

  // Clean up
  delete gNeuralNet;

  return 0;
}

/////////////////////////////////////////////////////////////////////
// create_policy
//
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// Create a policy based upon the user request
/////////////////////////////////////////////////////////////////////
Policy *create_policy(string name, string file)
{
  Policy *pol = NULL;
  switch (name[0]) {
    case 'h':
      pol = new HumanPolicy(file);
      break;
    case 'n':
      // The reason for this convoluted gNeuralNet is that we want to use
      // the same network for any of the Neural Policies we use
      if ( gNeuralNet == NULL )
        gNeuralNet = new TDSuttonNet(gInputSize, gHiddenSize, gOutputSize,
file);
      pol = new TDNeuralPolicy(gNeuralNet);
      break;
    case 'r':
      pol = new RandomPolicy(file);
      break;
    case 't':
      pol = new TDlambdaPolicy(file);
      break;
    default:
      cerr << "An Incorrect Policy was specified" << endl;
      exit(-1);
  };
  return pol;
}

/////////////////////////////////////////////////////////////////////
// display_board
//
// Print the board for the user
/////////////////////////////////////////////////////////////////////
void display_board(tBoard &board)
{
  string div = " ";
  int x = board.cols();
  int y = board.rows();
  cout << " ";
  for ( int i=0; i<x; i++ ) {
    cout << " " << i;
    div += "--";
  }
  cout << endl;
  for ( int j=0; j<y; j++ ) {
    cout << j << "|";
    for (int i=0; i<x; i++ ) {
      cout << ((board[i][j] != kEmpty) ?
              (board[i][j] == kPlayerX)?"X":"O" : " ") << "|";
    }
    cout << endl << div << endl;
  }
}

/////////////////////////////////////////////////////////////////////
// game_over
//
// Check to see if the game has ended due to a player winning
// or simply a tie game.
/////////////////////////////////////////////////////////////////////
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int game_over(tBoard &board)
{
  int x = board.cols();
  int y = board.rows();
  bool match = false;

  // Check across each row
  for ( int j=0; j<y; j++ ) {
    match = true;
    int player = board[0][j];
    for ( int i=1; i<x; i++ ) {
      if ( board[i][j] != player || board[i][j] == kEmpty ) match = false;
    }
    if ( match ) return player;
  }

  // Check down each column
  for ( int i=0; i<x; i++ ) {
    match = true;
    int player = board[i][0];
    for ( int j=1; j<y; j++ ) {
      if ( board[i][j] != player || board[i][j] == kEmpty ) match = false;
    }
    if ( match ) return player;
  }

  // Check the diagonals if the board is larger than 2
  int player = board[0][0];
  match = true;
  for ( int i=0, j=0; i<x && j<y; i++, j++ ) {
    if ( board[i][j] != player || board[i][j] == kEmpty ) match = false;
  }
  if ( match ) return player;

  player = board[x-1][0];
  match = true;
  for ( int i=x-1, j=0; i>=0 && j<y; i--, j++ ) {
    if ( board[i][j] != player || board[i][j] == kEmpty ) match = false;
  }
  if ( match ) return player;

  // Check for any remaining spots
  for (int i=0; i<x; i++) {
    for (int j=0; j<y; j++) {
      if ( board[i][j] == kEmpty ) return kNoWin;
    }
  }

  // It is a draw
  return kDraw;
}
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Appendix B.2. HumanPolicy.h

The file, HumanPolicy.h, defines a subclass of Policy which is responsible for interacting with

a human player to determine the game playing policy.

/*************************************************************************
 * humanPolicy.h
 * Brian Powell, 1999
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements a policy of asking for input to allow for
 * human play.
 *************************************************************************/

#ifndef _HUMAN_POLICY_H
#define _HUMAN_POLICY_H

#include "Policy.h"

class HumanPolicy : public Policy {
public:
  // Default Constructor
  HumanPolicy(string filename) : Policy(filename) {};

  // Destructor
  ~HumanPolicy() {};

  // Allow the person to make a move
  void move( tBoard &board, const Player &plyr ) {
    // Show the person the board move
    display_board(board);

    // Input the location
    int x = -1;
    int y = -1;

    while ( x < 0 ) {
      cout << ((plyr.piece() == kPlayerX) ? "X" : "O") <<
        " Enter a Move (x y)> ";
      cin >> x >> y;
      if ( x > 2 || y > 2) x=-1;
      if ( x >= 0 && board[x][y] != kEmpty ) x=-1;
    }
    board[x][y] = plyr.piece();
  };

  // Humans can learn for themselves
  void learn( tBoard &board, const Player &plyr, bool game_over ) {
    if ( game_over && board.rows() ) {
      if ( plyr.winner() ) {
        cout << "Congratulations, You Won!" << endl;
      }
      else if ( plyr.loser() ) {
        cout << "Sorry, you lost." << endl;
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      }
      else {
        cout << "Game ended in a Draw" << endl;
      }
    }
  };
};

#endif
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Appendix B.3. matrix.h

The file, matrix.h, defines a basic C++ templated class for dealing with a two-dimensional

array of values.

/*************************************************************************
 * matrix.h
 * Brian Powell, 1999
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements a basic matrix utilizing a vector of STL vectors.
 * It is used as a way to store and manage the data generated in
 * backprop.
 *************************************************************************/

#ifndef _MATRIX_H_
#define _MATRIX_H_

#include <vector.h>
#include <stdlib.h>

template < class T >
class matrix {

public:
  // Default Constructor
  matrix( int cols=1, int rows=1, T initial=0 ) :
      myData()
  {
    for ( int i=0; i<cols; i++ ) {
      myData.push_back( vector< T >((size_t)rows, initial) );
    }
  };

  // Copy Constructor
  matrix( const matrix &orig ) :
    myData( orig.myData )
  {
  }

  // Destructor
  ~matrix( void ) {
  }

  // Assignment Operator
  matrix& operator=( const matrix &orig ) {
    if ( this == &orig ) return *this;
    myData = orig.myData;
    return *this;
  }

  // Column & Row Accessor
  inline int cols( void ) const { return (int)myData.size(); };
  inline int rows( void ) const { return (int)myData[0].size(); };
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  // Resize the matrix
  inline void resize( int x, int y ) {
    myData.erase( myData.begin(), myData.end() );
    for (int i=0; i<x; i++) {
      myData.push_back( vector< T >((size_t)y) );
    }
  }

  // Data Accessor
  vector< T > &operator[]( int i ) {
    return myData[i];
  }

  // Output Operator
  friend ostream &operator<<( ostream &out, const matrix &orig ) {
    int x = orig.cols();
    int y = orig.rows();
    out << x << " " << y << endl;
    for ( int j=0; j<y; j++ ) {
      for ( int i=0; i<x; i++ ) {
        out << (const T)orig.myData[i][j] << " ";
      }
      out << endl;
    }
    return out;
  }

  // Input Operator
  friend istream &operator>>( istream &in, matrix &orig ) {
    int x, y;
    in >> x >> y;
    if ( x > 0 && y > 0 ) {
      orig.resize(x, y);
      for ( int j=0; j<y; j++ ) {
        for ( int i=0; i<x; i++ ) {
          in >> orig.myData[i][j];
        }
      }
    }
    return in;
  }

  // Equal Operator
  friend bool operator==( const matrix &mat1, const matrix &mat2 ) {
    int x = mat1.cols();
    int y = mat1.rows();
    if ( x != mat2.cols() || y != mat2.rows() ) return false;
    for ( int i=0; i<x; i++ ) {
      for ( int j=0; j<y; j++ ) {
        if ( mat1.myData[i][j] != mat2.myData[i][j] ) return false;
      }
    }
    return true;
  }

  // Comparison Operators
  inline friend bool operator<( const matrix &mat1, const matrix &mat2 ) {
    int x = mat1.cols();
    int y = mat1.rows();
    if ( x < mat2.cols() || y < mat2.rows() ) return true;
    for ( int i=0; i<x; i++ ) {
      for ( int j=0; j<y; j++ ) {
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        if ( mat1.myData[i][j] < mat2.myData[i][j] ) return true;
      }
    }
    return false;
  }
  inline friend bool operator>( const matrix &mat1, const matrix &mat2 ) {
    return ! ( mat1 < mat2 );
  }

  // Utility methods

  // Compute the sum of the matrix
  inline T sum( void ) const {
    T total = 0;
    for ( int i=0; i<cols(); i++ ) {
      for ( int j=0; j<rows(); j++ ) {
        total += (const T)myData[i][j];
      }
    }
    return total;
  }

  // Compute the average value of the matrix
  inline T average( void ) const {
    return sum()/T( cols() * rows() );
  }

  // Randomize every value in the matrix with the given Max
  inline void randomize( T min, T max ) {
    T delta = max - min;
    for ( int i=0; i<cols(); i++ ) {
      for ( int j=0; j<rows(); j++ ) {
        myData[i][j] =  min + rand() * delta/RAND_MAX;
      }
    }
  }

private:
  vector< vector< T > >         myData;
};

template< class T >
class mat_compare {
public:
  bool operator()( const matrix< T > &mat1, const matrix< T > &mat2 ) const {
    return mat1 < mat2;
  }
};

#endif
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Appendix B.4. Player.h

The file, Player.h, defines an abstract C++ class that defines the interface for dealing with a

player of the game of Tic-Tac-Toe.

/*************************************************************************
 * Player.h
 * Brian Powell, 1999
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements a player contesting a game
 *************************************************************************/

#ifndef _PLAYER_H
#define _PLAYER_H

class Player {
public:
  // Default Constructor
  Player(int piece=kPlayerX) :
    myPiece(piece),
    myWins(0),
    myLosses(0),
    myTies(0),
    myWinner(false),
    myLoser(false) {};

  // Copy Constructor
  Player(const Player &orig) :
    myPiece(orig.myPiece),
    myWins(orig.myWins),
    myLosses(orig.myLosses),
    myTies(orig.myTies),
    myWinner(orig.myWinner),
    myLoser(orig.myLoser) {};

  // Destructor
  ~Player(void) {};

  // Utility methods

  // Set members
  inline void winner(bool val) { myWinner = val; myLoser = !val; };
  inline void loser(bool val) { myLoser = val; myWinner = !val; };
  inline void piece(int val) { myPiece = val; };
  inline void reset() { myWinner = myLoser = false; };

  // Get Members
  inline bool winner(void) const { return myWinner; };
  inline bool loser(void) const { return myLoser; };
  inline int piece(void) const { return myPiece; };

  // Stats
  inline int wins(void) const { return myWins; };
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  inline void won(void) { myWins++; winner(true); };
  inline int losses(void) const { return myLosses; };
  inline void lost(void) { myLosses++; loser(true); };
  inline int ties(void) const { return myTies; };
  inline void tied(void) { myTies++; myLoser = myWinner = false; };

private:
  int     myPiece;                // The piece I control
  int     myWins;                 // How many times have I won?
  int     myLosses;               // How many times have I lost?
  int     myTies;                 // How many times have I tied?
  bool    myWinner;               // Did I win the current game?
  bool    myLoser;                // Did I lose the current game?
};

#endif
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Appendix B.5. Policy.h

The file, Policy.h, defines an abstract C++ class that defines the interface for dealing with the

policy for determining how a player attempts the game.

/*************************************************************************
 * Policy.h
 * Brian Powell, 1999
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class is an abstract interface to a policy.  The policy must
 * decide upon the move to make and (possibly) learn from that move.
 *************************************************************************/

#ifndef _POLICY_H
#define _POLICY_H

#include "Player.h"

class Policy {

public:
  // Default Constructor
  Policy(string filename="") : myFileName(filename) {};

  // Destructor
  virtual ~Policy() {};

  // Abstract Public Methods

  // Make a board move based upon this policy
  virtual void move( tBoard &board, const Player &plyr ) = 0;

  // Learn from the last move based upon this policy
  virtual void learn( tBoard &board, const Player &plyr, bool game_over ) = 0;

  // Reset anything that may need resetting
  virtual void reset(void) {};

  // Save anything that may need saving
  virtual void save(void) {};

protected:
  string    myFileName;       // The filename to load and save our data with
};

#endif
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Appendix B.6. RandomPolicy.h

The file, RandomPolicy.h, defines a subclass of Policy that implements a playing policy of

randomly choosing an open board position.

