
1

Primitive data types,

expressions, and variables

2

How the computer sees the world

 Internally, the computer stores everything in

terms of 1’s and 0’s

 Example:

 h  0110100

 "hi"  01101000110101

 104  0110100

 How can the computer tell the difference
between an h and 104?

3

Data types

 data type: A category of data values.

 Example: integer, real number, string

 Data types are divided into two classes:

 primitive types: Java's built-in simple data types

for numbers, text characters, and logic.

 object types: Coming soon!

4

Primitive types

 Java has eight primitive types. Here are two examples:

Name Description Examples

int integers 42, -3, 0, 926394

double real numbers 3.4, -2.53, 91.4e3

 Numbers with a decimal point are treated as real numbers.

 Question: Isn’t every integer a real number? Why bother?

5

Integer or real number?

 Which category is more appropriate?

 credit: Kate Deibel, http://www.cs.washington.edu/homes/deibel/CATs/

real number (double) integer (int)

1. Temperature in degrees Celsius

2. The population of lemmings

3. Your grade point average

4. A person's age in years

5. A person's weight in pounds

6. A person's height in meters

 7. Number of miles traveled

 8. Number of dry days in the past month

 9. Your locker number

10. Number of seconds left in a game

11. The sum of a group of integers

12. The average of a group of integers

6

Other Primitive Data Types

Discrete Types

byte

short

int

long

Continuous Types

float

double

Non-numeric Types

boolean

char

Data Type Representations

Type Representation Bits Bytes #Values

boolean True or False 1 N/A 2

char ‘a’ or ‘7’ or ‘\n’ 16 2 216 = 65,536

byte …,-2,-1,0,1,2,… 8 1 28 = 256

short …,-2,-1,0,1,2,… 16 2 216 = 65,536

int …,-2,-1,0,1,2,… 4 > 4.29 million

long …,-2,-1,0,1,2,… 8 > 18 quintillion

float 0.0, 10.5, -100.7 32

double 0.0, 10.5, -100.7 64

8

Manipulating data via expressions

 expression: A data value or a set of operations that

produces a value.

 Examples:

 1 + 4 * 3
 3

 "CSE142"

 (1 + 2) % 3 * 4

9

Operators

 Arithmetic operators we will use:

 + addition

 - subtraction or negation

 * multiplication

 / division

 % modulus, a.k.a. remainder

10

Evaluating expressions

 When Java executes a program and encounters an

expression, the expression is evaluated (i.e.,

computed).

 Example: 3 * 4 evaluates to 12

 System.out.println(3 * 4) prints 12

(after evaluating 3 * 4)

 How could we print the text 3 * 4 on the console?

11

Evaluating expressions: Integer division

 When dividing integers, the result is also an integer: the quotient.

 Example: 14 / 4 evaluates to 3, not 3.5 (truncate the number)

 Examples:

 1425 / 27 is 52

 35 / 5 is 7

 84 / 10 is 8

 156 / 100 is 1

 24 / 0 is illegal (what do you think happens?)

12

Evaluating expressions: The modulus (%)

 The modulus computes the remainder from a division of integers.
 Example: 14 % 4 is 2

 1425 % 27 is 21

 3 52
 4) 14 27) 1425
 12 135
 2 75
 54
 21

 What are the results of the following expressions?
 45 % 6

 4 % 2

 8 % 20

 11 % 0

13

Applying the modulus

 What expression obtains…

 the last digit (unit’s place) of a number?

 Example: From 230857, obtain the 7.

 the last 4 digits of a Social Security Number?

 Example: From 658236489, obtain 6489.

 the second-to-last digit (ten’s place) of a number?

 Example: From 7342, obtain the 4.

14

Applying the modulus

 How can we use the % operator to determine whether

a number is odd?

 How about if a number is divisible by, say, 27?

15

Precision in real numbers

 The computer internally represents real

numbers in an imprecise way.

 Example:

System.out.println(0.1 + 0.2);

 The output is 0.30000000000000004!

16

Precedence

 precedence: Order in which operations are computed in an

expression.

 Operators on the same level are evaluated from left to right.

 Example: 1 - 2 + 3 is 2 (not -4)

 Spacing does not affect order of evaluation.

 Example: 1+3 * 4-2 is 11

+ - Addition, Subtraction

* / % Multiplication, Division, Mod

() Parentheses

17

Precedence examples

 1 * 2 + 3 * 5 / 4

 _/
 |
 2 + 3 * 5 / 4

 _/
 |
 2 + 15 / 4

 ___/
 |
 2 + 3

 ________/
 |
 5

 1 + 2 / 3 * 5 - 4

 _/
 |
1 + 0 * 5 - 4

 ___/
 |
1 + 0 - 4

 ______/
 |
 1 - 4

 _________/
 |
 -3

18

Mixing integers and real numbers

 When an operator is
used on an integer and
a real number, the
result is a real number.