/*************************************************************************
 * RandomPolicy.h
 * Brian Powell, 1999
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements a Policy that simply selects a random free
 * board position.
 *************************************************************************/

#ifndef _RANDOM_POLICY_H
#define _RANDOM_POLICY_H

#include "Policy.h"

class RandomPolicy : public Policy {
public:
  // Default Constructor
  RandomPolicy(string filename) : Policy(filename) {};

  // Destructor
  ~RandomPolicy() {};

  // Allow the person to make a move
  void move( tBoard &board, const Player &plyr ) {
    // Input the location
    int x = -1;
    int y = -1;
    while ( x < 0 ) {
      x = int( ( rand() * 3.0 ) / RAND_MAX );
      y = int( ( rand() * 3.0 ) / RAND_MAX );
      if ( x > 2 || y > 2) x=-1;
      if ( x >= 0 && board[x][y] != kEmpty ) x=-1;
    }
    board[x][y] = plyr.piece();
  };

  // Random players have nothing to learn
  void learn( tBoard &board, const Player &plyr, bool game_over ) {
    if ( game_over && board.rows() ) {
      if ( plyr.winner() ) {
      }
      else if ( plyr.loser() ) {
      }
      else {
      }
    }
  };
};
#endif
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Appendix B.7. TDlambdaPolicy.h

The file, TDlambdaPolicy.h, defines a subclass of Policy that implements a playing policy for

the TD(λ) algorithm.  This policy adapts its weights upon later estimations based upon the

reward.

/*************************************************************************
 * TDlambdaPolicy.h
 * Brian Powell, 1999
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements the TD(lambda) algorithm as an estimator in my
 * policy for the game.  If no lambda is specified, it runs as TD(0).
 * If lambda = -1.0 then we are not learning, but simply using our policy.
 *************************************************************************/

#ifndef _TDLAMBDA_POLICY_H
#define _TDLAMBDA_POLICY_H

#include "Policy.h"

const double kInitialize = 0.0;  // Initialize each state

class TDlambdaPolicy : public Policy {
public:
  // Default Constructor
  TDlambdaPolicy(string filename) :
    Policy(filename),
    myV(),
    myE(),
    myMoves(),
    myLearning(true),
    myCurrent(),
    myNext()
  {
    if ( myFileName.length() ) {
      ifstream in((char *)myFileName.data());
      if ( in ) {
        // Read in each record
        while ( ! in.eof() ) {
          string board;
          double value;
          in >> board >> value;
          myV[board] = value;
        }
      }
      cout << "SIZE: " << myV.size() << endl;
    }
    // Set if we are learning
    myLearning = ( gLambda >= 0.0 );
  };
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  // Destructor
  ~TDlambdaPolicy() {};

  // We need to figure out the best move
  // We will typically grab the move with the highest state
  // of probability for winning; however, we need to explore
  // our space as well; therefore, we will (at random intervals)
  // choose a move which may not be optimal.  We will only do this
  // during learning.
  void move( tBoard &board, const Player &plyr ) {
    int rows = board.rows();
    int cols = board.cols();
    // This will randomly pick a number between 0 and 20.  If it is
    // 7 (and we are in learning mode) then we will simply pick
    // a random move.
    bool random = ( int( ( rand() * 20.0 ) / RAND_MAX ) == 7 ) && myLearning;

    // Debugging
    if ( gDebug ) cout << "Random : " << ((random)?"t":"f") << endl;

    // Perform TD
    if ( ! random ) {
      double best = -1.0;
      int x = -1;
      int y = -1;
      for ( int i=0; i<cols; i++ ) {
        for ( int j=0; j<rows; j++ ) {
          if ( board[i][j] == kEmpty ) {
            board[i][j] = plyr.piece();
            string str = board_string(board);
            double val = kInitialize;

            // Initialize unknown board positions
            tBoardMap::iterator iter = myV.find(str);
            if ( iter != myV.end() ) {
              val = myV[str];
            }

            // If this board position is the best so far
            if ( val != kInitialize && val > best ) {
              if ( gDebug )
                cout << "New Best: " << i << "," << j << " VALUE: " << val <<
endl;
              best = val;
              x = i;
              y = j;
            }

            // Set our board back to where we were and keep searching
            board[i][j] = kEmpty;
          }
        }
      }

      // See if we found a move, if not, it is random
      if ( x != -1 ) board[x][y] = plyr.piece();
      else random = true;
    }

    if ( random ) {
      if ( gDebug ) cout << "choosing randomly" << endl;
      vector < tBoard > moves;
      for ( int i=0; i<cols; i++ ) {
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        for ( int j=0; j<rows; j++ ) {
          if ( board[i][j] == kEmpty ) {
            board[i][j] = plyr.piece();
            moves.push_back(board);
            board[i][j] = kEmpty;
          }
        }
      }

      // Randomly select from our boards
      int move = int( ( rand() * (double)moves.size() ) /  RAND_MAX );
      if ( moves.size() == 1 ) move = 0;
      board = moves[move];
    }

    // Save this status
    myNext = board_string(board);

    // Debugo
    if ( gDebug ) {
      cout << "Moved: " << myNext << " Estimate: " << myV[myNext] <<endl;
    }

    // Push this onto our moves
    myMoves.push_back(myNext);
  };

  // TDlambda learns from the previous moves
  void learn( tBoard &board, const Player &plyr, bool game_over ) {
    double reward = 0.0;

    if ( game_over ) {
      myNext = board_string(board);

      // Set the reward on whether or not the player won, lost, or tied
      if ( plyr.winner() ) reward = 1.0;
      else if ( plyr.loser() ) reward = -1.0;
      else reward = 0.0;
      if ( gDebug ) cout << "REWARD: " << reward << endl;
    }

    // If we are learning, and everything is up-to-date, adjust our states
    if ( myLearning && myCurrent != "" && myNext != "" ) {
      double delta = reward + gGamma*myV[myNext] - myV[myCurrent];
      myE[myCurrent] += 1.0;
      if ( gDebug ) {
       cout << "Current: " << myCurrent << endl;
       cout << "Next: " << myNext << endl;
       cout << "r=" << reward << " delta=" << delta << " e="
            << myE[myCurrent] << endl;
      }
      for (vector< string >::iterator i=myMoves.begin(); i!=myMoves.end(); i++)
{
        myV[*i] += gAlpha * delta * myE[*i];
        myE[*i] = gGamma * gLambda * myE[*i];
        if ( gDebug ) {
          cout << "STATE: " << myV[*i] << endl;
          cout << "ELIG: " << myE[*i] << endl;
        }
      }
    }
    myCurrent = myNext;
    myNext = "";
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  };

  // Reset the current and previous states
  void reset( void ) {
    // Erase the eligibility traces
    myE.erase(myE.begin(), myE.end());

    // Erase the moves we made
    myMoves.erase(myMoves.begin(), myMoves.end());

    // Get rid of the history
    myCurrent = "";
    myNext = "";
  };

  // Save the states out to disk
  void save( void ) {
    ofstream out((char *)myFileName.data());
    if ( out && myLearning ) {
      // Go over the map, writing it out
      tBoardMap::iterator iter = myV.begin();
      while ( iter != myV.end() ) {
        if ( iter->second != kInitialize && iter->first != "") {
          out << iter->first << " " << iter->second << endl;
        }
        iter++;
      }
    }
  };

  string board_string(tBoard &board) {
    string str = "";
    for ( int j=0; j<board.rows(); j++ ) {
      for (int i=0; i<board.cols(); i++ ) {
        str += ((board[i][j] != kEmpty) ? (board[i][j] == kPlayerX)?"X":"O" :
"B");
      }
    }
    return str;
  }

private:
  tBoardMap         myV;        // The policy
  tBoardMap         myE;        // The eligibility trace
  vector< string >  myMoves;    // Track the moves we've made
  bool              myLearning; // Whether we are learning or not
  string            myCurrent;  // The current board I am working with
  string            myNext;     // The next board state I move to

};

#endif
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Appendix B.8. TDNeuralPolicy.h

The file, TDNeuralPolicy.h, defines a subclass of Policy that implements a playing policy for

the TD(Neural-Network) algorithm.  This class uses an instantiation of the TDSuttonNet class

as its estimator.  The policy determines errors from previous state estimations based upon its

current state and reward.  This error is then fed to the TDSuttonNet to propagate backwards

through the network.

/*************************************************************************
 * TDNeuralPolicy.h
 * Brian Powell, 2000
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements a Policy that simply selects a TDNeural free
 * board position.
 *************************************************************************/

#ifndef _TD_NEURAL_POLICY_H
#define _TD_NEURAL_POLICY_H

#include "Policy.h"
#include "TDSuttonNet.h"

class TDNeuralPolicy : public Policy {
public:
  // Default Constructor
  TDNeuralPolicy(TDSuttonNet *hopfield) :
    Policy(),
    myNet(hopfield),
    myLearning(true),
    myCurrent(),
    myNext()
  {
    // The current is the baseline of the net output
    myCurrent = hopfield->output();
  };

  // Destructor
  ~TDNeuralPolicy() {};

  // Allow the policy to make a move
  void move( tBoard &board, const Player &plyr ) {
    int rows = board.rows();
    int cols = board.cols();
    // This will randomly pick a number between 0 and 20.  If it is
    // 7 (and we are in learning mode) then we will simply pick
    // a random move.
    bool random = ( int( ( rand() * 20.0 ) / RAND_MAX ) == 7 ) && myLearning;
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    // Debugging
    if ( gDebug ) cout << "Random : " << ((random)?"t":"f") << endl;

    // Perform TD
    if ( ! random ) {
      double best = -1.0;
      int x = -1;
      int y = -1;
      for ( int i=0; i<cols; i++ ) {
        for ( int j=0; j<rows; j++ ) {
          if ( board[i][j] == kEmpty ) {
            board[i][j] = plyr.piece();
            vector< double > vec = board_vector( board, plyr.piece() );
            myNet->input( vec );
            myNet->feed_forward();
//            double val = (myNet->output())[0];
            double val = max((myNet->output())[0], (myNet->output())[1]);

            // If this board position is the best so far
            if ( val > best ) {
              if ( gDebug )
                cout << "New Best: " << i << "," << j << " VALUE: " << val <<
endl;
              best = val;
              x = i;
              y = j;
            }

            // Set our board back to where we were and keep searching
            board[i][j] = kEmpty;
          }
        }
      }

      // See if we found a move, if not, it is random
      if ( x != -1 ) board[x][y] = plyr.piece();
      else random = true;
    }

    if ( random ) {
      if ( gDebug ) cout << "choosing randomly" << endl;
      vector < tBoard > moves;
      for ( int i=0; i<cols; i++ ) {
        for ( int j=0; j<rows; j++ ) {
          if ( board[i][j] == kEmpty ) {
            board[i][j] = plyr.piece();
            moves.push_back(board);
            board[i][j] = kEmpty;
          }
        }
      }

      // Randomly select from our boards
      int move = int( ( rand() * (double)moves.size() ) /  RAND_MAX );
      if ( moves.size() == 1 ) move = 0;
      board = moves[move];
    }

    // Save this status
    myNext = board_vector( board, plyr.piece() );
  };

  // Policy can learn from its moves
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  void learn( tBoard &board, const Player &plyr, bool game_over ) {
    vector< double > reward((myNet->output()).size(), 0.0);

    if ( gDebug ) {
      cout << "in Learn" << endl;
      print_vector("Last Result: ", myCurrent);
    }

    if ( game_over ) {
      myNext = board_vector( board, plyr.piece() );

      // Compute the Reward
      if ( plyr.winner() ) {
        reward[0] = 1.0;       // Win
//        reward[1] = -1.0;      // Tie
      }
      else if ( plyr.loser() ) {
        reward[0] = -1.0;   // No Tie
//        reward[1] = -1.0;   // No Tie
      }
      else {
        reward[0] = 0.0;     // Tie
//        reward[1] = 1.0;      // Tie
      }

      print_vector("REWARD: ", reward);
    }

    // Get the output from our move
    myNet->input(myNext);
    myNet->feed_forward();
    vector< double > output = myNet->output();

    // If we are debugging, let's see what the output is
    print_vector("New Output", output);

    // Push the values through to see what happens

    // Create our TD error
    vector< double > error = output;
    for ( int k=0; k<(int)myCurrent.size(); k++ ) {
      error[k] = reward[k] + gGamma*output[k] - myCurrent[k];
    }

    if ( gDebug ) cout << "ERROR: " << error[0] << endl;