 Examples:

 4.2 * 3 is 12.6
 1 / 2.0 is 0.5

 The conversion occurs
on a per-operator basis.
It affects only its two
operands.

 7 / 3 * 1.2 + 3 / 2
 _/

 |
 2 * 1.2 + 3 / 2

 ___/
 |
 2.4 + 3 / 2

 _/
 |
 2.4 + 1

 ________/
 |
 3.4

 Notice how 3 / 2 is still
1 above, not 1.5.

19

Concatenation: Operating on strings

 string concatenation: Using the + operator between a string
and another value to make a longer string.

 Examples:

 "hello" + 42 is "hello42"

 1 + "abc" + 2 is "1abc2"

 "abc" + 1 + 2 is "abc12"

 1 + 2 + "abc" is "3abc"

 "abc" + 9 * 3 is "abc27" (what happened here?)

 "1" + 1 is "11"

 4 - 1 + "abc" is "3abc"

 "abc" + 4 - 1 causes a compiler error. Why?

20

Exercise: Combining String

and Math Expressions

Write a program to print out the following output.

Use math expressions to calculate the last two numbers.

Your grade on test 1 was 95.1

Your grade on test 2 was 71.9

Your grade on test 3 was 82.6

Your total points: 249.6

Your average: 83.2

Question

 ints are stored in 4 bytes (32 bits)

 In 32 bits, we can store at most 232 different
numbers

 What happens if we take the largest of these,
and add 1 to it?
 ERROR!

 This is known as overflow: trying to store something
that does not fit into the bits reserved for a data type.

 Overflow errors are NOT automatically detected!
 It’s the programmer’s responsibility to prevent these.

 The actual result in this case is a negative number.

Overflow example

int n = 2000000000;

System.out.println(n * n);

// output: -1651507200

 the result of n*n is 4,000,000,000,000,000,000 which needs 64-bits:

---------- high-order bytes -------

00110111 10000010 11011010 11001110

---------- low order bytes --------

10011101 10010000 00000000 00000000

 In the case of overflow, Java discards the high-order bytes, retaining
only the low-order ones

 In this case, the low order bytes represent 1651507200, and since
the right most bit is a 1 the sign value is negative.

Another question:

 What happens if we create a double value of 1.0, and
then keep dividing it by 10?

 Answer: eventually, it becomes 0.0

 This is known as underflow: a condition where a
calculated value is smaller than what can be represented
using the number of bytes assigned to its type

 Again, Java does not detect this error; it’s up to the
programmer to handle it.

24

What was the answer again?

 Evaluating expressions are

somewhat like using the

computer as a calculator.

 A good calculator has "memory"

keys to store and retrieve a

computed value.

25

Variables

 variable: A piece of your computer's memory that is given

a name and type and can store a value.

 Usage:

 compute an expression's result

 store that result into a variable

 use that variable later in the program

 Variables are a bit like preset stations on a car stereo:

26

Declaring variables

 To create a variable, it must be declared.

 Variable declaration syntax:
 <type> <name>;

 Convention: Variable identifiers follow the same
rules as method names.

 Examples:

 int x;

 double myGPA;

 int varName;

27

 Declaring a variable sets aside a piece of
memory in which you can store a value.

int x;
int y;

 Inside the computer:

 x: ? y: ?

 (The memory still has no value yet.)

Declaring variables

28

Identifiers: Say my name!

 identifier: A name given to an entity in a program such as a class or

method.

 Identifiers allow us to refer to the entities.

 Examples (in bold):

 public class Hello

 public static void main

 double salary

 Conventions for naming in Java (which we will follow):

 classes: capitalize each word (ClassName)

 everything else: capitalize each word after the first (myLastName)

29

Identifiers: Syntax

 First character must be a letter, _ or $

 Following characters can be any of those or a number

 Examples:

 legal: susan second_place _myName
 TheCure ANSWER_IS_42 $variable
 method1 myMethod name2

 illegal: me+u 49er question?
 side-swipe hi there ph.d
 jim's 2%milk suzy@yahoo.com

 Remember: Java is case-sensitive (name is different from Name)

30

Identifiers: Keywords

 keyword: An identifier that you cannot use, because it already has a

reserved meaning in the Java language.

 Complete list of Java keywords:
 abstract default if private this

 boolean do implements protected throw

 break double import public throws

 byte else instanceof return transient

 case extends int short try

 catch final interface static void

 char finally long strictfp volatile

 class float native super while

 const for new switch

 continue goto package synchronized

 NB: Because Java is case-sensitive, you could technically use Class or cLaSs

as identifiers, but this is very confusing and thus strongly discouraged.