    // Update the weights based on our TD error
    myNet->update_weights(error);

    // Feed forward again
    myNet->feed_forward();

    // The current is now the last move's output we made
    myCurrent = myNet->output();

    // Debugging
    print_vector("Next: ", myCurrent);

    // Update the eligibilities
    myNet->update_eligibility();
  };

  // Reset the current and previous states
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  void reset( void ) {
    // Erase the move history
    myCurrent.erase(myCurrent.begin(), myCurrent.end());
    myNext.erase(myNext.begin(), myNext.end());

    // Allow the network to reset
    myNet->reset();

    // Set the current to the opening output
    myCurrent = myNet->output();
  };

  // Create an input vector for the given board and player
  vector< double > board_vector( tBoard &board, int player ) {
    double kXvalue = 1.0;
    double kOvalue = 1.0;
    double kBvalue = 0.0;
    vector< double > board_vec((size_t)gInputSize, kBvalue);

    // go over the board and put a one in the positions occupied by each player
    for ( int j=0; j<board.rows(); j++ ) {
      for ( int i=0; i<board.cols(); i++ ) {
        int xpos = ( i+j*board.cols() ) * 2;
        int opos = xpos+1;
//        int xpos = ( i+j*board.cols() );
//        int opos = xpos;
        if ( board[i][j] == kPlayerX ) board_vec[xpos] = kXvalue;
        else if ( board[i][j] == kPlayerO ) board_vec[opos] = kOvalue;
      }
    }

    // Specify who's turn it is
    if ( player == kPlayerX ) board_vec[gInputSize-2] = kXvalue;
    else if ( player == kPlayerO ) board_vec[gInputSize-1] = kOvalue;

    return( board_vec );
  }

private:
  TDSuttonNet      *myNet;      // The neural net we are using
  bool              myLearning; // Whether we are learning or not
  vector< double >  myCurrent;  // The last output vector we had
  vector< double >  myNext;     // The next board evaluation I move to
};

#endif
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Appendix B.9. TDSuttonNet.h

The file, TDSuttonNet.h, defines a class for handling and manipulating a gradient-descent

based TD(λ) algorithm via a Neural Network.  This is the code used for TDNN v3.0.

/*************************************************************************
 * TDSuttonNet.h
 * Brian Powell, 2000
 * Master's Thesis, University of Colorado at Denver
 * Dr. William Wolfe, Advisor
 *
 * This class implements a Hopfield-based neural network using temporal
 * difference errors and the backpropagation to compute the gradient of
 * the eligibility traces with respect to the error.  The network that
 * is implemented is a 3-layer (single hidden layer) network.
 *************************************************************************/

#ifndef _TD_SUTTONNET_H
#define _TD_SUTTONNET_H

#include <string>
#include <vector>
#include <fstream.h>
#include "matrix.h"
#include "math.h"

// Global methods

// Compute the sigmoidal output of a neuron
template < class T >
inline T output_function( T &x ) {
  double e = exp((double)-x);
  return T(1.0 - e)/T(1.0 + e);
}

// Compute the derivative value of the output
template < class T >
inline T output_function_prime ( T &x ) { return T(2.0)*x*(T(1.0) - x); }

// Debug function for displaying the contents of our vector
template < class T >
inline void print_vector( string msg, vector< T > &x ) {
  if ( gDebug ) {
    cout << msg;
    for(int i=0; i<(int)x.size(); i++) cout << x[i] << " ";
    cout << endl;
  }
}

class TDSuttonNet {
public:
  // Default Constructor
  TDSuttonNet( int input, int hidden, int out, string file = "",
               double bias = 1.0 ) :
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    myInputSize(input+1),                      // Add one for the bias neuron
    myHiddenSize(hidden+1),                    // Add one for the bias neuron
    myOutputSize(out),
    myInputLayer((size_t)myInputSize, 0.0),
    myHiddenLayer((size_t)myHiddenSize, 0.0),
    myOutputLayer((size_t)myOutputSize, 0.0),
    myWeightInHid(myInputSize, myHiddenSize, 0.0),
    myWeightHidOut(myHiddenSize, myOutputSize, 0.0),
    myEligInOut(),
    myEligHidOut(myHiddenSize, myOutputSize, 0.0),
    myFileName(file),
    myBias(bias)
  {
    // Construct the eligibility from the input to the output
    for ( int k=0; k<myOutputSize; k++ ) {
      myEligInOut.push_back( matrix< double >(myInputSize, myHiddenSize, 0.0) );
    }

    // Randomly build the weights
    myWeightInHid.randomize( -0.1, 0.1 );
    myWeightHidOut.randomize( -0.1, 0.1 );

    // If we have a file, we need to load our weights
    if ( myFileName.length() ) {
      ifstream in((char *)myFileName.data());
      if ( in ) {
        // Read in each of the weights
        in >> myWeightInHid >> myWeightHidOut;
      }
    }

    // Initialize everything
    initialize();

    if ( gDebug ) {
      cout << "INITIAL IN-HID WEIGHTS: " << myWeightInHid;
      cout << "INITIAL HID-OUT WEIGHTS: " << myWeightHidOut;
    }
  };

  // Destructor
  ~TDSuttonNet() {
    // If we have a file, we need to save our weights
    if ( myFileName.length() ) {
      ofstream out((char *)myFileName.data());
      if ( out ) {
        out << myWeightInHid << myWeightHidOut << endl;
      }
    }
  };

  // Accessors
  inline void input( vector< double > &val ) {
    if ( val.size() == (size_t)myInputSize ) myInputLayer = val;
    else if ( val.size() == (size_t)myInputSize - 1 ) {
      myInputLayer = val;
      myInputLayer.push_back(myBias);
    }
  }
  inline vector< double > &input( void ) { return myInputLayer; };
  inline vector< double > &output( void ) { return myOutputLayer; };

  // Initialize the neural network
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  void initialize( void ) {
    feed_forward();
    update_eligibility();
  }

  // Feed forward the input through the network
  void feed_forward( void ) {
    // Set the initial bias neurons
    myInputLayer[myInputSize-1] = myBias;
    myHiddenLayer[myHiddenSize-1] = myBias;

    // For Debug
    print_vector("Forward Input: ", myInputLayer);

    // Feed Forward from input to hidden layer
    for ( int j=0; j<myHiddenSize-1; j++ ) {
      double val = 0.0;
      for ( int i=0; i<myInputSize; i++ ) {
        val += myInputLayer[i] * myWeightInHid[i][j];
      }
      myHiddenLayer[j] = output_function(val);
    }

    // For Debug
    print_vector("Forward Hidden:", myHiddenLayer);

    // Feed forward from the hidden layer to output layer
    for ( int k=0; k<myOutputSize; k++ ) {
      double val = 0.0;
      for ( int j=0; j<myHiddenSize; j++ ) {
        val += myHiddenLayer[j] * myWeightHidOut[j][k];
      }
      myOutputLayer[k] = output_function(val);
    }

    // For Debug
    print_vector("Forward Out:", myOutputLayer);
  }

  // Update the weights using the back-propagation values of the eligibility
  void update_weights( vector< double > &error ) {
    for ( int k=0; k<myOutputSize; k++ ) {
      for ( int j=0; j<myHiddenSize; j++ ) {
        if ( gDebug )
          cout << "DELTA: " << gAlpha * error[k] * myEligHidOut[j][k] << " ";
        myWeightHidOut[j][k] += gBeta * error[k] * myEligHidOut[j][k];
        for ( int i=0; i<myInputSize; i++ ) {
          myWeightInHid[i][j] += gAlpha * error[k] * myEligInOut[k][i][j];
        }
      }
    }
  }

  // Use backpropagation to find the eligibility gradient
  void update_eligibility( void ) {
    vector< double >  output((size_t)myOutputSize, 0.0);

    // To repeat calculating this value again and again, we'll
    // store the output derivative for calculations
    for ( int k=0; k<myOutputSize; k++ ) {
      output[k] = output_function_prime(myOutputLayer[k]);
    }
    print_vector("ELIG OUT: ", output);
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    // Let's back-propagate everything through
    for ( int j=0; j<myHiddenSize; j++ ) {
      for ( int k=0; k<myOutputSize; k++ ) {
        myEligHidOut[j][k] = gGamma*gLambda * myEligHidOut[j][k] +
          output[k]*myHiddenLayer[j];
        if ( gDebug ) cout << "ELIGIBILITY: " << myEligHidOut[j][k] << endl;
        for ( int i=0; i<myInputSize; i++ ) {
          myEligInOut[k][i][j] = gGamma*gLambda * myEligInOut[k][i][j] +
                        ( output[k] * myWeightHidOut[j][k] *
                        output_function_prime(myHiddenLayer[j]) *
myInputLayer[i] );
        }
      }
    }
  }

  // Reset the states
  void reset( void ) {
    // Erase all of the layer information
    myInputLayer.erase(myInputLayer.begin(), myInputLayer.end());
    myHiddenLayer.erase(myHiddenLayer.begin(), myHiddenLayer.end());
    myOutputLayer.erase(myOutputLayer.begin(), myOutputLayer.end());

    // Rebuild the layer information
    myInputLayer = vector< double >((size_t)myInputSize, 0.0);
    myHiddenLayer = vector< double >((size_t)myHiddenSize, 0.0);
    myOutputLayer = vector< double >((size_t)myOutputSize, 0.0);

    // Erase the eligibilities
    myEligInOut.erase(myEligInOut.begin(), myEligInOut.end());

    // Rebuild the eligibilites
    for ( int k=0; k<myOutputSize; k++ ) {
      myEligInOut.push_back( matrix< double >(myInputSize, myHiddenSize, 0.0) );
    }
    myEligHidOut = matrix< double >(myHiddenSize, myOutputSize, 0.0);

    // Initialize
    initialize();
  };

private:
  int                         myInputSize;      // The size of the input layer
  int                         myHiddenSize;     // The size of the hidden layer
  int                         myOutputSize;     // The size of the output layer
  vector< double >            myInputLayer;     // The input layer data
  vector< double >            myHiddenLayer;    // The hidden layer data
  vector< double >            myOutputLayer;    // The output layer data
  matrix< double >            myWeightInHid;    // The weights from the input to
hidden layer
  matrix< double >            myWeightHidOut;   // The weights from the hidden
to output
  vector< matrix< double > >  myEligInOut;      // The eligibilities from input
to output
  matrix< double >            myEligHidOut;     // The eligibilities from hidden
to output
  string                      myFileName;       // The file to restore/save our
states
  double                      myBias;           // The value of the bias neuron
};

#endif
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Appendix C. MDP Data Result Tables

The following table is the output of a single run for the TD(0.5) case in the Markov Decision

Process as shown in Section 4.X.  The output shows the state estimation values for each state

A through E and the RMS Error for all five states.

Iteration A B C D E RMS Error

1 0.5000 0.5000 0.5000 0.5000 0.5000 0.2357

2 0.5000 0.5000 0.5000 0.5234 0.5938 0.2082

3 0.5000 0.5000 0.5075 0.5529 0.6674 0.1894

4 0.4500 0.4750 0.4942 0.5417 0.6674 0.1694

5 0.4050 0.4787 0.4973 0.5159 0.6674 0.1601

6 0.4050 0.4787 0.4973 0.5477 0.7007 0.1481

7 0.3645 0.4569 0.5019 0.5514 0.6803 0.1350

8 0.3645 0.4569 0.5019 0.5802 0.7123 0.1237

9 0.3645 0.4569 0.5162 0.6230 0.7615 0.1111

10 0.3645 0.4569 0.5162 0.6488 0.7853 0.1070

11 0.3281 0.4248 0.4947 0.6276 0.7640 0.0903

12 0.3281 0.4380 0.5354 0.6227 0.7682 0.0943

13 0.3281 0.4546 0.5516 0.6605 0.8060 0.0940

14 0.3281 0.4546 0.6280 0.6840 0.7918 0.1088

15 0.3281 0.4546 0.6280 0.7052 0.8126 0.1087

16 0.2952 0.4221 0.5832 0.7053 0.7754 0.0851

17 0.2952 0.4221 0.6036 0.7235 0.7979 0.0890

18 0.2952 0.4221 0.6036 0.7411 0.8181 0.0905

19 0.3963 0.4576 0.5609 0.7458 0.8103 0.1255

20 0.3567 0.4317 0.5410 0.6947 0.7905 0.1001

21 0.3210 0.4428 0.4933 0.6755 0.7905 0.0869

22 0.3210 0.4549 0.5382 0.6558 0.8054 0.0905

23 0.2660 0.4107 0.5215 0.6245 0.7860 0.0638

24 0.2660 0.4107 0.5215 0.6786 0.8059 0.0587

25 0.2856 0.4440 0.5150 0.7043 0.8228 0.0750

26 0.2856 0.4440 0.5753 0.6955 0.8000 0.0824

27 0.2615 0.4602 0.5282 0.6599 0.7810 0.0757

28 0.2354 0.4365 0.5366 0.6143 0.7810 0.0666

29 0.3244 0.4230 0.5461 0.6275 0.7573 0.0920

30 0.3244 0.4386 0.5643 0.6332 0.7791 0.0940
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Iteration A B C D E RMS Error

31 0.3244 0.4386 0.5643 0.6588 0.8012 0.0907

32 0.3244 0.4386 0.6043 0.6608 0.8071 0.0975

33 0.3244 0.4386 0.6043 0.6851 0.8264 0.0972

34 0.3244 0.4386 0.6232 0.7161 0.8438 0.1036

35 0.2919 0.4264 0.6056 0.7019 0.8194 0.0859

36 0.3265 0.4666 0.6153 0.7016 0.8042 0.1083

37 0.3011 0.4558 0.5817 0.6580 0.8042 0.0902

38 0.2506 0.4080 0.5613 0.6428 0.7817 0.0626

39 0.2255 0.3797 0.5318 0.6199 0.7817 0.0479

40 0.2255 0.3797 0.5318 0.6470 0.8035 0.0398

41 0.2255 0.3797 0.5499 0.6934 0.8347 0.0420

42 0.2255 0.3797 0.5499 0.7319 0.8603 0.0512

43 0.2030 0.3615 0.5296 0.6801 0.8603 0.0279

44 0.1827 0.3355 0.4998 0.6501 0.8603 0.0159

45 0.1827 0.4003 0.5119 0.6340 0.8743 0.0391

46 0.1827 0.4003 0.5543 0.6758 0.8504 0.0402

47 0.1827 0.4003 0.5781 0.7101 0.8653 0.0524

48 0.1827 0.4003 0.5781 0.7324 0.8788 0.0587

49 0.1827 0.4003 0.5781 0.7531 0.8909 0.0658

50 0.1827 0.4003 0.5781 0.7723 0.9018 0.0731

51 0.1708 0.3617 0.5046 0.7346 0.8763 0.0382

52 0.1708 0.3617 0.5046 0.7550 0.8887 0.0484

53 0.1538 0.3341 0.4765 0.7046 0.8567 0.0233

54 0.1384 0.3084 0.4483 0.6457 0.8567 0.0319

55 0.1245 0.2844 0.4223 0.6130 0.8567 0.0522

56 0.1245 0.3140 0.4617 0.6402 0.8710 0.0339

57 0.1245 0.3140 0.5606 0.6357 0.8536 0.0379

58 0.1245 0.3410 0.5744 0.6627 0.8683 0.0415

59 0.1245 0.3410 0.5744 0.6899 0.8815 0.0452

60 0.1245 0.3410 0.6072 0.7119 0.8933 0.0616

61 0.1245 0.3410 0.6072 0.7354 0.9040 0.0679

62 0.1245 0.3410 0.6072 0.7570 0.9136 0.0747

63 0.1245 0.3410 0.6072 0.7770 0.9222 0.0817

64 0.1121 0.3132 0.5666 0.7397 0.9222 0.0649

65 0.1131 0.2960 0.4987 0.7074 0.9222 0.0526

66 0.1018 0.2721 0.4664 0.6704 0.9222 0.0583

67 0.1018 0.2721 0.4999 0.7122 0.9300 0.0623

68 0.0916 0.2499 0.4561 0.6530 0.9300 0.0693

69 0.0916 0.2499 0.5149 0.7308 0.9008 0.0655

70 0.1114 0.2743 0.4375 0.6596 0.9008 0.0549
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Iteration A B C D E RMS Error

71 0.1114 0.2743 0.4681 0.7246 0.9106 0.0581

72 0.1533 0.2875 0.5314 0.7530 0.8968 0.0543

73 0.1380 0.2664 0.4965 0.7133 0.8968 0.0480

74 0.1380 0.2664 0.4965 0.7368 0.9071 0.0560

75 0.1242 0.2466 0.4636 0.6964 0.9071 0.0583

76 0.1409 0.2982 0.3821 0.5945 0.9071 0.0727

77 0.1409 0.2982 0.4355 0.6670 0.9121 0.0495

78 0.1409 0.2982 0.4355 0.6959 0.9209 0.0540

79 0.1409 0.2982 0.4355 0.7224 0.9288 0.0605

80 0.1409 0.2982 0.4355 0.7466 0.9359 0.0678

81 0.1409 0.2982 0.4355 0.7687 0.9423 0.0753

82 0.1409 0.2982 0.4355 0.7890 0.9481 0.0827

83 0.1409 0.2982 0.4355 0.8075 0.9533 0.0897

84 0.1409 0.2982 0.5217 0.7889 0.9428 0.0765

85 0.1205 0.2574 0.5269 0.7571 0.8955 0.0643

86 0.1205 0.2971 0.5581 0.7415 0.8891 0.0557

87 0.1383 0.3232 0.4804 0.7096 0.8035 0.0284

88 0.1383 0.3232 0.4804 0.7288 0.8231 0.0324

89 0.1383 0.3232 0.5126 0.7437 0.8408 0.0376

90 0.1383 0.3232 0.5126 0.7614 0.8567 0.0460

91 0.1383 0.3232 0.5440 0.7748 0.8710 0.0565

92 0.1356 0.2638 0.5151 0.7373 0.8710 0.0499

93 0.1356 0.2638 0.5151 0.7571 0.8839 0.0579

94 0.1356 0.2638 0.5151 0.7902 0.9008 0.0719

95 0.1356 0.2638 0.5151 0.8062 0.9108 0.0794

96 0.1356 0.2638 0.5151 0.8211 0.9197 0.0864

97 0.1356 0.3052 0.5663 0.7454 0.9277 0.0652

98 0.1165 0.2606 0.5028 0.7165 0.9277 0.0620

99 0.1165 0.2606 0.5028 0.7413 0.9349 0.0689

100 0.1726 0.3435 0.5312 0.7265 0.8477 0.0313
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Appendix D. Tic-Tac-Toe – TD(λ) Data Result Tables

The following data shows the state estimations computed and stored for the TD(λ) X player

as described in section 6.2.  Each state is represented by a string of nine characters beginning

at the upper, left and working across and down to the bottom, right.  A ‘B’ represents an

empty space while ‘X’ & ‘O’ represent each player.

State Estimation State Estimation State Estimation

BBBBBBBBX 0.5308 BXOBBXBBB 0.3445 XBBBBOBBX 0.0509

BBBBBBBXB 0.5482 BXOBBXBOX 0.0119 XBBBBOBXB 0.2116

BBBBBBOXX 0.0418 BXOBBXOBX 0.0500 XBBBBOXBB 0.1156

BBBBBBXBB 0.4887 BXOBBXXBO -0.0250 XBBBBOXOX -0.0346

BBBBBBXOX 0.2306 BXOBOBBXX -0.1860 XBBBBXBBO 0.1695

BBBBBBXXO -0.0456 BXOBOBXXB -0.0538 XBBBBXBOB 0.2452

BBBBBOBXX 0.0772 BXOBOXBBX -0.0526 XBBBBXOBB 0.1119

BBBBBOXBX 0.2773 BXOBOXBXB -0.1288 XBBBBXOOX -0.0802

BBBBBOXXB 0.0700 BXOBOXXBB 0.4291 XBBBOBBBX -0.0364

BBBBBXBBB 0.4927 BXOBOXXXO -0.3460 XBBBOBBXB 0.4310

BBBBBXBOX 0.1985 BXOBXBBBB 0.5518 XBBBOBOXX -0.0765

BBBBBXBXO 0.2971 BXOBXBBOX 0.6067 XBBBOBXBB 0.0442

BBBBBXOBX 0.0760 BXOBXBOBX 0.9200 XBBBOBXOX -0.3269

BBBBBXOXB 0.1327 BXOBXBXBO 0.1670 XBBBOBXXO -0.0066

BBBBBXXBO 0.3349 BXOBXBXOB 0.4703 XBBBOOBXX -0.0975

BBBBBXXOB 0.3865 BXOBXOBBX 0.7657 XBBBOOXBX -0.1426

BBBBOBBXX -0.0061 BXOBXOXBB 0.0643 XBBBOOXXB -0.0188

BBBBOBXBX -0.0529 BXOBXOXOX 0.4808 XBBBOXBBB 0.1641

BBBBOBXXB 0.0044 BXOBXXBBO 0.4842 XBBBOXBXO 0.0621

BBBBOXBBX -0.0501 BXOBXXBOB 0.5338 XBBBOXOBX -0.2062

BBBBOXBXB 0.0863 BXOBXXOBB 0.3877 XBBBOXOXB 0.1750

BBBBOXXBB 0.1571 BXOBXXOOX 1.0000 XBBBOXXOB -0.1204

BBBBOXXXO -0.1451 BXOBXXXOO 0.4894 XBBBXBBBO 0.5661

BBBBXBBBB 0.6898 BXOOBBBXX -0.0475 XBBBXBBOB 0.4094

BBBBXBBOX 0.6861 BXOOBBXXB 0.0250 XBBBXBOBB 0.5071

BBBBXBBXO 0.5633 BXOOOXBXX -0.0998 XBBBXBOXO 0.5360

BBBBXBOBX 0.4807 BXOOOXXBX 0.0500 XBBBXBXOO 0.4768

BBBBXBOXB 0.5048 BXOOOXXXB 0.4634 XBBBXOBBB 0.4799
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State Estimation State Estimation State Estimation