31

Setting variables

 assignment statement: A Java statement that stores a value
into a variable.

 Variables must be declared before they can be assigned a value.

 Assignment statement syntax:

 <variable> = <expression>;

 Examples:

 x = 2 * 4; x: 8 myGPA: 3.25

 myGPA = 3.25;

32

Setting variables

 A variable can be assigned a value more than once.

 Example:

 int x;

x = 3;

System.out.println(x); // 3

x = 4 + 7;

System.out.println(x); // 11

33

Using variables

 Once a variable has been assigned a value, it can be used in any
expression.
 int x;

 x = 2 * 4;

 System.out.println(x * 5 - 1);

 The above has output equivalent to:

 System.out.println(8 * 5 - 1);

 What happens when a variable is used on both sides of an
assignment statement?
 int x;

 x = 3;

 x = x + 2; // what happens?

34

Errors in coding

 ERROR: Declaring two variables with the same

name

 Example:
int x;

int x; // ERROR: x already exists

 ERROR: Reading a variable’s value before it has
been assigned

 Example:
 int x;

 System.out.println(x); // ERROR: x has no value

35

Assignment vs. algebra

 The assignment statement is not an algebraic equation!

 <variable> = <expression>; means:

 "store the value of <expression> into <variable>"

 Some people read x = 3 * 4; as

 "x gets the value of 3 * 4"

 ERROR: 3 = 1 + 2; is an illegal statement, because 3

is not a variable.

36

Assignment and types

 A variable can only store a value of its own type.

 Example:

 int x;

 x = 2.5; // ERROR: x can only store int

 An int value can be stored in a double variable. Why?

 The value is converted into the equivalent real number.

 Example:

 double myGPA; myGPA: 2.0

 myGPA = 2;

Legal Assignments

char

int

byte

long

short

double

float

boolean

38

Assignment exercise

 What is the output of the following Java

code?

int x;

x = 3;

int y;

y = x;

x = 5;

System.out.println(x);

System.out.println(y);

39

Assignment exercise

 What is the output of the following Java code?
int number;

number = 2 + 3 * 4;

System.out.println(number - 1);

number = 16 % 6;

System.out.println(2 * number);

 What is the output of the following Java code?
double average;

average = (11 + 8) / 2;

System.out.println(average);

average = (5 + average * 2) / 2;

System.out.println(average);

40

Shortcut: Declaring and initializing

 A variable can be declared and assigned an

initial value in the same statement.

 Declaration/initialization statement syntax:

 <type> <name> = <expression>;

 Examples:

 double myGPA = 3.95;

 int x = (11 % 3) + 12;

41

Shortcut: Declaring many variables at once

 It is legal to declare multiple variables on one line:

 <type> <name>, <name>, ..., <name>;

 Examples:
 int a, b, c;

 double x, y;

 It is also legal to declare/initialize several at once:

 <type> <name> = <expression> , ..., <name> = <expression>;

 Examples:

 int a = 2, b = 3, c = -4;

double grade = 3.5, delta = 0.1;

 NB: The variables must be of the same type.

42

Shortcut: Modify and assign

 Java has several shortcut operators that allow you to quickly modify
a variable's value.

Shorthand Equivalent longer version

<variable> += <exp>; <variable> = <variable> + (<exp>);

<variable> -= <exp>; <variable> = <variable> - (<exp>);

<variable> *= <exp>; <variable> = <variable> * (<exp>);

<variable> /= <exp>; <variable> = <variable> / (<exp>);

<variable> %= <exp>; <variable> = <variable> % (<exp>);

 Examples:

 x += 3 - 4; // x = x + (3 - 4);

 gpa -= 0.5; // gpa = gpa – (0.5);
 number *= 2; // number = number * (2);

43

Shortcut: Increment and decrement

 Incrementing and decrementing 1 is used often enough that they have a
special shortcut operator!

 Shorthand Equivalent longer version

<variable>++; <variable> = <variable> + 1;

<variable>--; <variable> = <variable> - 1;

 Examples:

int x = 2;

x++; // x = x + 1;

 // x now stores 3

double gpa = 2.5;

gpa++; // gpa = gpa + 1;

 // gpa now stores 3.5

44

Putting it all together: Exercise

 Write a program that stores the following data:

 Section 001 has 27 students.

 Section 002 has 28 students.

 Section 003 has 11 students.

 Section 004 has 9 students.

 The average number of students per section.

 Have your program print the following:
There are 27 students in Section 001.

...

There are <?> total students.

There are an average of <?> students per section.