BBBBXBXBO 0.3490 BXOOXBBBX 0.4634 XBBBXOBXO 0.1913

BBBBXBXOB 0.7612 BXOOXBXBB 0.6994 XBBBXOOXB 0.4448

BBBBXOBBX 0.6537 BXOOXBXOX 0.4068 XBBBXOXBO -0.3417

BBBBXOBXB 0.6471 BXOOXOXBX 1.0000 XBBBXOXOB 0.6054

BBBBXOOXX 0.4792 BXOOXXBBB 0.6380 XBBBXXBOO 0.2836

BBBBXOXBB 0.3872 BXOOXXBOX 0.3127 XBBBXXOBO 0.2467

BBBBXOXOX 0.8119 BXOOXXOBX 0.4566 XBBBXXOOB -0.3312

BBBBXOXXO -0.3787 BXOOXXXBO 0.5545 XBBOBBBBX 0.1290

BBBBXXBBO 0.6449 BXOXBBBBB 0.1316 XBBOBBBXB 0.3534

BBBBXXBOB 0.6539 BXOXBBOXB -0.2094 XBBOBBXBB 0.1837

BBBBXXOBB 0.4983 BXOXBBXOB -0.0215 XBBOBOXBX -0.0590

BBBBXXOOX 0.6493 BXOXBOBXB -0.0629 XBBOBOXXB -0.0491

BBBBXXOXO 0.5709 BXOXBXBBO -0.0530 XBBOBXBBB 0.2233

BBBBXXXOO 0.7798 BXOXBXOOX -0.0025 XBBOBXBOX 0.0903

BBBOBBBXX -0.0215 BXOXOBBXB -0.1850 XBBOOBBXX 0.0573

BBBOBBXBX 0.3076 BXOXOBXBB 0.1638 XBBOOBXXB 0.0805

BBBOBBXXB 0.2014 BXOXOBXOX 0.0862 XBBOOXBBX 0.1751

BBBOBXBBX 0.0950 BXOXOOBXX -0.0356 XBBOOXBXB 0.7324

BBBOBXBXB 0.0547 BXOXOOXBX 0.8953 XBBOOXOXX -0.0952

BBBOBXXBB 0.2084 BXOXOXBBB -0.2386 XBBOOXXOX -0.1931

BBBOOXXBX 0.2378 BXOXOXBXO -0.3698 XBBOXBBBB 0.6951

BBBOXBBBX 0.5206 BXOXOXXBO -0.1599 XBBOXBBXO 0.6472

BBBOXBBXB 0.6201 BXOXXBBBO -0.4208 XBBOXBOXB 0.7341

BBBOXBOXX -0.2784 BXOXXBBOB 0.3703 XBBOXBXBO 0.1744

BBBOXBXBB 0.7604 BXOXXBOBB 0.4423 XBBOXBXOB 0.7795

BBBOXBXOX 0.7197 BXOXXBOOX 1.0000 XBBOXOBXB 0.8083

BBBOXBXXO 0.5093 BXOXXBXOO -0.2131 XBBOXOXBB 0.7261

BBBOXOBXX 0.5479 BXOXXOBBB 0.0648 XBBOXOXXO 0.0992

BBBOXOXBX 1.0000 BXOXXOBOX 0.4238 XBBOXXBBO 0.4235

BBBOXOXXB 0.5674 BXOXXOOBX 1.0000 XBBOXXBOB 0.4282

BBBOXXBBB 0.6068 BXOXXOXOB -0.4696 XBBOXXOBB 0.5423

BBBOXXBOX 0.4810 BXXBBBBBO 0.0090 XBBOXXOXO 0.5118

BBBOXXBXO 0.5213 BXXBBBBOB 0.0833 XBBOXXXOO 0.3885

BBBOXXOBX -0.3502 BXXBBBOBB 0.0178 XBBXBBBBO 0.0235

BBBOXXOXB 0.1980 BXXBBBOOX 0.0567 XBBXBBBOB -0.0292

BBBOXXXBO 0.6073 BXXBBBOXO 0.0233 XBBXBBOBB 0.0598

BBBOXXXOB 0.5665 BXXBBOBBB 0.2195 XBBXBBOXO 0.0295

BBBXBBBBB 0.5164 BXXBBOBOX 0.0492 XBBXBOBBB 0.0707

BBBXBBBOX 0.2710 BXXBBXOBO -0.1082 XBBXBXOOB -0.0650

BBBXBBBXO 0.2196 BXXBBXOOB -0.1513 XBBXOBBBB 0.0655
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BBBXBBOBX 0.3149 BXXBOBBBB -0.0181 XBBXOBBOX -0.0482

BBBXBBOXB 0.2931 BXXBOBBOX 0.5245 XBBXOBBXO 0.2468

BBBXBBXBO 0.0065 BXXBOBBXO -0.1811 XBBXOBOXB -0.3218

BBBXBBXOB 0.0760 BXXBOBOBX 0.2902 XBBXOOBXB 0.4025

BBBXBOBBX 0.2848 BXXBOBXBO -0.1378 XBBXOOOXX -0.3410

BBBXBOBXB 0.2972 BXXBOBXOB 0.0955 XBBXOXBOB -0.0390

BBBXBOOXX 0.0339 BXXBOOBBX -0.0534 XBBXOXOBB -0.2093

BBBXBOXBB 0.0813 BXXBOOBXB -0.1170 XBBXOXOOX -0.1855

BBBXBOXOX 0.0712 BXXBOOOXX -0.0407 XBBXOXOXO -0.3806

BBBXBOXXO -0.1083 BXXBOOXBB -0.0814 XBBXXBBOO -0.1692

BBBXBXBBO -0.0191 BXXBOOXOX -0.0500 XBBXXBOBO -0.2668

BBBXBXBOB -0.0279 BXXBOXBBO -0.0978 XBBXXBOOB -0.3634

BBBXBXOBB -0.0170 BXXBOXBOB -0.0254 XBBXXOBBO -0.2585

BBBXOBBBX 0.0958 BXXBOXOBB -0.1966 XBBXXOBOB 0.1867

BBBXOBBXB 0.1402 BXXBOXOXO -0.2772 XBBXXOOBB 0.0093

BBBXOBOXX 0.0203 BXXBOXXOO -0.0792 XBBXXOOXO -0.4591

BBBXOBXBB -0.0387 BXXBXBBOO -0.3851 XBOBBBBBX 0.1163

BBBXOOBXX 0.1687 BXXBXBOBO -0.5915 XBOBBBBXB 0.0996

BBBXOOXBX 0.3332 BXXBXBOOB -0.2925 XBOBBBXBB 0.1410

BBBXOXBBB 0.0179 BXXBXOBBO 0.4229 XBOBBBXOX 0.1382

BBBXOXOBX -0.2009 BXXBXOBOB 0.3594 XBOBBOXBX 0.1609

BBBXOXXBO -0.1320 BXXBXOOBB 0.0900 XBOBBOXXB -0.0612

BBBXXBBBO 0.4244 BXXBXOOOX 0.3639 XBOBBXBBB 0.5587

BBBXXBBOB 0.5960 BXXOBBBBB 0.1206 XBOBBXOXB 0.0975

BBBXXBOBB 0.6581 BXXOBBOBX -0.1560 XBOBOBBXX -0.1448

BBBXXBOOX 0.7404 BXXOBBXOB 0.2282 XBOBOBXXB 0.0349

BBBXXBOXO 0.4477 BXXOBOBBX 0.0956 XBOBOXBBX -0.0117

BBBXXBXOO 0.4227 BXXOBOXBB -0.0230 XBOBOXBXB 0.2469

BBBXXOBBB 0.5393 BXXOBOXOX 0.0590 XBOBOXXXO 0.1897

BBBXXOBOX 0.6234 BXXOBOXXO -0.0650 XBOBXBBBB 0.4557

BBBXXOBXO 0.3315 BXXOBXOXO 0.0793 XBOBXBBXO 0.1497

BBBXXOOBX 0.5558 BXXOOBBBX -0.4260 XBOBXBOXB 0.7753

BBBXXOOXB 0.6464 BXXOOBOXX -0.7226 XBOBXBXBO -0.2798

BBBXXOXBO -0.2956 BXXOOBXBB -0.0789 XBOBXBXOB 0.4054

BBBXXOXOB 0.4489 BXXOOBXOX -0.1176 XBOBXOBXB -0.3177

BBOBBBBXX 0.0790 BXXOOBXXO -0.3017 XBOBXOXBB -0.3842

BBOBBBXBX 0.0669 BXXOOXBBB 0.0590 XBOBXXBBO 0.6530

BBOBBBXXB 0.0021 BXXOOXOXB 0.1307 XBOBXXBOB 0.3984

BBOBBXBBX 0.0272 BXXOOXXBO 0.0046 XBOBXXOBB 0.7861

BBOBBXBXB 0.1974 BXXOOXXOB 1.0000 XBOBXXOXO 1.0000
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BBOBBXXBB 0.0863 BXXOXBBBO -0.0107 XBOBXXXOO 0.5378

BBOBOXBXX -0.1681 BXXOXBBOB -0.1319 XBOOBBBXX -0.0273

BBOBOXXBX -0.0498 BXXOXBOBB -0.4271 XBOOBBXBX -0.0238

BBOBXBBBX 0.5140 BXXOXBOOX -0.1616 XBOOBXXBB 0.0139

BBOBXBBXB 0.4604 BXXOXOBBB 0.4672 XBOOOXBXX -0.0975

BBOBXBOXX 0.3311 BXXOXOBOX 1.0000 XBOOOXXBX 0.3925

BBOBXBXBB 0.5068 BXXOXOOBX -0.1796 XBOOOXXXB 0.4874

BBOBXBXOX 0.0886 BXXOXXBOO -0.3794 XBOOXBBXB 0.5559

BBOBXBXXO -0.5931 BXXOXXOBO -0.9934 XBOOXBXBB 0.2280

BBOBXOBXX 0.4049 BXXOXXOOB -0.4312 XBOOXBXXO -0.5413

BBOBXOXBX 0.4065 BXXXBBBOO -0.0477 XBOOXOXXB 0.0040

BBOBXOXXB -0.5055 BXXXBBOBO -0.1782 XBOOXXBBB 0.5639

BBOBXXBBB 0.6284 BXXXBOBBO 0.0949 XBOOXXBXO 0.6369

BBOBXXBOX 0.4023 BXXXBOOXO 0.0975 XBOOXXOXB 1.0000

BBOBXXBXO 0.5411 BXXXBOXOO 0.3698 XBOOXXXOB 0.5337

BBOBXXOBX 0.4267 BXXXOBBBO -0.3009 XBOXBBBBB 0.0328

BBOBXXOXB 0.5158 BXXXOBBOB 0.4769 XBOXBBBXO -0.0687

BBOBXXXBO 0.5720 BXXXOBOBB 0.4251 XBOXBBOBX 0.0485

BBOBXXXOB 0.5217 BXXXOBOOX 1.0000 XBOXBOOXX 0.0500

BBOOXBBXX -0.0333 BXXXOBOXO 0.2133 XBOXBXBBO 0.1864

BBOOXBXBX 0.4425 BXXXOBXOO 0.0692 XBOXBXBOB -0.1620

BBOOXBXXB 0.4027 BXXXOOBBB -0.0547 XBOXBXOOX -0.2202

BBOOXXBBX -0.1316 BXXXOOBOX 0.5612 XBOXBXOXO 0.0952

BBOOXXBXB 0.4277 BXXXOOBXO -0.0844 XBOXOBBBX -0.2902

BBOOXXOXX -0.1551 BXXXOOOBX 0.4302 XBOXOBBXB -0.3126

BBOOXXXBB 0.4050 BXXXOOOXB 0.6015 XBOXOOBXX 0.1262

BBOOXXXOX 0.4107 BXXXOOXBO -0.1394 XBOXOXBOX -0.1855

BBOOXXXXO 0.4335 BXXXOOXOB 0.2830 XBOXOXBXO -0.2668

BBOXBBBBX 0.1518 BXXXOXBOO -0.7080 XBOXXBBBO -0.4331

BBOXBBBXB -0.0415 BXXXOXOBO -0.2649 XBOXXBBOB 0.0885

BBOXBBXBB 0.0277 BXXXOXOOB -0.0148 XBOXXBOBB 0.3124

BBOXBBXXO -0.1751 BXXXXOBOO -0.1691 XBOXXBOXO -0.0421

BBOXBOBXX 0.2003 BXXXXOOBO -0.0393 XBOXXOBBB -0.4949

BBOXBXBBB -0.0222 BXXXXOOOB -0.1903 XBOXXOOXB 0.1707

BBOXBXBXO 0.0500 OBBBBBBXX 0.0621 XBXBBBBBO 0.1122

BBOXBXOBX -0.0622 OBBBBBXBX 0.1343 XBXBBBBOB 0.0146

BBOXOBBXX -0.0214 OBBBBBXXB 0.0761 XBXBBBOBB 0.1206

BBOXOXBXB 0.0000 OBBBBXBBX -0.0339 XBXBBOBBB 0.2862

BBOXOXXBB -0.0238 OBBBBXBXB 0.0049 XBXBBOOBX 0.1108

BBOXOXXOX -0.0500 OBBBBXXBB 0.1442 XBXBBOXBO 0.1852
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BBOXOXXXO 0.0476 OBBBOXXBX -0.0595 XBXBBXBOO -0.1116

BBOXXBBBB 0.4394 OBBBXBBBX 0.5243 XBXBOBBBB 0.0647

BBOXXBBOX 0.3377 OBBBXBBXB 0.3632 XBXBOBBXO 0.5609

BBOXXBBXO -0.1452 OBBBXBOXX -0.0302 XBXBOBOBX 0.0550

BBOXXBOBX 0.8016 OBBBXBXBB 0.4649 XBXBOBOXB 0.6418

BBOXXBOXB 0.4696 OBBBXBXOX 0.2280 XBXBOBXBO 0.1545

BBOXXBXBO -0.5146 OBBBXBXXO 0.1118 XBXBOBXOB -0.2382

BBOXXBXOB 0.1992 OBBBXOBXX 0.3303 XBXBOOBBX -0.0847

BBOXXOBBX 0.4863 OBBBXOXBX 0.4019 XBXBOOBXB 0.0037

BBOXXOBXB -0.1920 OBBBXOXXB -0.1310 XBXBOOXBB -0.0994

BBOXXOOXX 1.0000 OBBBXXBBB 0.2522 XBXBOOXOX -0.5367

BBOXXOXBB -0.1775 OBBBXXBOX 0.2602 XBXBOOXXO -0.2047

BBOXXOXOX 0.4452 OBBBXXBXO 0.4783 XBXBOXBBO 0.0181

BBXBBBBBB 0.5626 OBBBXXOBX -0.5969 XBXBOXBOB -0.1233

BBXBBBBOX 0.3809 OBBBXXOXB -0.6355 XBXBOXOXO 0.2201

BBXBBBBXO 0.2496 OBBBXXXBO 0.6789 XBXBOXXOO 0.0455

BBXBBBOBX 0.1008 OBBBXXXOB 0.4588 XBXBXBBOO -0.3509

BBXBBBOXB 0.2252 OBBOXBBXX -0.3666 XBXBXBOBO -0.0963

BBXBBBXBO 0.0664 OBBOXBXBX 0.3839 XBXBXBOOB -0.0468

BBXBBBXOB 0.0853 OBBOXBXXB 0.4077 XBXBXOBBO 0.5441

BBXBBOBBX 0.0716 OBBOXXBBX -0.2751 XBXBXOBOB 0.3549

BBXBBOBXB 0.3533 OBBOXXBXB 0.0131 XBXBXOOBB 0.3465

BBXBBOXBB 0.1306 OBBOXXXBB 0.4643 XBXBXOOXO 0.4092

BBXBBOXOX -0.0251 OBBOXXXOX 0.5150 XBXOBBBBB 0.3328

BBXBBXBBO 0.0436 OBBOXXXXO 1.0000 XBXOBBBXO 0.1874

BBXBBXBOB 0.0483 OBBXBBBBX 0.1545 XBXOBBOXB 0.2162

BBXBBXOBB -0.0733 OBBXBBBXB 0.1115 XBXOBBXBO 0.0918

BBXBOBBBX 0.4353 OBBXBBXBB 0.0724 XBXOBBXOB 0.0500

BBXBOBBXB 0.2281 OBBXBBXOX -0.0381 XBXOBOOXX -0.0500

BBXBOBXBB 0.0025 OBBXBBXXO -0.0500 XBXOBOXXO -0.1209

BBXBOBXXO -0.1373 OBBXBOXBX 0.0372 XBXOBXBOB 0.0500

BBXBOOBXX -0.0459 OBBXBXBBB 0.1626 XBXOOBBBX -0.2175

BBXBOOXBX -0.1460 OBBXBXBOX -0.0500 XBXOOBBXB -0.0407

BBXBOOXXB -0.0957 OBBXBXOBX 0.1030 XBXOOBOXX 0.1935

BBXBOXBBB 0.0320 OBBXOBXBX -0.0017 XBXOOBXOX -0.5367

BBXBOXBXO -0.0795 OBBXOXBBX -0.0892 XBXOOXBXO 0.3955

BBXBOXOXB -0.0442 OBBXOXBXB -0.2865 XBXOOXOXB 0.9991

BBXBXBBBO 0.4196 OBBXOXOXX -0.0545 XBXOOXXBO 0.1579

BBXBXBBOB 0.3258 OBBXXBBBB 0.6183 XBXOOXXOB -0.0850

BBXBXBOBB 0.4987 OBBXXBBOX 0.6091 XBXOXBBBO 0.4336
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BBXBXBOOX 0.4094 OBBXXBBXO 0.7000 XBXOXBBOB 0.4987

BBXBXBOXO 0.5300 OBBXXBOBX 0.5744 XBXOXBOBB 0.5626

BBXBXOBBB 0.7442 OBBXXBOXB 0.4730 XBXOXBOXO 0.3707

BBXBXOBOX 0.6619 OBBXXBXBO 0.2946 XBXOXOBBB 1.0000

BBXBXOBXO 0.7461 OBBXXBXOB 0.4081 XBXOXOBXO 1.0000

BBXBXOOBX 0.2401 OBBXXOBBX 0.4131 XBXOXOOXB 1.0000

BBXBXOOXB 0.5247 OBBXXOBXB 0.3896 XBXOXXBOO 0.0880

BBXBXXBOO -0.4706 OBBXXOOXX 0.4106 XBXOXXOBO -0.6279

BBXBXXOBO -0.3677 OBBXXOXBB -0.0382 XBXOXXOOB -0.0871

BBXBXXOOB -0.3152 OBBXXOXOX 0.4180 XBXXBBOOB -0.2270

BBXOBBBBX 0.0351 OBBXXOXXO -0.0704 XBXXBOBOB 0.0500

BBXOBBBXB 0.2272 OBOBBXXXB -0.0500 XBXXBOOOX 0.0500

BBXOBBXBB 0.1389 OBOBXBBXX -0.6906 XBXXOBBBO 0.2117

BBXOBOBXX -0.0975 OBOBXBXBX -0.1757 XBXXOBBOB -0.0271

BBXOBOXBX 0.1191 OBOBXBXXB -0.6410 XBXXOBOBB 0.1285

BBXOBOXXB -0.1776 OBOBXXBBX -0.1241 XBXXOBOOX 0.0984

BBXOBXBBB -0.0461 OBOBXXBXB -0.5119 XBXXOBOXO 0.5904

BBXOOBBXX -0.3801 OBOBXXOXX -1.0000 XBXXOOBBB 0.0653

BBXOOBXBX -0.3261 OBOBXXXBB 0.2322 XBXXOOBOX -0.0590

BBXOOXBXB 0.1924 OBOBXXXOX -0.5357 XBXXOOBXO 1.0000

BBXOXBBBB 0.4650 OBOBXXXXO -0.1839 XBXXOOOBX 0.5620

BBXOXBBOX 0.3704 OBOOXXBXX -0.9775 XBXXOOOXB 0.4241

BBXOXBBXO 0.4383 OBOOXXXBX -0.6308 XBXXOXBOO -0.7622

BBXOXBOBX -0.3578 OBOOXXXXB 0.0393 XBXXOXOBO -0.2126

BBXOXBOXB 0.2463 OBOXBBBXX -0.0934 XBXXOXOOB -0.2649

BBXOXOBBX 0.4352 OBOXBXBXB -0.2076 XBXXXOBOO -0.0091

BBXOXOBXB 0.5759 OBOXBXOXX -0.1855 XBXXXOOBO -0.5690

BBXOXOOXX -0.0198 OBOXOXBXX -0.5123 XBXXXOOOB -0.0160

BBXOXXBBO -0.0351 OBOXOXXBX -0.2392 XOBBBBBBX -0.0383

BBXOXXBOB 0.2146 OBOXOXXXB -0.2262 XOBBBBBXB 0.4262

BBXOXXOBB -0.3752 OBOXXBBBX 0.2859 XOBBBBXBB 0.2269

BBXOXXOXO -0.5077 OBOXXBBXB -0.1326 XOBBBBXXO 0.1631

BBXXBBBBO 0.1819 OBOXXBOXX -0.1010 XOBBBOBXX 0.0093

BBXXBBBOB 0.2745 OBOXXBXBB -0.3479 XOBBBXBBB 0.3434

BBXXBBOBB 0.1729 OBOXXBXOX -0.4456 XOBBOBBXX 0.1335

BBXXBBOXO 0.0300 OBOXXBXXO -1.0000 XOBBOBXXB 0.4195

BBXXBBXOO 0.2499 OBOXXOBXX -0.0810 XOBBOXBXB 0.1891

BBXXBOBBB 0.2464 OBOXXOXBX -0.5921 XOBBOXOXX 0.2214

BBXXBOBXO 0.0116 OBOXXOXXB -0.9490 XOBBOXXXO 0.4017

BBXXBOXOB 0.0801 OBXBBBBBX 0.1133 XOBBXBBBB 0.7360
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BBXXBXBOO -0.1609 OBXBBBBXB 0.1001 XOBBXBBXO 0.4826

BBXXOBBBB 0.5298 OBXBBBXBB 0.0571 XOBBXBOXB 0.6224

BBXXOBBOX -0.0442 OBXBBBXXO -0.0228 XOBBXBXBO 0.3377

BBXXOBBXO -0.0517 OBXBBOXXB -0.0251 XOBBXBXOB 1.0000

BBXXOBOBX 0.6338 OBXBBXBBB 0.1303 XOBBXOBXB 0.4906

BBXXOBXOB -0.1466 OBXBBXBXO -0.0326 XOBBXOXBB 0.3743

BBXXOOBBX 0.5603 OBXBBXOXB -0.0472 XOBBXOXXO 0.0322

BBXXOOBXB 0.6972 OBXBOBBXX 0.1054 XOBBXXBBO 0.6291

BBXXOOXBB 0.0557 OBXBOBXBX 0.1440 XOBBXXBOB 0.6601

BBXXOOXOX -0.0926 OBXBOBXXB -0.3405 XOBBXXOBB 0.4069

BBXXOOXXO -0.1300 OBXBOXXBB -0.1159 XOBBXXOXO 0.4867

BBXXOXBBO -0.1439 OBXBXBBBB 0.4084 XOBBXXXOO 1.0000

BBXXOXBOB -0.1421 OBXBXBBOX 0.3770 XOBOBBXBX 0.1549

BBXXOXOBB -0.0271 OBXBXBBXO 0.6666 XOBOBBXXB 0.2303

BBXXOXOXO -0.0451 OBXBXBOBX -0.0492 XOBOBXXOX -0.0500

BBXXOXXOO -0.4013 OBXBXBOXB 0.2689 XOBOOXBXX 0.9306

BBXXXBBOO -0.3696 OBXBXOBBX 0.0292 XOBOOXXBX 0.1134

BBXXXBOBO 0.3211 OBXBXOBXB 0.5646 XOBOOXXXB 0.4172

BBXXXBOOB 0.3482 OBXBXOOXX -0.5334 XOBOXBBXB 0.6365

BBXXXOBBO 0.6061 OBXBXXBBO 0.3073 XOBOXBXBB 0.7264

BBXXXOBOB 0.4927 OBXBXXBOB 0.1076 XOBOXBXXO 0.5579

BBXXXOOBB 0.4515 OBXBXXOBB -0.5482 XOBOXOXXB 1.0000

BBXXXOOOX 0.3596 OBXBXXOXO 0.1752 XOBOXXBBB 0.6359

BBXXXOOXO 0.4188 OBXOBBXXB -0.0750 XOBOXXOXB 0.3606

BOBBBBBXX 0.0216 OBXOBXXXO -0.0476 XOBOXXXBO 0.2794

BOBBBBXBX 0.0199 OBXOOXXXB -0.2528 XOBOXXXOB 1.0000

BOBBBBXXB 0.0604 OBXOXBBBX -0.2766 XOBXBBBBB 0.2376

BOBBBXBBX 0.0282 OBXOXBBXB -0.4511 XOBXBBBOX -0.1234

BOBBBXBXB 0.0750 OBXOXOBXX -0.1259 XOBXBBBXO 0.0263

BOBBBXOXX 0.0718 OBXOXXBBB -0.4450 XOBXBXBOB -0.0926

BOBBBXXBB 0.1354 OBXOXXBXO 0.0162 XOBXBXOOX -0.0797

BOBBOXXBX -0.2672 OBXXBBBBB 0.3057 XOBXOBBBX -0.0262

BOBBOXXXB 0.0431 OBXXBBOBX 0.0591 XOBXOBBXB 0.0480

BOBBXBBBX 0.3993 OBXXBBXOB -0.0032 XOBXOBOXX -0.0951

BOBBXBBXB 0.6339 OBXXBOXBB 0.1562 XOBXOOBXX 0.4638

BOBBXBOXX 0.0913 OBXXBOXOX 0.0816 XOBXOXBBB -0.2306

BOBBXBXBB 0.4997 OBXXBXBBO 0.0380 XOBXOXOBX -0.4596

BOBBXBXOX 0.0829 OBXXBXXOO 0.0508 XOBXXBBBO 0.2516

BOBBXBXXO 0.0671 OBXXOBBBX 0.7224 XOBXXBBOB 0.5301

BOBBXOBXX 0.4090 OBXXOBBXB 0.0161 XOBXXBOBB 0.4619
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BOBBXOXBX 0.4822 OBXXOBOXX 0.5441 XOBXXBOXO 0.2869

BOBBXOXXB 0.2006 OBXXOBXBB -0.2979 XOBXXOBBB 0.3443

BOBBXXBBB 0.5033 OBXXOBXOX -0.0407 XOBXXOBXO -0.1404

BOBBXXBOX 0.5349 OBXXOOBXX 0.6232 XOBXXOOXB 0.3582

BOBBXXBXO 0.5055 OBXXOOXXB 0.1054 XOOBBBBXX 0.2112

BOBBXXOBX -0.0186 OBXXOXBBB 0.1384 XOOBBBXBX -0.0875

BOBBXXOXB 0.3553 OBXXOXOXB -0.1851 XOOBBXOXX 0.2262

BOBBXXXBO 0.5100 OBXXXBBBO 0.4764 XOOBOXBXX 0.0920

BOBBXXXOB 0.8203 OBXXXBBOB 0.3806 XOOBOXXBX -0.3017

BOBOXBBXX 0.2302 OBXXXBOBB 0.5158 XOOBOXXXB 0.9997

BOBOXBXBX 0.3654 OBXXXBOOX 0.4437 XOOBXBBXB 0.5483

BOBOXBXXB 0.4921 OBXXXBOXO 1.0000 XOOBXBXBB 0.6015

BOBOXXBBX 0.2533 OBXXXOBBB 0.5921 XOOBXBXXO -0.5335

BOBOXXBXB 0.1830 OBXXXOBOX 0.4593 XOOBXOXXB 0.2195

BOBOXXOXX -0.2078 OBXXXOBXO 1.0000 XOOBXXBBB 0.7698

BOBOXXXBB 0.5039 OBXXXOOXB 0.4623 XOOBXXBXO 0.5717

BOBOXXXOX 1.0000 OOBBBXBXX -0.0725 XOOBXXOXB 1.0000

BOBOXXXXO 0.5395 OOBBXBBXX -0.0328 XOOBXXXBO 0.4785

BOBXBBBBX 0.0521 OOBBXBXBX -0.2458 XOOBXXXOB 1.0000

BOBXBBBXB 0.2406 OOBBXBXXB -0.4916 XOOOXBXXB 0.4479

BOBXBBXBB -0.0901 OOBBXXBBX -0.4273 XOOOXXBXB 0.2442

BOBXBBXOX 0.0263 OOBBXXBXB 0.0353 XOOOXXXBB 0.3832

BOBXBOXBX 0.0233 OOBBXXOXX -0.9373 XOOXBOBXX 0.0500

BOBXBXBBB 0.1195 OOBBXXXBB -0.3302 XOOXBXBBB -0.0209

BOBXOBBXX 0.0311 OOBBXXXOX -0.1038 XOOXBXBOX -0.1262

BOBXOXBBX -0.3076 OOBBXXXXO -0.0576 XOOXBXBXO 0.1855

BOBXOXBXB 0.0802 OOBOXXBXX -0.4013 XOOXBXOBX -0.0952

BOBXXBBBB 0.5198 OOBOXXXBX -0.1036 XOOXOXBBX -0.4013

BOBXXBBOX 0.5623 OOBOXXXXB -0.0305 XOOXOXBXB 0.0497

BOBXXBBXO 0.2133 OOBXBBXBX -0.0444 XOOXXBBBB 0.5575

BOBXXBOBX 0.4369 OOBXBXXOX -0.0975 XOOXXBBXO -0.2103

BOBXXBOXB 0.4315 OOBXOXXBX -0.5599 XOOXXBOXB 1.0000

BOBXXBXBO -0.0709 OOBXXBBBX 0.1559 XOOXXOBXB -0.0743

BOBXXBXOB 0.3554 OOBXXBBXB 0.2545 XOXBBBBBB 0.2021

BOBXXOBBX 0.4468 OOBXXBOXX -0.4744 XOXBBBXBO 0.0263

BOBXXOBXB 0.2135 OOBXXBXBB -0.3430 XOXBBOXBB 0.0286

BOBXXOOXX 0.5055 OOBXXBXOX -0.1182 XOXBBOXXO 0.4013

BOBXXOXBB 0.0378 OOBXXBXXO -0.2169 XOXBBXOBB -0.0167

BOBXXOXOX 1.0000 OOBXXOBXX -0.4153 XOXBBXXOO 0.0975

BOBXXOXXO -0.0732 OOBXXOXBX -0.0881 XOXBOBBBX -0.2406
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BOOBXBBXX -0.3086 OOBXXOXXB -0.3491 XOXBOBBXB 0.1215

BOOBXBXBX -0.4119 OOXBBBXBX 0.1555 XOXBOBXXO 0.0500

BOOBXBXXB -0.2538 OOXBBXBXB 0.1822 XOXBOOXXB -0.0778

BOOBXXBBX -0.3952 OOXBBXXXO -0.1493 XOXBOXBBB -0.0488

BOOBXXBXB 0.2461 OOXBOXXXB -0.0712 XOXBOXOXB 0.6194

BOOBXXOXX 0.2840 OOXBXBBBX 0.4948 XOXBXBBBO 0.1623

BOOBXXXBB 0.1090 OOXBXBBXB 0.6408 XOXBXBBOB 0.6132

BOOBXXXOX -0.2820 OOXBXBOXX -0.6376 XOXBXBOBB 0.0436

BOOBXXXXO -0.5040 OOXBXOBXX 0.5011 XOXBXOBBB 0.8281

BOOOXXBXX -0.2665 OOXBXXBBB 0.5054 XOXBXOBXO 0.6267

BOOOXXXBX -0.3856 OOXBXXBXO 1.0000 XOXBXOOXB 0.4551

BOOOXXXXB -0.3224 OOXBXXOXB -0.2272 XOXBXXBOO 0.0434

BOOXBXBXB -0.0294 OOXOBXXXB 0.3366 XOXBXXOBO -0.6273

BOOXBXOXX -0.0500 OOXOXBBXX 0.2227 XOXBXXOOB 0.0466

BOOXOXBXX -0.2649 OOXOXXBXB -0.1087 XOXOBBBBX -0.0238

BOOXOXXBX -0.2262 OOXXBBBXB 0.0500 XOXOBBBXB -0.0748

BOOXOXXXB -0.0025 OOXXBBXOX 0.0448 XOXOBBOXX 0.1426

BOOXXBBBX -0.3806 OOXXBOBXX 0.0500 XOXOBBXXO 0.0862

BOOXXBBXB -0.0606 OOXXBOXXB 0.2649 XOXOBOBXX 0.0025

BOOXXBOXX -0.0736 OOXXBXBBB 0.1499 XOXOBOXBX -0.0025

BOOXXBXBB -0.3304 OOXXBXOXB 0.2649 XOXOBOXXB 0.0727

BOOXXBXOX -0.2482 OOXXBXXBO -0.0075 XOXOOBBXX 0.1925

BOOXXBXXO -0.9605 OOXXOBBXX 1.0000 XOXOOBXBX -0.5123

BOOXXOBXX -0.1339 OOXXOBXBX -0.0522 XOXOOBXXB -0.0475

BOOXXOXBX -0.0492 OOXXOBXXB -0.1897 XOXOOXBXB 0.1267

BOOXXOXXB -0.3017 OOXXOXBXB 0.2448 XOXOXBBBB 0.7060

BOXBBBBBX 0.5935 OOXXOXXBB -0.1426 XOXOXBBXO 0.4892

BOXBBBBXB 0.3651 OOXXXBBBB 0.7600 XOXOXBOXB 0.5359

BOXBBBOXX 0.0274 OOXXXBBOX 1.0000 XOXOXOBXB 1.0000

BOXBBBXBB -0.0009 OOXXXBBXO 1.0000 XOXOXXBBO 0.5269

BOXBBBXXO -0.0384 OOXXXBOBX 0.4633 XOXOXXBOB 1.0000

BOXBBOXXB 0.2311 OOXXXBOXB 0.5164 XOXOXXOBB 0.4212

BOXBBXBBB 0.0891 OOXXXOBBX 0.3562 XOXXBOBBB 0.0023

BOXBBXXBO -0.0263 OOXXXOBXB 0.4416 XOXXBOBOX -0.0952

BOXBOBXBX -0.2978 OXBBBBBBX 0.2253 XOXXBXBOO -0.0975

BOXBOBXXB 0.0092 OXBBBBBXB -0.0781 XOXXBXOOB -0.0975

BOXBOXBXB 0.1151 OXBBBBOXX -0.1071 XOXXOBBBB -0.0294

BOXBOXXBB -0.0801 OXBBBBXBB 0.2691 XOXXOBBXO 0.5614

BOXBOXXXO -0.4258 OXBBBBXXO -0.0936 XOXXOBOBX -0.2640

BOXBXBBBB 0.6960 OXBBBOXBX 0.1735 XOXXOOBBX -0.0904



134

State Estimation State Estimation State Estimation

BOXBXBBOX 1.0000 OXBBBXBBB 0.0556 XOXXOOBXB 0.1769

BOXBXBBXO 0.6267 OXBBOBBXX -0.0698 XOXXOXBBO -0.1190

BOXBXBOBX 0.3879 OXBBOBXXB -0.1965 XOXXXBBOO -0.2282

BOXBXBOXB 0.4082 OXBBOXBBX 0.4639 XOXXXBOBO -0.4697

BOXBXOBBX 0.7118 OXBBOXBXB -0.1510 XOXXXBOOB -0.2270

BOXBXOBXB 0.6380 OXBBOXOXX -0.3017 XOXXXOBBO 0.3147

BOXBXOOXX 0.3481 OXBBOXXBB 0.2117 XOXXXOBOB 1.0000

BOXBXXBBO 0.4383 OXBBOXXOX 0.5481 XOXXXOOBB 0.5575

BOXBXXBOB 0.5556 OXBBXBBBB 0.5212 XXBBBBBBO -0.0149

BOXBXXOBB 0.1443 OXBBXBBOX 0.4145 XXBBBBBOB 0.0197

BOXBXXOXO 0.3139 OXBBXBOBX -0.1204 XXBBBBOBB 0.0254

BOXOBBXBX 0.1146 OXBBXBXBO 0.5652 XXBBBBOXO 0.0500

BOXOBXBXB 0.0325 OXBBXBXOB 0.5938 XXBBBOBBB 0.0597

BOXOOXXXB 0.3027 OXBBXOBBX 0.5263 XXBBBOBXO -0.1871

BOXOXBBBX 0.3537 OXBBXOXBB 0.5925 XXBBOBBBB -0.0725

BOXOXBBXB 0.4798 OXBBXOXOX 0.3845 XXBBOBBOX 0.1466

BOXOXBOXX -0.1381 OXBBXXBBO 0.4844 XXBBOBBXO 0.0468

BOXOXOBXX 1.0000 OXBBXXBOB 0.3767 XXBBOBOBX 0.0274

BOXOXXBBB 0.5024 OXBBXXOBB -0.5517 XXBBOBOXB -0.1847

BOXOXXBXO 0.3079 OXBBXXOOX -0.0530 XXBBOBXBO 0.2055

BOXOXXOXB -0.4783 OXBBXXXOO 1.0000 XXBBOBXOB 0.1218

BOXXBBBBB 0.3209 OXBOBBBXX -0.1113 XXBBOOBBX -0.0273

BOXXBBXOB -0.0810 OXBOBXXXO 0.0500 XXBBOOBXB -0.2282

BOXXBOBBX 0.0391 OXBOOXBXX -0.1405 XXBBOOOXX -0.4013

BOXXBOBXB 0.1316 OXBOOXXBX 1.0000 XXBBOOXBB -0.1713

BOXXBOXOX -0.0835 OXBOOXXXB 0.0002 XXBBOOXOX 0.1300

BOXXBOXXO 0.1855 OXBOXBBBX 0.1554 XXBBOOXXO -0.9373

BOXXBXOBB 0.1124 OXBOXBXBB 0.7120 XXBBOXBBO 0.3006

BOXXBXXOO 0.0483 OXBOXBXOX 0.2802 XXBBOXBOB 0.1823

BOXXOBBBX 0.2933 OXBOXOXBX 1.0000 XXBBOXOBB -0.2124

BOXXOBBXB 0.5765 OXBOXXBBB 0.1790 XXBBOXOXO -0.2882

BOXXOBOXX 0.4381 OXBOXXBOX -0.2934 XXBBOXXOO 0.9999

BOXXOBXBB -0.0844 OXBOXXXBO 1.0000 XXBBXBBOO -0.1057

BOXXOBXXO -0.0312 OXBOXXXOB 0.5061 XXBBXBOBO -0.6589

BOXXOOBXX 0.5278 OXBXBBBBB 0.1978 XXBBXBOOB -0.4962

BOXXOOXBX 0.1311 OXBXBOOXX 0.0975 XXBBXOBBO -0.2316

BOXXOOXXB 0.1855 OXBXBXOOX 0.0500 XXBBXOBOB 0.1708

BOXXOXBBB 0.0102 OXBXOBBBX 0.1544 XXBBXOOBB 0.0451

BOXXOXBXO -0.1334 OXBXOBXBB -0.0512 XXBBXOXOO -0.0150

BOXXOXOXB 0.2190 OXBXOOXBX 0.4640 XXBOBBBBB 0.2671
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BOXXOXXBO -0.1426 OXBXOOXXB -0.0975 XXBOBBBXO -0.0274

BOXXXBBBO 0.4141 OXBXOXBOX 0.4155 XXBOBBOBX 0.2688

BOXXXBBOB 0.5580 OXBXOXOBX -0.1343 XXBOBOBXB -0.0568

BOXXXBOBB 0.5514 OXBXOXOXB -0.1426 XXBOBOOXX -0.2748

BOXXXBOOX 1.0000 OXBXOXXOB -0.1426 XXBOBOXBB 0.0500

BOXXXBOXO 0.4839 OXBXXBBBO 0.4451 XXBOBOXOX -0.2262

BOXXXOBBB 0.6267 OXBXXBBOB 0.5428 XXBOBOXXO -0.0975

BOXXXOBOX 1.0000 OXBXXBOBB 0.4105 XXBOBXOBB 0.1308

BOXXXOBXO 0.3662 OXBXXBOOX 0.4787 XXBOBXOOX 0.4013

BOXXXOOBX 0.4062 OXBXXBXOO 1.0000 XXBOOBBBX -0.2306

BXBBBBBBB 0.4470 OXBXXOBBB 0.4899 XXBOOBBXB -0.2056

BXBBBBBOX 0.3223 OXBXXOOBX 0.4507 XXBOOBOXX -0.4867

BXBBBBBXO 0.0331 OXBXXOXBO -0.4503 XXBOOBXBB -0.0500

BXBBBBOBX 0.2382 OXBXXOXOB 0.3920 XXBOOXBBB 0.0097

BXBBBBOXB -0.0631 OXOBBBXXB 0.0558 XXBOOXBOX 0.3446

BXBBBBXBO 0.1571 OXOBBXBBX -0.0330 XXBOOXBXO 0.4416

BXBBBBXOB 0.3334 OXOBOXBXX -0.1078 XXBOOXOBX -0.0872

BXBBBOBBX 0.3082 OXOBOXXBX 0.2437 XXBOOXOXB 0.0022

BXBBBOBXB -0.0544 OXOBOXXXB -0.1251 XXBOOXXBO 0.5297

BXBBBOXBB 0.1118 OXOBXBBBX 0.5912 XXBOOXXOB 0.0926

BXBBBOXXO -0.1264 OXOBXBXBB 0.5125 XXBOXBBBO 0.3343

BXBBBXBBO 0.2190 OXOBXOXBX 0.4182 XXBOXBBOB 0.3533

BXBBBXBOB 0.1435 OXOBXXBBB 0.3366 XXBOXBOBB 0.3468

BXBBBXOBB -0.0644 OXOBXXBOX 0.4578 XXBOXBXOO 0.3139

BXBBOBBBX 0.0028 OXOBXXOBX -0.2220 XXBOXOBBB 0.4165

BXBBOBBXB -0.1441 OXOBXXXBO 1.0000 XXBOXOXBO -0.4753

BXBBOBOXX -0.3082 OXOBXXXOB 0.3349 XXBOXOXOB 1.0000

BXBBOBXBB 0.3033 OXOOBXXXB 0.0975 XXBOXXBOO -0.1109

BXBBOBXOX 0.2050 OXOOXBXBX 0.3646 XXBOXXOBO 0.0162

BXBBOBXXO -0.0800 OXOOXXBBX -0.4176 XXBOXXOOB -0.3445

BXBBOOXBX 0.0633 OXOOXXXBB 0.4922 XXBXBOBOB -0.0018

BXBBOOXXB -0.1869 OXOXBBOXX -0.1405 XXBXBOOXO -0.0905

BXBBOXBBB 0.3182 OXOXBBXBB 0.0965 XXBXOBBOB 0.1415

BXBBOXBOX 0.0441 OXOXBBXXO -0.3366 XXBXOBOOX 0.1407

BXBBOXBXO 0.0094 OXOXBOBXX 0.4867 XXBXOOBOX 0.4867

BXBBOXOBX -0.2371 OXOXBOXXB 0.1855 XXBXOOBXO -0.2017

BXBBOXOXB -0.1776 OXOXBXBXO -0.0500 XXBXOOOXB -0.0855

BXBBOXXBO 0.0565 OXOXBXXBO -0.0476 XXBXOXBOO -0.0073

BXBBOXXOB 0.6875 OXOXOBBXX 0.0905 XXBXOXOBO -0.2649

BXBBXBBBO 0.2814 OXOXOBXXB 0.0336 XXBXOXOOB -0.3366
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BXBBXBBOB 0.5913 OXOXOXBBX -0.2262 XXBXXOBOO -0.3698

BXBBXBOBB 0.4424 OXOXOXXBB -0.3095 XXBXXOOBO -0.9764

BXBBXBOOX 0.6721 OXOXXBBBB 0.5072 XXBXXOOOB -0.0455

BXBBXBXOO 0.4817 OXOXXBBOX 0.5304 XXOBBBBBB 0.0734

BXBBXOBBB 0.6145 OXOXXBOBX 1.0000 XXOBBOBBX 0.0495

BXBBXOBOX 0.5725 OXOXXBXBO 0.0447 XXOBBOXOX 0.2262

BXBBXOOBX 0.3014 OXOXXBXOB 0.3660 XXOBBXBBO 0.0614

BXBBXOXBO -0.4093 OXOXXOBBX 0.4894 XXOBBXOBB -0.1573

BXBBXOXOB 0.4414 OXOXXOXBB -0.4603 XXOBOBBBX 0.1154

BXBBXXBOO 0.2642 OXXBBBBBB -0.0259 XXOBOBBXB -0.2109

BXBBXXOBO -0.5863 OXXBBBOBX -0.1318 XXOBOBXBB -0.0377

BXBBXXOOB -0.1585 OXXBBOBBX -0.0106 XXOBOBXOX 0.3076

BXBOBBBBX 0.2052 OXXBBOBXB -0.0166 XXOBOBXXO -0.3260

BXBOBBBXB 0.0390 OXXBBOXXO -0.0810 XXOBOOBXX -0.1855

BXBOBBOXX -0.2693 OXXBBXOXO -0.3017 XXOBOOXBX -0.0634

BXBOBBXBB 0.2994 OXXBOBBXB -0.0867 XXOBOOXXB -0.8063

BXBOBXBBB 0.2067 OXXBOBXBB -0.1807 XXOBOXBBB -0.0076

BXBOBXBXO 0.0693 OXXBOBXOX 0.1624 XXOBOXBOX -0.1260

BXBOBXXOB 0.0302 OXXBOOBXX -0.1787 XXOBOXXBO 0.4475

BXBOOBXXB -0.0809 OXXBOOXXB -0.4596 XXOBOXXOB 0.5775

BXBOOXBBX -0.0309 OXXBOXBBB -0.1789 XXOBXBBBO -0.3506

BXBOOXBXB 0.0598 OXXBOXOXB -0.2262 XXOBXBBOB -0.0209

BXBOOXXBB 0.7278 OXXBOXXOB -0.0049 XXOBXBOBB 0.1491

BXBOOXXOX 0.2004 OXXBXBBBO 0.2793 XXOBXBXOO -0.5015

BXBOOXXXO -0.3017 OXXBXBBOB -0.0422 XXOBXOBBB -0.3720

BXBOXBBBB 0.5287 OXXBXBOBB -0.3492 XXOBXOXOB 0.0268

BXBOXBBOX 0.4630 OXXBXBOOX -0.5418 XXOBXXBOO -0.6130

BXBOXBOBX -0.4425 OXXBXOBBB 0.5255 XXOBXXOBO -0.1498

BXBOXBXBO 0.3718 OXXBXOBOX 0.3627 XXOBXXOOB 0.2480

BXBOXBXOB 0.5886 OXXBXOOBX -0.5591 XXOOBBBXB -0.0544

BXBOXOBBX 0.7440 OXXBXXBOO -0.4143 XXOOBBOXX -0.0975

BXBOXOXBB 0.3908 OXXBXXOBO -1.0000 XXOOBBXOX 0.0500

BXBOXOXOX 1.0000 OXXBXXOOB -0.9562 XXOOBBXXO -0.1404

BXBOXXBBO 0.4202 OXXOBBBXB -0.0752 XXOOBOBXX -0.0975

BXBOXXBOB 0.2371 OXXOBBXBB 0.1402 XXOOBOXBX 0.1293

BXBOXXOBB -0.0745 OXXOBBXOX 0.2649 XXOOBXOBX 0.1448

BXBOXXOOX -0.0756 OXXOBBXXO 0.0395 XXOOBXOXB 0.0500

BXBOXXXOO 0.3361 OXXOBOXXB -0.1324 XXOOOBBXX -0.3017

BXBXBBBBO -0.0581 OXXOOBBXX -0.4596 XXOOOBXXB -0.3073

BXBXBBBOB 0.1059 OXXOOBXBX 0.3115 XXOOOXBBX -0.1311
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BXBXBBOBB 0.0975 OXXOOBXXB -0.4013 XXOOXBBBB 0.4583

BXBXBBOOX 0.0500 OXXOOXBXB -0.2262 XXOOXBXBO -0.4657

BXBXBBXOO 0.0705 OXXOOXXBB -0.0043 XXOOXBXOB 0.5114

BXBXBOBBB 0.2648 OXXOXBBBB -0.4925 XXOOXOXBB 0.0012

BXBXBOOBX 0.0158 OXXOXBBOX -0.2395 XXOOXXBBO 0.3834

BXBXBOOXB 0.0548 OXXOXOBBX 0.1460 XXOOXXBOB 0.3761

BXBXBXOBO -0.1443 OXXOXXBBO -0.3039 XXOOXXOBB 1.0000

BXBXOBBBB 0.0928 OXXOXXBOB -0.2822 XXOXBBOXO -0.3017

BXBXOBBXO -0.0721 OXXXBOOXB 0.0500 XXOXBOOXB -0.1855

BXBXOBXBO -0.0875 OXXXBOXBO 0.1426 XXOXBXBOO 0.0500

BXBXOBXOB 0.0397 OXXXBXOBO -0.2262 XXOXBXOBO -0.1855

BXBXOOBBX 0.3176 OXXXOBBBB -0.0499 XXOXOBBXO -0.2649

BXBXOOOXX -0.1713 OXXXOBBOX 0.5310 XXOXOOBBX 0.1660

BXBXOOXOX 0.5155 OXXXOBOBX 0.4075 XXOXOOBXB -0.9694

BXBXOXBBO -0.1262 OXXXOBXOB -0.1847 XXOXOXBBO -0.1000

BXBXOXBOB 0.0404 OXXXOOBXB -0.1179 XXOXOXBOB -0.2177

BXBXOXOBB -0.2056 OXXXOOXBB -0.1334 XXOXXBBOO -0.9764

BXBXOXOOX 0.0279 OXXXOXBOB 0.2105 XXOXXBOBO -1.0000

BXBXOXXOO 0.0975 OXXXOXOBB -0.2556 XXOXXBOOB -0.0311

BXBXXBBOO 0.0009 OXXXXBBOO -0.0027 XXOXXOBOB -0.2153

BXBXXBOBO -0.3952 OXXXXBOBO -0.0595 XXOXXOOBB -0.3182

BXBXXBOOB 0.2792 OXXXXBOOB -0.4590

BXBXXOBBO -0.0594 OXXXXOBBO 1.0000

BXBXXOBOB 0.2314 OXXXXOBOB 0.2808

BXBXXOOBB 0.4898 OXXXXOOBB 0.5201

BXBXXOOOX 0.4779 XBBBBBBBB 0.5518

BXBXXOXOO 0.0865 XBBBBBBOX 0.0520

BXOBBBBBX 0.1944 XBBBBBBXO 0.1727

BXOBBBBXB -0.1032 XBBBBBOBX 0.0826

BXOBBBXBB 0.2570 XBBBBBOXB 0.3194

BXOBBBXXO -0.1620 XBBBBBXBO 0.1491
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